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Pancreatic adenocarcinoma (PAAD) is the most common primary malignancy of the pancreas. Growing studies indicate that
transcription factors (TFs) are abnormally expressed in PAAD. We, therefore, aimed to evaluate the effect of TFs in PAAD
and develop a TF-based prognostic signature for the patients. The expression of the TFs and the clinical characteristics were
obtained from TCGA datasets. The levels of the TFs were evaluated in PAAD tissues or nontumor tissues. Kyoto Encyclopedia
of Genes and Genomes (KEGG) was used to determine the potential function of the dysregulated TFs. To create a prognostic
signature, we used univariate and multivariate Cox regression. In addition, the relationship between risk score and tumor
microenvironment was analyzed. In this study, we observed 19 increased and 10 decreased TFs in PAAD tissues. KEGG assays
indicated that dysregulated TFs were involved in transcriptional misregulation in cancer. Multivariate Cox analysis identified
two prognostic factors, Zinc finger protein 488 and BCL11A; and we developed a risk score model by these two factors. The
Kaplan-Meier estimator suggested that patients with high risk exhibited a shorter overall survival than those with low risk. The
receiver operating characteristic curve proved that the accuracy of this prognostic signature was 0.686 in predicting the 5-year
survival. In addition, we observed that the high score was distinctly related to advanced tumor stage and immune infiltrates.
Taken together, we developed a novel TF-related model which could be applied as a potential prognostic tool for PAAD and
may guide the choice of immunotherapies.

1. Introduction

Worldwide, more than half a million people die each year
from pancreatic adenocarcinoma (PAAD), the most malig-
nant tumor of the digestive system [1–3]. PAAD is associ-
ated with many risk factors including smoking, alcohol,
gallstones, and chronic pancreatitis. Serum carbohydrate

antigen is the most commonly used test to determine
PAAD [4]. However, due to the low sensitivity and accu-
racy of this method, many patients are unable to be
detected in the early stages of the tumor. This leads to
the five-year overall survival no more than 10% [1, 4].
Therefore, it is important to develop novel tests for the
early diagnosis of pancreatic cancer.
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Figure 1: Identification of the dysregulated TFs in PAAD patients. (a) Volcano plot of upregulated and downregulated TFs. (b) The
dysregulated TFs are showed in the heat map.
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Figure 2: Continued.
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To activate or inhibit transcription of genes, transcrip-
tion factors (TFs) attach to the transactivation or transre-
pression domains of DNA helix and regulate the genes’
expression by turning on or turning off of the transcription
[5–7]. Many biological processes, including the proliferation
and death of cells, are regulated by transcription factors [8].
Notably, a variety of TFs was found to be dysregulated in
many tumors such as cholangiocarcinoma [9], colon adeno-
carcinoma [10], and glioblastoma [11]. In addition, recent
studies prove that the dysregulated expression of TFs may
be involved in the immune functions of several types of car-
cinomas [12, 13]. This suggests that TFs might be promising
diagnostic biomarkers and therapeutic targets in
malignancies.

In this study, we aimed to investigate the expression of
TFs in PAAD and develop a risk score model, which could
be used to diagnose the PAAD and predict the prognosis
of patients. Additionally, we evaluated if and how these
TFs regulate immune infiltration. In conclusion, we devel-
oped a novel TF-based risk score model and this model will

support the clinicians to choose the individualized therapeu-
tic strategies for PAAD patients.

2. Materials and Methods

2.1. Biological Microarray Data. The expression of transcrip-
tion factors was obtained from The Cancer Genome Atlas
(TCGA) database. In this study, we choose the data of
HTseq-FPKM, and the genetic expressions were presented
as log2 ðFPKM + 1Þ. The patients whose follow-up period
was less than 30 days were excluded from the study. Finally,
we collected 1639 TFs from the study of Lambert et al. [14]
and the survival analysis was performed in 172 PAAD
patients.

2.2. Evaluating the Prognostic Value of TFs. To determine
TFs that were differently expressed between PAAD and non-
tumor samples, the limma package was used. TFs with a log2
fold change ðFCÞ > 1 and adjusted P values lower than 0.05
were identified as being differentially expressed. The false

Transcriptional misregulation in cancer
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Figure 2: Functional analysis based on the dysregulated TFs between the two risk groups in PAAD. (a) Bubble graph for GO enrichment.
(b) Bar plot graph for KEGG pathways.
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discovery rate was controlled by using the Benjamini-
Hochberg method, and the R package “ggplot2” was used
to construct the volcano charts [15]. The hierarchical cluster
analysis was performed with the support of the heat map.
The prognostic value of TFs was determined by the univar-
iate and multivariate Cox regression analysis. All TFs were
included in the univariate Cox regression, and the TFs which

could significantly influence the prognoses of the patients
were included in the multivariate Cox analysis.

2.3. Development and Validation of the TF-Related
Prognostic Model. To develop the prognostic model, the
independent prognostic TFs of PAAD patients were
included and the model was developed with the support of
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Figure 3: The survival-related TFs in PAAD patients. Forest plot of prognostic TFs by the use of (a) univariate assay and (b) multivariate
assay.
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the coefficient of the multiple Cox regression. To evaluate
the prognosis of this model, the patients were divided into
low- and high-risk categories. Kaplan-Meier curves and
multivariate Cox regression were applied. The receiver oper-
ating characteristic curve (ROC) was used to determine the
accuracy of this model in predicting the 5-year survival.

2.4. Evaluating the Relationship between TFs, Immune
Infiltration, and Stroma. The infiltrations of immune cells
were quantified by ssGSEA and immune scores [16]. The
“GSEABase” and “GSVA” packages were used [17], and
the enrichment score was obtained. The statistical differ-
ences between different groups were determined by
Kruskal-Wallis tests. To evaluate the relationship between
TFs and immune infiltration or stroma, two-way ANOVA
was used.

2.5. Evaluating the Relationship between TFs and Stemness of
Cells. Previous studies suggest that the stemness of carci-
noma cells can be determined by the RNA-based stemness
scores (RNAss) or the DNA methylation-based stemness
scores (DNAss) [18]. We obtained the data from TCGA
database and evaluated the stemness of the cancer cells by
these scores. The values of the score were between 0 and 1.
If the score is zero, this suggests that the cancer cells are well
differentiated; if the score is one, this suggests that the cells
are poorly differentiated and have strong stemness.

2.6. Statistical Methods. The R (version 4.0.3) was used to
conduct all statistical analyses. The Wilcoxon tests were used
to detect the statistically different expressions of TFs in
PAAD tissues and nontumor tissues. The immune scores

of different groups were determined by the Mann–Whitney
U test, and the P values were adjusted by the Benjamini-
Hochberg method. To determine the survival time of
patients, the Kaplan-Meier curve and log-rank test were
used. The univariate and multivariate Cox regressions were
applied to identify the independent prognostic factor, and
a TF-based prognostic score was developed by the coefficient
of multivariate Cox regression. The statistical differences
between scores of each group were determined by the
Mann–Whitney U test. Differences with P ≤ 0:05 were con-
sidered to be significant.

3. Results

3.1. Identification of Differentially Expressed TFs in PAAD.
The limma R package was used to determine TFs that exhib-
ited a dysregulated level among 1639 profiles obtained from
TCGA [19]. We observed that the expression of 19 TFs
increased in the PAAD tissues and 10 TFs decreased
(Figures 1(a) and 1(b)). These differentially expressed TFs
were further studied by Gene Ontology (GO) and KEGG
enrichment analysis. We observed that differentially
expressed TFs were enriched in cell fate commitment, pat-
tern specification process, transcription regulator complex,
embryonic organ development, transcription repressor com-
plex, protein-DNA complex, and DNA-binding transcrip-
tion repressor activity (Figure 2(a)). KEGG assays
indicated that the dysregulated TFs were involved in tran-
scriptional misregulation in cancer (Figure 2(b)).

3.2. ZNF488 and BCL11A Are Independent Prognostic
Factors of PAAD. To determine the prognostic TFs in PAAD,
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Figure 4: Development of the TF-based prognostic signature in PAAD. (a–c) Distributions of four-gene expression profiles of each patient,
risk scores, and survival statuses of patients in the low-risk and high-risk groups. (d) Kaplan-Meier assays of the TF-related signature
displaying worse survivals in the high-risk group. (e) ROC curve is applied to determine the diagnostic value of our model.

7Journal of Immunology Research



we performed the univariate Cox regression with the 29 dys-
regulated TFs in PAAD. We observed that Zinc finger protein
488 (ZNF488) and Ovo-like transcriptional repressor 1
(OVOL1) slightly increased the risk of death and BAF chro-
matin remodeling complex subunit, BCL11A, minor
improved the prognosis of the patients (Figure 3(a)). The mul-
tivariate Cox regression suggested that ZNF488 and BCL11A
were the independent prognostic factors for PAAD patients
(Figure 3(b)).

3.3. Develop and Evaluate the TF-Based Prognostic Model.
We used the coefficient of TFs and developed a model to
predict the prognosis of patients (Score = 0:0010599 ×
levels of ZNF488 − 0:0019598 × levels of BCL11A). Based on
the median score, all cases were divided into a high-risk
group or a low-risk group. The expression of ZNF488 and
BCL11A is presented in Figure 4(a), and the survival times
of patients are presented in Figures 4(b) and 4(c). The

Kaplan-Meier curve suggested that the survival time of
patients with high-risk scores was significantly shorter than
those with low-risk scores (Figure 4(d)). The ROC curve
and the area under the curve indicated that the accuracy of
this score in predicting the 5-year survival of patients was
0.686 (Figure 4(e)). In addition, the univariate and multivar-
iate Cox regression suggested that the prognostic model was
an independent prognostic factor of PAAD patients
(Figures 5(a) and 5(b)).

3.4. The Relationship between the Prognostic Model and
Clinical Features. We further analyzed the association
between the prognostic model and the clinical features. We
observed that there were no significant differences between
young patients and elderly patients (Figure 6(a)), female
and male (Figure 6(b)), grade 1/grade 2 tumors, and grade
3/grade 4 tumors (Figure 6(c)). Interestingly, we observed
that the risk of patients with the middle stage of tumors or
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Figure 5: (a) Univariate and (b) multivariate assays of the relevancy between several clinical elements and overall survival of PAAD patients.
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advanced stage of tumors was significantly high than that
with early stage of tumors (Figure 6(d)).

3.5. The Relationship between the Prognostic Model and
Immune Infiltration. To evaluate if TFs were involved in
the immune infiltration, we evaluated the relationship

between the risk score and the immune status; we observed
that compared to the low-risk group (blue box), the level
of tumor-infiltrating lymphocytes (TIL), Th1 cells, T follicu-
lar helper (Tfh) cells, T helper (Th) cells, plasmacytoid den-
dritic (pDC) cells, natural killer (NK) cells, neutrophils, mast
cells, CD8+ T cells, and B cells was significantly decreased in
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Figure 7: The relationships between risk score and tumor microenvironment. (a) The scores of 16 immune cells. (b) Boxplots were used to
illustrate 13 immune-related processes.
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the high-risk group (red box, Figure 7(a)). Additionally, we
observed that the level of type II IFN (IFN-γ), T cell costi-
mulation, T cell coinhibition, inflammation-promoting,
human leukocyte antigen (HLA), cytolytic activity, and
checkpoint and CC chemokine receptor (CCR) were also
significantly decreased in the high-risk group (red box,
Figure 7(b)). To investigate the relationship between the risk
score and the immune infiltration, the level of the risk score
was evaluated in six types of immune infiltrations, C1
(wound healing), C2 (INF-γ dominant), C3 (inflammatory),
C4 (lymphocyte depleted), C5 (immunologically quiet), and
C6 (TGF-β dominant). We observed that C3 had a low risk
score when compared to C1 or C2 (Figure 8).

3.6. The Relationship between the Prognostic Model and
Stemness, Immunological, or Stromal Microenvironment. To
evaluate the relationship between the risk score and stem-
ness, immunological, or stromal microenvironment, we cal-
culated the Spearman rank correlation coefficient of the risk
score and the scores of stemness, immunology, or stroma.
We observed that the risk score was positively associated
with RNA-based stemness scores (RNAss, Figure 9(a)) or
the DNA methylation-based stemness scores (DNAss,
Figure 9(b)) and negatively associated with the stromal score
(Figure 10(a)) and immune score (Figure 10(b)). This sug-
gested that the risk score increased the stemness of tumors
and impaired the immunological or stromal
microenvironment.

4. Discussion

PAAD is the most aggressive and fatal tumor [20, 21]. Due
to the lack of a sensitive and specific test of PAAD, the

tumors have already spread from the pancreas to the liver
and lung [22]. Thus, it needs to develop a novel test that
can diagnose PAAD at an early stage and monitor the treat-
ment response. Previous studies reported that TFs are
involved in the genesis, development, and metastasis of sev-
eral tumors, [23, 24] and therefore, TFs are promising bio-
markers for the diagnosis of PAAD [25].

In the present study, we observed that ZNF488 and
BCL11A were independent prognostic variables of PAAD
patients and we developed a predictive model by using these
two TFs. The predictive model proved that patients with
high-risk scores had a short overall survival. Additionally,
the ROC curve indicated that this risk score had an accept-
able accuracy in predicting the 5-year survival. The univari-
ate and multivariate Cox regression confirmed that ZNF488
and BCL11A were independent prognostic factors for PAAD
patients. This was supported by previous studies [26, 27].
For example, Qiu et al. proved that ZNF488 promotes the
invasion and migration of PAAD cells by activating the
Akt/mTOR signaling pathway [26]. Zhou et al. found that
overexpression of BCL11A promoted the growth of laryn-
geal squamous cell carcinoma [27]. In addition, we evaluated
if and how ZNF488 or BCL11A was involved in the immu-
nological microenvironment. We observed that the level of
CD8+ T cells significantly decreased in the high-risk group.
It is well known that CD8+ T cells are the cytotoxic T lym-
phocytes that kill the carcinoma cells [28]. This may be a
possible mechanism that the patients in the high-risk group
have a poor prognosis.

It is reported that cancer stem cell-like cells are master
contributors to the poor survival of PAAD [29]. We,
therefore, evaluated the relationship between the risk score
and the stemness of cancer cells. In the process of tumor
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growth, some tumor cells lose their differentiation poten-
tial and gradually have the characteristics of progenitor
cells and stem cells. This is due to the high levels of meth-
ylation in the DNA of some genes, and previous studies
suggest that RNAss and DNAss can accurately reflect the

stemness of tumor cells [18]. We observed that the TF-
based score was positively correlated with the RNAss or
DNAss. This indicates that ZNF488 or BCL11A increases
the stemness of cancer cells. To our knowledge, no study
reports how ZNF488 regulates the stemness of PAAD
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Figure 9: The relationships between risk score and (a) DNAss and (b) RNAss.
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cells. Zong et al. find that ZNF488 is an independent
prognostic factor of nasopharyngeal carcinoma, and it pro-
motes the adhesion and proliferation of cells by the IV/
FAK/AKT/Cyclin D1 pathway [30]. In the future, addi-
tional studies could evaluate if IV/FAK/AKT/Cyclin D1
is involved in the ZNF488-induced stemness. Zhu et al.
report that BCL11A could enhance stemness by activating
the Wnt/β-catenin signaling [31]. Thus, the combinational

therapeutic strategies that target the BCL11A and Wnt/β-
catenin signaling pathway are a promising treatment for
PAAD patients.

5. Conclusion

In conclusion, based on ZNF488 and BCL11A, we developed
a prognostic model and the accuracy of this model was 0.686
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in predicting the 5-year survival. In addition, we observed
that ZNF488 and BCL11A were positively related to the
advanced tumor stage and stemness. Targeting ZNF488
and BCL11A may be a promising strategy for the treatment
of PAAD.
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