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Cervical cancer (CC) is the third most common carcinoma and the fourth leading cause of cancer-associated mortality in women.
The deregulation of fatty acid metabolism plays a crucial role in the progression of various tumors. This study is aimed at
exploring the prognostic values of fatty acid metabolism- (FAM-) related long noncoding RNAs (lncRNAs) in CC. FAM-
related differentially expressed genes (DEGs) and lncRNAs were screened in CC specimens based on TCGA datasets.
Univariate analysis was carried out on differentially expressed lncRNAs to screen the survival-related lncRNAs. Multivariate
assays were performed on the resulting lncRNAs to create a novel risk model. Survival assays were applied to examine the
prognostic abilities of our model. Receiver operating characteristic (ROC) analysis was used to evaluate the accuracy of the
new model. The association between risk model and immune responses was analyzed. In this study, we screened 9 differently
expressed lncRNAs associated with the clinical outcome of CC patients. A nine-lncRNA signature comprising SCAT1,
AC119427.1, AC009097.2, MIR100HG, AC010996.1, AL583856.2, MIAT, AP003774.2, and AC004540.2 was established to
predict overall survival of CC. Survival assays revealed that patients’ high risk score showed a shorter overall survival than
those with low risk score. Multivariate assays demonstrated that the nine-gene signature was an independent prognostic factor
in CC. In addition, we observed that APC_co_stimulation, CCR, and parainflammation were distinctly different between low-
risk and high-risk groups. Our group observed a distinct difference in the expressions of CD44, TNFRSF8, CD276, LAG3,
TNFRSF14, TMIGD2, VTCN1, TNFRSF25, CD80, NRP1, TNFRSF18, CD70, TNFSF9, and LGALS9 between the two groups
of patients. Overall, our findings indicated that the 9 FAM-related lncRNA signature might be a promising prognostic factor
for CC and can promote the management of FAM-related therapy in clinical practice.

1. Introduction

Cervical cancer (CC) is as one of the most common gyneco-
logical malignant tumors worldwide and has become a
prominent public health issue [1]. The most recent global
data to be released by the International Agency for Research
on Cancer indicates that there were 569,847 newly diag-
nosed cases of cervical cancer in the world in 2018, and that
the disease was responsible for the deaths of 311,365 people
[2, 3]. The presence of a persistent infection with a high-risk
human papillomavirus (HPV) is a primary determinant in
the development of cervical cancer, but it is not a necessary
condition [4]. Surgery, chemotherapy, and radiation therapy

are the basic treatment options for patients who have been
diagnosed with cervical cancer [5, 6]. In spite of the progress
that has been made in medical technology, approximately
one quarter of patients diagnosed with cervical cancer will
either have a cancer recurrence or pass away over the next
three years [7, 8]. Therefore, it is necessary to identify new
prognostic markers and treatment options for CC to
improve the survival of CC patients.

One of the 10 hallmarks of cancer is a metabolic disorder
called dysregulation, and there is mounting evidence to sug-
gest that metabolic reprogramming plays an important part
in the beginning stages of cancer and its progression [9, 10].
In cancer cells, lipid metabolic reprogramming is one of the
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most notable metabolic alterations documented and has
gained growing attention [11]. Malignant cells, in particular,
take up a lot of glucose and glutamine to make proteins,
lipids, and nucleic acids, all of which are necessary for cell
proliferation [12, 13]. Fatty acids and other bioactive lipid
compounds are altered by changing the lipid metabolism
(FAs) [14]. For many years, researchers have known that
FAs play a critical role in cancer cells’ ability to synthesize
membranes and provide energy during times of metabolic
stress [15, 16]. In addition, the role of fatty acid metabolism
in tumors has attracted renewed attentions as a major sec-
ondary messenger that contributes to tumor growth [17,
18]. However, nothing is known about how CC’s fatty acid
metabolic pathway is regulated. As a result, the discovery
of genes associated to fatty acid metabolism may open up
new therapy options for CC.

Moreover, seventy percent of gene transcripts are non-
coding RNAs, which means that only 2% of genes can code
for proteins [19]. A family of noncoding transcripts that are
more than 200 nucleotides long has been referred to as long
noncoding RNAs (lncRNA) [20]. Recent researches have
shown that certain lncRNAs have an important role in the
initiation, development, and outcome of several cancers
[21, 22]. Normally, however, lncRNAs were deemed non-
functional. lncRNAs that are linked to cancer progression
can help scientists better understand the development of
new treatments for the disease. A notion put forth by
Salmena et al. in 2011 about competitive endogenous RNA
(ceRNA), which has since been supported by a variety of
studies [23]. It is hypothesized that some RNAs, known as
ceRNAs, compete with one another for shared binding sites
on target miRNAs, hence, changing their function. lncRNAs
might influence FAM-related mRNA expressions in CC via
sponging miRNAs, according to the theory. It is not known
how FAM-related lncRNAs are regulated despite the fact
that several CC ceRNA networks have been built in research.

In this study, using TCGA data, we first created a predic-
tive multi-lncRNA signature for fatty acid metabolism-
related lncRNAs. We then looked into the involvement of
mRNA and immune responses related to fatty acid metabo-
lism in CC prognosis.

2. Materials and Methods

2.1. Data Download and Preprocessing. TCGA database
(https://cancergenome.nih.gov/) was used to download raw
sequencing data and clinical information. Annotation and
integration produced the standardized datasets. Integration
processing of datasets was done using Perl scripting tools
(http://www.perl.org/). A total of 309 samples were enrolled
in this study, including 306 CC specimens and 3 matched
normal tissues.

2.2. Differentially Expressed Gene Screening. Using the
“limma” R package, we identified differentially expressed
RNAs (referred to as DElncRNAs and FAM-mRNAs,
respectively) based on the following criteria: ∣logfold
change ðFCÞ ∣ >1 and false discovery rate (FDR) 0.05 [24].

2.3. Functional Enrichment Analysis of the Differentially
Expressed Genes (DEGs) between CC Specimens and
Nontumor Specimens. Filtering the DEGs between the CC
samples and the normal samples was based on particular cri-
teria (∣log 2FC ∣ >1 and FDR > 0:05). Analysis of Gene
Ontology (GO) and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways using the “clusterProfiler” pro-
gram was carried out based on these DEGs.

2.4. Developments of a Novel Prognostic Signature Based on
FAM-Related lncRNAs. We applied univariate and multivar-
iate assays for the development of the FAM-related lncRNA
signature, stratified based on risk score ðCoefficient
lncRNA1 × expressions of lncRNA1Þ + ðCoefficient lncRNA
2 × expressions of lncRNA2Þ +⋯+ðCoefficient lncRNAn ×
expressions of lncRNAnÞ. Each CC patient’s risk score was
also assessed. It was determined by the median score that the
RNAs may be classed as either low risk (less than the median
number) or high risk (more than the median number).

2.5. Nomogram Construction. Combining genetic risk score
values with clinical features, a nomogram was developed to
predict 3- and 5-year CC OS. The nomogram’s prediction
power was evaluated using a calibration plot. For both the
3-year and 5-year OS ROC curves, the nomogram’s sensitiv-
ity and specificity were analyzed using the AUC.

2.6. Immunity Analysis and Gene Expression. Comparing cell
components or immune responses between low- and high-
risk groups based on the FAM-related lncRNA signature,
the TIMER, ssGSEA, MCPcounter, ESTIMATE, and
CIBERSORT algorithms was also done [25–27]. Using a heat
map, we were able to see the changes in immune response
among the various methods. Besides, ssGSEA was employed
to compare the immune cell subpopulations infiltrating
tumors in the two groups and to gauge their immunological
function. In addition, a possible immunological roadblock
was found in previous research.

2.7. Statistical Analysis. R 3.5.3 was used to do all of the
statistical analysis. p < 0:05 was chosen as the threshold for
statistical significance. Using one-way ANOVA or Student’s
t test, the significance of variations in risk score and clinico-
pathological features was evaluated. Using Kaplan-Meier
survival curves, researchers were able to compare survival
rates between high-risk and low-risk groups of patients.
Cox proportional hazard models were used to assess the haz-
ard ratios of prognostic factors and to identify independent
prognostic factors in the study.

3. Results

3.1. Identification of Differentially Expressed FAM-Associated
Genes. We identified 49 FAM-associated genes (16 downreg-
ulated and 33 upregulated) that exhibited a dysregulated level
in the TCGA datasets (Table S1). For the biology
investigation, the 50 FAM-associated DEGs were applied for
GO and KEGG enrichment. MF, BP, and CC were shown in
Figure 1(a) with the top 10 phrases for each. In BP, the
terms were predominantly related to fatty acid metabolic
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Figure 1: Continued.
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process, sulfur compound metabolic process, small molecule
catabolic process, steroid metabolic process, and acyl-CoA
metabolic process. In CC, the terms were primarily related
to peroxisome, microbody, peroxisomal matrix, microbody
lumen, and mitochondrial matrix. In MF, the terms were
mainly related to lyase activity, hydro−lyase activity, acyl-
CoA hydrolase activity, and CoA hydrolase activity. KEGG
assays indicated the DEGs were mainly involved in fatty acid
metabolism, tryptophan metabolism, fatty acid degradation,
alcoholic liver disease, pyruvate metabolism, and PPAR
signaling pathway (Figure 1(b)).

3.2. Construction of the lncRNA Prognostic Signature. Subse-
quently, we screened 124 FAM-related DElncRNAs. Then,
we performed univariate COX analysis and identified
19 prognostic DElncRNAs in CC (Figure 2). Further, multi-
variate COX analysis identified nine lncRNAs (SCAT1,
AC119427.1, AC009097.2, MIR100HG, AC010996.1,
AL583856.2, MIAT, AP003774.2, and AC004540.2) as
significant independent prognostic factors for CC patients
(Table S2). The risk score of each case was calculated
as follows: risk score = ð0:605003 × expressions of SCAT1Þ
+ ð0:242673 × expressions of AC119427:1Þ + ð−0:97288 ×

expressions of AC009097:2Þ + ð0:755143 × expressions of
MIR100HGÞ + ð−0:61929 × expressions of AC010996:1Þ +
ð−1:61362 × expressions of AL583856:2Þ + ð0:027691 ×
expressions of MIATÞ + ð0:185731 × expressions of AP
003774:2Þ + ð0:207345 × expressions of AC004540:2Þ. We
used the median cutoff to divide the CC samples into high-
and low-risk groups after rating each patient’s risk via the
signature. By performing a Kaplan-Meier survival analysis,
we discovered that the OS for those in the high-risk group
was much lower than that of those in the low-risk group
(Figure 3(a)). Our results showed that most of new lncRNAs
discovered in this research had a negative correlation with
our risk model, which necessitates further investigation
(Figures 3(b) and 3(c)). The unique lncRNA signature has
an AUC of 0.694, 0.752, and 0.762 for predicting survival
rates of 1, 3, and 5 years (Figure 3(d)). CC’s prognosis was
predicted by the characteristic lncRNAs with an AUC of
0.696, which was higher than the usual clinicopathological
criteria (Figure 3(e)). The results of DCA also confirmed the
prognostic value of novel model in CC patients (Figure 3(f)).
Univariate and multivariate assays indicated that lncRNA
signature was an independent prognosis factor of OS of CC
patients (Figures 4(a) and 4(b)). Clinical care of CC patients
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Figure 1: Functional enrichment analysis of the DEGs between CC specimens and nontumor specimens. (a) Distinctly enriched GO terms
of DEGs in CC and (b) significant KEGG pathway terms of DEGs in CC.
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can benefit from the hybrid nomogram that incorporates
clinicopathological features and the unique FAM-related
lncRNA prognostic signature (Figure 5).

3.3. Immunity and Gene Expression. According to CIBER-
SORT, MCP counter, single-sample gene set enrichment
(ssGSEA), and TiMER algorithms, the heat map of immune
responses was depicted in Figure 6. According to data from
TCGA datasets, ssGSEA study showed that APC costimula-
tion, CCR, and parainflammation were distinctly different
between low-risk and high-risk groups in terms of correla-
tion analysis (Figure 7(a)). With regard to immunotherapy,
we examined the difference in the expressions of immuno-
logical checkpoints between two groups. Our group
observed a distinct difference in the expressions of CD44,
TNFRSF8, CD276, LAG3, TNFRSF14, TMIGD2, VTCN1,
TNFRSF25, CD80, NRP1, TNFRSF18, CD70, TNFSF9, and
LGALS9 between the two groups of patients (Figure 7(b)).

4. Discussion

The prognosis of individuals with advanced or metastatic
CC remains bleak despite the best treatment options avail-
able at the time of their diagnosis [28]. As the anticancer
treatment of the future, immunotherapy may be an alterna-
tive for individuals with CC who are suffering from this
condition [29]. FAM-related prognostic signatures are here
for the first time identified, providing an effective prognostic
model for CC patients and possible biomarkers of immuno-
therapy efficacy.

In this study, we screened 49 FAM-related DEGs. KEGG
assays indicated the genes mainly participated in fatty acid
metabolism, tryptophan metabolism, fatty acid degradation,

alcoholic liver disease, pyruvate metabolism, and PPAR sig-
naling pathway, suggesting these genes played an important
role in fatty acid metabolism and the tumor progression.
Then, we identified 124 fatty acid metabolism-related
lncRNAs. After univariate and multivariate assays, we
identified nine lncRNAs (SCAT1, AC119427.1,
AC009097.2, MIR100HG, AC010996.1, AL583856.2, MIAT,
AP003774.2, and AC004540.2) as distinctly independent
elements for prognosis of CC patients. Some of the lncRNAs
listed above have been linked to CC prognosis and progres-
sion in previous researches. For instance, MIR100HG
expression was distinctly upregulated in early-stage CC
and predicted a shorter overall survival [30]. Liu et al.
reported that MIAT expression was distinctly decreased in
CC and its overexpression proliferation of CC cells via
modulating miRNA-150-5p [31]. In this study, we firstly
created a prognostic signature using the nine fatty acid
metabolism-related lncRNAs. We observed that patients
with high risk score showed a shorter overall survivals.
Importantly, univariate and multivariate assays suggested
that lncRNA signature was an independent prognosis factor
of overall survival of CC patients. Our findings suggested
this novel signature may be applied as a novel prognostic
biomarker for CC patients.

Nomograms are increasingly being utilized to evaluate
tumor prognosis. As a result, nomograms can be used to
tailor risk assessments to individual patients depending on
their clinical or illness characteristics [32, 33]. A predictive
nomogram integrating clinical characteristics and FAM-
related lncRNA signals was created in this investigation.
Patients with higher risk scores had shorter OS than patients
with lower risk scores, according to the findings. The
observed and anticipated rates at 1-, 3-, and 5-year intervals
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are perfectly consistent, according to the nomograms we
developed. When comparing the observed and anticipated
rates over time intervals of 1, 3, and 5, our nomograms dem-
onstrate perfect agreement at all points in time. Based on 9
FAM-related lncRNAs, a risk model that can identify new
biomarkers for follow-up investigations is quite reliable.

A variety of cancers have been found to be treatable by
immunotherapy’s ability to boost the immune system [34].
Preclinical and clinical studies show that immune-based
therapies can improve the prognosis of patients with CC
[35]. Moreover, immunotherapy in combination with
other therapeutic approaches may also become a viable
treatment option for CC. In addition, tumor-infiltrating
lymphocytes, such as regulatory T cells and tumor-
associated macrophages, have also been shown in recent
investigations to be important in driving immune evasion

during CC growth [36, 37]. In this study, high levels of
myeloid dendritic cell, T cell CD8+, T cell follicular helper,
macrophage M0, and mast cell activated were found in the
high-risk group, suggesting immune tolerances in the
patients with high risk score. Therefore, patient selection
for more effective antitumor immunotherapies could be
aided by the FAM-related lncRNA signature. In order to
better recognize the role of the novel signature in predict-
ing immunotherapeutic responses in CC patients, further
validation is needed. Immune checkpoints were expressed
at a higher level in patients at high risk in our research.
In combination with checkpoint blockade, targeting
tumor-specific ferroptosis pathways and possibly certain
lncRNAs is a viable strategy for these patients. Our finding
highlighted the potential of our model used as a novel
indicator for immune response.
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However, some limitations of this study should be noted.
First, the prognostic model employed in this investigation
was developed using data from a single source (TCGA). Exter-
nal, independent data sets and long-term follow-up should be
used to confirm the prognostic value of our novel model in CC
patients. Second, the Kaplan-Meier estimates of the TCGA
cohort may be affected by the high censored rate. Third,
explicit mechanisms should be elaborated in the further study.

5. Conclusion

We used publicly available databases to gather information
and looked into the involvement of FAM-related lncRNAs
in CC development. Based on nine FAM-related lncRNAs,
we developed and validated a predictive risk signature that
is reliable and sensitive. In addition, we developed a
prognostic nomogram that could accurately predict the

ns ns ns ns ns ns ⁎ ns ns ns ns

0.00

0.25

0.50

0.75

1.00

A
PC

_c
o_

in
hi

bi
tio

n

A
PC

_c
o_

sti
m

ul
at

io
n

CC
R

Ch
ec

k−
po

in
t

Cy
to

ly
tic

_a
ct

iv
ity

H
LA

In
fla

m
m

at
io

n−
pr

om
ot

in
g

M
H

C_
cla

ss
_I

Pa
ra

in
fla

m
m

at
io

n

T_
ce

ll_
co

−i
nh

ib
iti

on

T_
ce

ll_
co

−s
tim

ul
at

io
n

Ty
pe

_I
_I

FN
_R

ep
on

se

Ty
pe

_I
I_

IF
N

_R
ep

on
se

Sc
or

e

Risk
Low

High

⁎⁎⁎⁎

Sc
or

e

(a)

0.0

2.5

5.0

7.5

10.0

CD
44

TN
FR

SF
8

CD
27

6

LA
G

3

TN
FR

SF
14

TM
IG

D
2

V
TC

N
1

TN
FR

SF
25

CD
80

N
RP

1

TN
FR

SF
18

CD
70

TN
FS

F9

LG
A

LS
9

G
en

e e
xp

re
ss

io
n

Risk
Low

High

⁎⁎⁎⁎⁎⁎ ⁎⁎ ⁎⁎ ⁎⁎⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

(b)

Figure 7: (a) ssGSEA for the relationship between related functions and immune cell subpopulations (b). Expressions of immune
checkpoints among low and high CC risk groups. ∗∗∗ p < 0:001, ∗∗p < 0:01, and ∗p < 0:05.
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prognosis of CC patients. Patients with CC can benefit from
the proposed signature in terms of immunotherapy and
drug selection.

Data Availability

The data used to support the findings of this study are
included in the article. Data and materials from this study
are available on request from the corresponding author.
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