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Acute-on-chronic liver failure (ACLF) is a complex clinical syndrome, and patients often have high short-term mortality. It occurs
with intense systemic inflammation, often accompanied by a proinflammatory event (such as infection or alcoholic hepatitis), and
is closely related to single or multiple organ failure. Liver inflammation begins when innate immune cells (such as Kupffer cells
(KCs)) are activated by binding of pathogen-associated molecular patterns (PAMPs) from pathogenic microorganisms or
damage-associated molecular patterns (DAMPs) of host origin to their pattern recognition receptors (PRRs). Activated KCs
can secrete inflammatory factors as well as chemokines and recruit bone marrow-derived cells such as neutrophils and
monocytes to the liver to enhance the inflammatory process. Bacterial translocation may contribute to ACLF when there are
no obvious precipitating events. Immunometabolism plays an important role in the process (including mitochondrial
dysfunction, amino acid metabolism, and lipid metabolism). The late stage of ACLF is mainly characterized by
immunosuppression. In this process, the dysfunction of monocyte and macrophage is reflected in the downregulation of
HLA-DR and upregulation of MER tyrosine kinase (MERTK), which weakens the antigen presentation function and
reduces the secretion of inflammatory cytokines. We also describe the specific function of bacterial translocation and the
gut–liver axis in the process of ACLF. Finally, we also describe the transcriptomics in HBV-ACLF and the recent progress
of single-cell RNA sequencing as well as its potential application in the study of ACLF in the future, in order to gain a
deeper understanding of ACLF in terms of single-cell gene expression.

1. Introduction

The liver plays an important role in daily immune monitor-
ing [1]. Due to its special blood supply characteristics, it is
constantly exposed to host antigens and various pathogens
and toxins from the intestine [2]. In a healthy state, Kupffer
cells (KCs), the main phagocytic cells of the liver, account
for more than 80% of the total macrophages. Along with
dendritic cells (DCs) and neutrophils, KCs mount the innate
immune response and play a critical role in the adaptive
immune response [3, 4]. In case of injury, the hepatic mac-
rophage counts increase through recruiting monocytes from

the bone marrow. In acute-on-chronic liver failure (ACLF),
macrophage-mediated inflammation may progress to sys-
temic inflammation and subsequent immunosuppression
[5, 6]. An excessive systemic inflammatory response leads
to organ failure and death, and immunosuppression makes
patients prone to secondary infection events, further exacer-
bates organ dysfunction, and increases mortality [7]. Based
on the latest discovery and research of ACLF, we summa-
rized the clinical manifestations and immunological and
microbiological roles in the pathogenesis of ACLF. In addi-
tion, we also discussed the preliminary application and
application prospect of sequencing technology in ACLF.
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2. Clinical Features

Currently, there are two commonly used definitions of
ACLF. One is the definition of the European Association
for the Study of the Liver-Chronic Liver Failure Consortium
(EASL-CLIF ACLF): (1) patients with acute decompensated
cirrhosis have previous episodes of decompensation; (2) pre-
cipitating events include intrahepatic (alcoholic hepatitis),
extrahepatic (infection, gastrointestinal bleeding, and drug-
induced encephalopathy), or both; (3) organ dysfunction
involves one or more of the six organ systems (liver, kidney,
brain, coagulation, circulation, and respiration); and (4)
short-term mortality rate is high (20-80% at 28 days)[8–12].
The other is the definition of Asian Pacific Association for
the Study of the Liver (APASL ACLF): patients with com-
pensatory cirrhosis (diagnosed or undiagnosed) or noncir-
rhotic chronic liver disease have the first episode of acute
liver deterioration due to acute liver injury directly caused
by intrahepatic precipitating events and which involves liver
dysfunction, which eventually causes encephalopathy and
high short-term mortality (13-86% at 30 days) [13]. For
the convenience of subsequent discussion, we combined
these two definitions and defined ACLF as a syndrome of
acute liver deterioration induced by precipitating events in
patients with cirrhosis or noncirrhotic chronic liver disease,
leading to failure of two or more organs, accompanied by
short-term high mortality.

A number of factors can contribute to ACLF precipitat-
ing events. Alcoholic cirrhosis is very common in ACLF in
western countries. In Asian countries, however, hepatitis B
is a more common precipitating event in patients with ACLF
[14]. The infection rate of ACLF patients is extremely high
(66.1%). In contrast, acute decompensation (AD) patients
have an overall infection rate of 38.7% [15]. Disease progres-
sion in ACLF patients is primarily caused by gram-negative
bacterial infection, exacerbated by bacterial translocation
[5]. In addition, age, mitochondrial damage, and decreased
sex hormones may lead to the premature occurrence of
immunosenescence and inflammation in chronic liver dis-
ease, increasing the risk of ACLF [7].

ACLF has a high short-term mortality rate. Mortality in
ACLF patients is higher than in patients with decompen-
sated chronic liver disease, and the number of organ failures
rather than the etiology or predisposing event of cirrhosis is
the main risk factor for death [16]. Mortality at 28 and 90
days in cirrhosis patients with AD is 5% and 14%, respec-
tively, while in ACLF, it is between 22-78% and 41-79%
depending on the grade [8, 17].

3. The Initiation of Hepatic Inflammation

ACLF is usually initiated by hepatic inflammation mediated
by inflammatory factors. Inflammatory factors in ACLF
patients are exogenous or endogenous [18]. The exogenous
factors are mainly bacteria, HBV, and alcohol. The innate
immune system initiates its response to invading pathogens
upon the recognition of pathogen-associated molecular pat-
terns (PAMPs) by pathogen recognition receptors (PRRs).
Peripheral blood mononuclear cells (PBMCs) isolated from

cirrhotic patients responded more strongly when stimulated
by lipopolysaccharide (LPS) than PBMCs from healthy
patients [19]. This demonstrates that the pathogen recogni-
tion function of the innate immune system is activated in
cirrhotic patients, which is more conducive to triggering
liver inflammation.

Endogenous factors in ACLF patients include the release
of necrotic cells or extracellular matrix degradation [20].
Sterile inflammation results from the recognition of
damage-associated molecular patterns (DAMPs) after tissue
injury [3, 21]. DAMPs are usually sequestered intracellu-
larly, and after being released extracellularly, binding by
PRRs on immune cells then triggers an inflammatory
response, which leads to the activation of immune cells
and a kind of proinflammatory phenotype, thereby initiating
inflammatory signals through the release of cytokines and
chemokines, which in turn aggravates the inflammatory
response in ACLF [22].

4. Systemic Inflammation in ACLF

The persistence of hepatic inflammation can develop into
systemic inflammation. Patients with decompensated cir-
rhosis develop persistent systemic inflammation because of
gut dysbiosis, disruption of intestinal mucosal barrier integ-
rity, and persistent translocation of PAMPs [23]. Systemic
inflammation drives the occurrence and development of
ACLF and causes extensive tissue and organ damage, which
leads to systemic inflammatory response syndrome (SIRS)
[24, 25]. In order to overcome SIRS, the body develops com-
pensatory anti-inflammatory responses (CARS), which in
turn promote the occurrence of infection and aggravate the
proinflammatory response [26].

Macrophages are highly diverse and plastic and play a
leading role in the development of ACLF. They have impor-
tant functions in the response to injury or infection [27]. In
the early stage of liver injury, liver macrophages secrete both
proinflammatory and anti-inflammatory cytokines to medi-
ate proinflammatory and anti-inflammatory responses [28].
Disruption of the intestinal barrier in ACLF patients leads
to the translocation of PAMPs such as intestinal bacteria
and their products to the liver, which activates macrophages
through Toll-like receptors (TLRs), resulting in the secretion
of a large number of cytokines and the recruitment of
various immune cells, leading to liver and systemic inflam-
mation [23, 29].

During this process, hepatic macrophages can quickly
change their phenotype according to the local microenviron-
ment of the liver [30]. They are traditionally divided into M1
and M2 macrophages, according to their differentiation state
[31]. The two macrophage populations are functionally dis-
tinct: typical functions of the M1 macrophages include anti-
gen presentation and secretion of cytokines IL-6, IL-12,
TNF-α, IL-1, CXCL1-3, CXCL-5, CXCL8-10, and type I
IFN, reactive oxygen species (ROS), and nitric oxide, which
help in inflammatory [32]. In contrast, M2 macrophages
show a resting phenotype, expressing mannose receptors,
scavenger receptors A and B-1, and CCR2 and CD163,
which are involved in tissue healing [33]. CD163, TGM2,
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and CD206 levels are increased in ACLF patients [26]. IL-4,
IL-10, and IL-13 are typically produced by M2 macrophages
[34]. It has been reported that macrophages release TNF-α
and IL-6 in the initial stage of ACLF, followed by IL-10 [35].

In addition to these resident KCs, liver-recruited mono-
cytes also play an anti-inflammatory or proinflammatory
role at various stages of the disease [36]. KCs are exclusively
intravascular and distributed along hepatic sinusoidal endo-
thelial cells (HSECs), while monocyte-derived macrophages
(MoMFs) and monocytes could reside outside the blood ves-
sels [37]. This distribution is beneficial for monocyte and
macrophage to play a more comprehensive immune regula-
tory role in systemic inflammation of ACLF.

5. Mediators of Inflammation in ACLF

Cytokines play an important regulatory role in ACLF. Cyto-
kines are glycoproteins that regulate innate immunity by
inducing local and systemic inflammatory responses in
ACLF [38]. Activated immune cells secrete a variety of cyto-
kines that further promote tissue damage [14]. Both proin-
flammatory molecules and anti-inflammatory factors are
enhanced during ACLF, reflecting the general activation of
cytokine cascades [24, 39].

In ACLF, cytokines are mainly divided into proinflam-
matory cytokines, including TNF-α, IL-1β, and IL-6, and
anti-inflammatory cytokines, such as IL-10, IL-4, and IL-1
receptor antagonists [40]. On the one hand, IL-1β, LPS, or
TNF-α stimulates TLR4 to induce the synthesis and secre-
tion of IL-6, which is one of the main stimulators of acute
phase protein release. The TNF-α signaling pathway, driving
apoptosis and necrosis, may be involved in the occurrence of
liver injury during ACLF [26]. On the other hand, the level
of IL-10 secreted by monocytes in the early stage of ACLF
patients is lower than that of healthy controls, but IL-10
secretion is increased in late periods of ACLF [41].

In addition, growth factors such as granulocyte-
macrophage colony-stimulating factor (GM-CSF) and gran-
ulocyte colony-stimulating factor (G-CSF) are involved in
the hematopoiesis and proliferation of liver progenitor cells
[42]. In fact, G-CSF improves liver function and survival in
ACLF [43]. G-CSF amplifies circulating myeloid and plas-
macytoid DCs (mDCs, pDCs) and T cells but decreases
IFN-γ production in CD8+T cells [44]. In ACLF patients,
dysregulation of IFN-γ causes systemic inflammation and
impaired liver regeneration [45].

6. Systemic Immunosuppression in ACLF

ACLF is not only associated with severe systemic inflamma-
tion, but as the disease progresses, it is also associated with
immune tolerance, an adaptive response that reduces the
adverse effects of damage on the host [46]. Upon innate
immune paralysis, proinflammatory immune cells and pro-
inflammatory factor decrease, and inhibitory immune cells
and anti-inflammatory substances increase [47, 48]. In
ACLF, tissue macrophages exhibit endotoxin tolerance/
immunomodulatory functions. These cells circulate through
the bloodstream and further spread to other tissues, thereby

contributing to the immunosuppressive phenotype of ACLF
[48]. Immune dysfunction leads to the prevalence of infec-
tions and low survival in ACLF [24].

The development of immunosuppressive in ACLF
involves multiple systems, such as the circulatory, intestinal,
hepatic, peritoneal (spontaneous bacterial peritonitis), and
reticuloendothelial (RES) systems [49]. Among them, RES-
mediated clearance of pathogens depends on the severity of
liver dysfunction and downregulates the bactericidal capac-
ity of phagocytes by reducing the synthesis of innate antibac-
terial proteins in the liver [50]. With the development of the
disease, some phenotypic changes of immune cells play a
major role in the systemic immunosuppression of ACLF,
including innate immune cells and adaptive immune cells,
in which the phenotypic changes of monocyte and macro-
phage play the most prominent role.

6.1. Defects in Innate Immune Cells of ACLF

6.1.1. Monocyte and Macrophage. The expression of HLA-
DR reflects the immune response function of monocyte
and macrophage. In the early stages of the disease, IL-33
activates the ERK1/2 pathway to restore the expression of
HLA-DR, CD80, and chemokine receptor 2 in monocytes
and enhances the expression of proinflammatory cytokines
in monocytes without affecting their phagocytic activity
[51]. In the late stages of the disease, monocyte and macro-
phage defects in ACLF patients include decreased immune
response to microorganism and dysfunction of antigen
presentation through decreasing the HLA-DR expression
[48, 52]. Although the reduced innate response is a physio-
logical adaptation to continuous PAMP exposure, this
change in turn aggravates secondary infection and leads to
higher mortality [48, 50]. Moreover, the low HLA-DR
expression is positively correlated with prothrombin time,
an indicator of liver injury [41].

Another important phenotypic change in immunosup-
pression is MER tyrosine kinase (MERTK). The upregulation
of MERTK on monocytes can cause the immune dysfunction
of ACLF [48]. MERTK inhibits inflammation by activating
inhibitors of cytokine signaling, blocking TLR activation, and
decreasing proinflammatory cytokine production [48]. The
MERTK overexpression reduces the in vitro response to LPS
and is strongly correlated with ACLF immunosuppression,
the SIRS activation level, and disease severity [48].

The amplification of monocytic myeloid-derived sup-
pressor cells (M-MDSCs) and intermediate CD14+CD16-

monocytes also plays an important role in ACLF
immunosuppression [53, 54]. In ACLF, the expression of
M-MDSCs is immunosuppressed by decreasing T cell prolif-
eration, TNF-α secretion, and the phagocytosis of Escherichia
coli. Immunosuppression of M-MDSCs may contribute to
infection, while TLR3 activation could reverse the expansion
of these cells and restore the function of innate immune [53].
MDSCs are also closely associated with the MELD score. In
advanced ACLF, nonsurvivors maintain the highest numbers
of MDSCs, while survivors show a gradual decline [55]. The
intermediate CD14+CD16- monocyte subpopulation is fea-
tured by the production of fewer proinflammatory cytokines
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and more IL-10 after stimulation [48, 53]. Transcriptional
profiling also revealed that immunosuppressive parameters
are enhanced and antibacterial and antigen presentation
mechanisms are impaired [26]. Functional alterations in clas-
sical CD14+CD16- monocytes are also evident in ACLF
patients, and genes related with immunosuppressive
responses are upregulated. Glutamine synthase inhibitors
can partially restore the phagocytosis of ACLF mono-
cytes [54].

In addition, hypoxia-inducible factor 1 alpha-antisense
RNA 1 (HIF1A-AS1) also plays a role in the dysfunction
of monocyte and macrophage. Studies have shown that
TNF-α promotes KC apoptosis by inducing the expression
of HIF1A-AS1 [56]. And the apoptosis of KCs may increase
the chance of exposure to DAMPs and persistent bacter-
emia [5].

6.1.2. Neutrophils. Neutrophil dysfunction is associated with
secondary infection, organ failure, and high mortality
[57–59]. Neutrophils secrete large amounts of neutrophil
gelatinase-associated lipocalin (NGAL), also named lipidca-
lin-2, which plays an essential role in innate immunity
[60]. ACLF patients had higher basal ROS levels in neutro-
phils at the early stage, suggesting a neutrophil priming state,
whereas fMet-Leu-Phe- (fMLP-) stimulated ROS production
is reduced [61, 62]. The reduction in ROS production is due
to a marked reduction in phospholipase C activity [63],
insufficient phosphorylation [64], and a decrease in protein
expression [62]. Together with a defect in the extracellular
function of myeloperoxidase that may be the result of
reduced AKT and p38 MAP kinase activation, downregu-
lated ROS generation results in insufficient bactericidal
activity in late stage of ACLF [64, 65].

In addition, CD11b+CD16+ neutrophils from ACLF
patients also overexpress the chemokine receptors CXCR1
and CXCR2, which recognize IL-8, and then induce hepato-
cyte death [61]. It has also been reported that CXCR1/2 reg-
ulates the secretion of various kinds of mediators, causing
oxidative stress, which in turn induces cell death [26, 61].

6.1.3. DCs. ACLF expresses low levels of mDCs and pDCs,
and even lower levels of these cells are found in nonsurviv-
ing patients. Low DC counts are strongly correlated with
high mortality. The number of DCs could be enhanced by
G-CSF [66]. Treatment with methylprednisolone resulted
in increased DC counts, improved liver function, and
reduced mortality [67]. In ACLF, monocyte-derived den-
dritic cells (MoDCs) secrete large amounts of IL-23 and
express their receptor IL-23R. Elevated IL-23 levels in non-
survivors suggest that IL-23 is associated with disease pro-
gression and severity [68].

6.1.4. NK Cells. NK cells make up about 15% of lymphocytes
in the blood, increasing to 30% in the liver. Even in the
absence of MHC, NK cells can recognize damaged cells,
which results in a faster immune response [26]. The number
of NK cells and CD56dim CD16bright NK cells decreases in
hepatitis B virus-associated ACLF (HBV-ACLF) [69]. NK
cell function is regulated through activating cytotoxicity

and inhibiting receptors. In ACLF patients, in addition to
downregulation of CD158b, both activating and inhibitory
receptors are upregulated. NK cell-mediated killing is signif-
icantly reduced in HBV-ACLF, as well as TNF-α production
and cytotoxic activity [69, 70], suggesting that inhibitory
receptors are superior to activating receptors.

In addition, the increase of CD57+ CD3+ NK cells in the
liver leads to hepatocyte necrosis and leads to its pathogenesis
[70]. Similarly, enhanced natural cytotoxicity receptors (NCRs)
of NK cells in patients with HBV-ACLF are associated with
disease progression [26]. IL-12- and IL-15-stimulated NK cells
increase the secretion of TNF-α and IFN-γ. Furthermore, the
stimulation of NK cells with IFN-α upregulates not only the
expression of NKG2D but also the production of IFN-γ,
perforin, TNF-α, and granzyme B. Blocking NKG2D resulted
in partial downregulation of these cytokines, leading to
impairment of NK function [71]. KCTD9may also induce liver
damage mediated by NK cell in HBV-ACLF [72]. The overex-
pression of KCTD9 results in significantly increased CD69
expression, enhanced cytotoxicity, and increased IFN-γ pro-
duction. Inhibition of KCTD9 reduces the cytotoxic function
of NK cells.

6.2. Adaptive Immune Cells in ACLF. Upregulation of T cell
immunoglobulin and mucin domain-containing molecule-3
(Tim-3), CTLA-4, and PD-1 is found in adaptive immuno-
compromised T cells [73, 74]. And the ratio of regulatory
T cells (Tregs) to T cells is higher in ACLF patients than that
in normal subjects [75]. The decrease in ratio of CD3+ cells
to monocytes (T/M) is associated with a poor prognosis of
ACLF. The secretion of TNF-α in monocytes can be inhib-
ited by CD4+ T cells, CD8+ T cells, and Treg, resulting in
abnormal monocytes [76]. In addition, some studies have
shown that patients with HBV-ACLF have significantly
fewer CD4+ and CD8+ T cells compared with chronic hepa-
titis B (CHB) patients [77–79].

Besides, the diversity of CD8+ T cells of HBV-ACLF
patients decreases during hospitalization, and the propor-
tion of the top 100 CD8+ clonotypes increases. And the
MELD score has a positive correlation with the diversity of
CD8+ T cells and a negative correlation with the cumulative
frequency of the top 100 clonotypes, suggesting that more
CD8+ T cell expansion in the early stage is correlated with
a better prognosis of HBV-ACLF patients [80].

7. Immunometabolism

Metabolism and immune regulation influence each other.
On the one hand, the metabolism of immune cells changes
from static state to active state in the process of immune
response; on the other hand, the change of metabolism con-
trols the differentiation and function of immune cells [81].
During systemic inflammatory responses, immune cells reg-
ulate cellular metabolism to meet high energy demands; the
process of binding metabolism to immune cell responses is
called immunometabolism [82].

Mitochondria are the centers of cell metabolism; it
releases mitochondrial DNA (mtDNA), proteins, lipid
metabolites, and ROS. These molecules can act as DAMPs
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that bind to PRRs to initiate an inflammatory response.
There is a complex link between mitochondrial dysfunction
and metabolic disorders in ACLF, resulting in reduced pro-
duction of adenosine triphosphate (ATP), excessive storage
of fat, and leakage of ROS [83, 84]. In the leukocytes of
ACLF patients, mitochondrial dysfunction is represented
by two breakpoints in the citric acid (TCA) cycle linked by
an anaplastic reaction of glutaminolysis and nucleoside
metabolism [85]. Among them, the metabolites of the TCA
cycle can affect the differentiation of macrophages, and the
low α-ketoglutarate/succinic acid ratio can enhance the acti-
vation of M1 macrophages. What is more, under the condi-
tion of inflammation, mitochondrial dysfunction leads to the
enhancement of aerobic glycolysis and the increase of lactic
acid as its end product [86]. Lactic acid produced by acti-
vated innate immune cells can limit inflammation and
inhibit migration of monocytes and macrophages [87, 88].

Amino acid (AA) metabolism disorder plays an impor-
tant role in immunometabolism of ACLF. Studies have
shown that 43% of the 137 metabolites contained in the
metabonomics database are associated with AAs, and the
inflammatory response of ACLF patients is closely related
to the change of AA metabolism [89]. Kynurenine promotes
immune tolerance by inhibiting the proliferation of T cells
and NK cells and promoting the proliferation of Tregs and
MDSCs [90]. Arginine increases T cell oxygen consumption
and mitochondrial respiration. L-glutamine, the most abun-
dant extracellular amino acid, has also been shown to pro-
vide energy for T cell proliferation, cytokine secretion, and
restoration of phagocytosis in monocytes [54, 91]. The gluta-
mine synthase/glutaminase ratio in monocytes of ACLF
patients is positively correlated with disease severity [54].

In addition, lipid metabolism disorder is closely related
to ACLF. Inflammation is often associated with lipid metab-
olism disorders. Patients with ACLF have low high-density
lipoprotein (HDL) particles and phospholipid content, espe-
cially lysophosphatidylcholine (LPC) containing omega-3
polyunsaturated fatty acid (PUFA), which is significantly
decreased, but fatty acids are significantly increased
[92–94]. Circulating saturated fatty acids can cause proin-
flammatory responses by enhancing the sensitivity of liver
cells to TLR agonists [95, 96]. Excessive intake of linoleic
acid (LA) leads to an increase in prostaglandin E2 (PGE2),
which in turn inhibits macrophage secretion of proinflam-
matory cytokines and bacterial killing.

8. Microorganism and ACLF

In 40% of ACLF patients with cirrhosis without any identifi-
able precipitation conditions [8], the transferred bacteria or
bacterial products may promote the occurrence and devel-
opment of ACLF [97]. Impaired innate immune cell func-
tion in ACLF inhibits immune function and may lead to
infection [47, 48]. In the late stages of ACLF, the proinflam-
matory response is further exacerbated by the increased
probability of infection due to the development of CARS,
which exacerbates liver injury [26]. SIRS and CARS are con-
sidered to be critical for effector functions of immune cells in

ACLF (e.g., monocytes and macrophages), resulting in
immune imbalance and bacterial translocation [98].

In addition, other changes also lead to increased bacte-
rial translocation of intestinal microbiome to portal vein
and lymphatic circulation in chronic liver disease and ACLF
patients, such as altered composition of intestinal micro-
biome and increased intestinal permeability, which could
lead to the permanent stimulation of the immune system
by gut-derived PAMPs [99]. It is well known that in the
setting of portal hypertension, increased shunting leads to
bacterial escape in the reticuloendothelial system (RES)
[100]. Therefore, portal hypertension is conducive to bacte-
rial translocation, which is conducive to the activation of
innate immunity [101, 102]. Systemic inflammation can also
directly or indirectly increase bacterial translocation through
enhancing circulatory dysfunction and stimulating sympa-
thetic nervous system homeostasis [15, 103]. And the gut-
liver axis acts as a bridge in bacterial translocation in ACLF.

8.1. Gut-Liver Axis. The gut-liver axis presents the immuno-
modulatory interactions between the gastrointestinal tract
and the hepatic sinusoids, bidirectionally linked by the por-
tal circulation and the biliary tree [104]. The liver receives
portal blood rich in nutrients and pathogenic microbial
products, which leads to moderate constant stimulation of
antigens, and maintaining hepatic and systemic immune
balance [3].

The microbiota, which includes bacteria, fungi, and
viruses, is influenced by factors such as alcohol, diet (e.g.,
nonalcoholic fatty liver disease (NAFLD)), and drugs (e.g.,
antibiotics) [105–107]. The microbiota could also be altered
by the use of proton pump inhibitors and repeated exposure
to antibiotics [108]. The microbial community in cirrhosis
shows significant reductions in bacterial diversity and in situ
microbial communities. The changes of specific microbiota
in cirrhosis mainly included the increase of Fusobacteria,
Proteobacteria, Enterococcaceae, and Streptococcaceae and
the relative decrease of Bacteroidetes, Ruminococcus, Rose-
buria, Veillonellaceae, and Lachnospiraceae [109]. The fecal
microbial richness and species diversity of patients with
decompensated cirrhosis are lower than those of patients
with compensatory cirrhosis [110].

These changes in intestinal flora are due to reduced bile
flow and cholestasis caused by cirrhosis, which impairs the
enterohepatic circulation. This change may be more signifi-
cant when accompanied by reduced intestinal motility,
increased intestinal permeability, barrier dysfunction to lym-
phatic and hepatic sinusoid, portal hypertension, and
immune system disorders [105, 106, 111]. Dysbiosis, in turn,
can cause intestinal inflammation, disrupting gut barrier
function, leading to bacterial translocations, and reducing
the conversion of primary to secondary bile acids in the
intestinal tract [112, 113]. Since bile acids are involved in
the absorption of fats and fat-soluble proteins (e.g., vitamin
K-dependent coagulation factors), they have a significant
effect on metabolism and coagulation [109]. Bile acids can
regulate the farnesoid X receptor axis and play an important
role in the homeostasis of the epithelial barrier and the gut-
vascular barrier [114, 115]. Bile acids can also modulate
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mucosal immune tolerance, controlling innate immune
inflammatory signaling and adaptive immunity through reg-
ulating the ratio of Th17 and Treg cells, which is disordered
in cirrhosis and liver failure [116, 117], while total serum bile
acid is positively correlated with disease severity in patients
with alcoholic hepatitis [118].

Besides, slow intestinal transport contributes to bacterial
overgrowth, which in turn leads to bacterial ectopic develop-
ment [108]. Short-chain fatty acids (SCFAs: butyric, acetic,
and propionic acid) could decrease intraluminal pH,
stimulate mucin production, increase intestinal motility,
maintain intestinal epithelial cell viability, and keep entero-
cyte tight junction integrity [119]. In addition, SCFAs mod-
ulate immune responses in gut-associated lymphoid tissue
(GALT). They inhibit activation of macrophages and DCs,
induce the secretion of inflammatory cytokines, and form a
pool of T helper cells [120]. Intestinal barrier disruption is
related to downregulation of tight junction proteins occludin
and Claudin-1 in intestinal epithelial cells [121].

What is more, gut-related immune system changes
include reduced synthesis of antibacterial peptides, immu-
noglobulin A (IgA), defensins, and hypo- or achlorhydria,
causing bacterial translocations that lead to decompensation
of cirrhosis [109]. B lymphocytes in GALT play critical roles
in luminal IgA secretion and defense against enteric patho-
gens and maintain gut microbial homeostasis by secreting
commensal-specific IgA [122]. IgA in the intestinal lym-
phoid follicles is transferred to the intestinal lumen through
endocytosis, thereby forming the microbiota [123].

9. Treatment

The main principle of ACLF treatment is the diagnosis and
management of precipitating events, the most important
precipitating events being infection and alcoholic hepatitis,
and the general treatments include the application of vasoac-
tive drugs, artificial liver support system (ALSS), and liver
transplantation (LT). In addition, we also summarize the
application of immunotherapy in ACLF, including targeting
systemic inflammation, monocyte and macrophage, or intes-
tinal flora. In addition, ACLF is mainly divided into two
phases: early systemic inflammation (the first stage) is
manifested as macrophage and DC activation, neutrophil
activation, and T cell activation; late immunosuppression
(the second stage) is characterized by the following: the
hyporesponsive monocyte, decreased inflammatory cytokine
production, interventions macrophage and neutrophil
phagocytosis, and loss of Kupffer cells and T cells; exhibits
Ab responses; and increased susceptibility to opportunistic
infections [6]. Treatment may be different at these two
different stages.

9.1. Treatment for Infection in ACLF. The most common
inducing event in ACLF is infection, including bacterial,
viral, and fungal infections. The prevalence of infection is
approximately 50% in patients with ACLF, and slightly
higher infection rates have been associated with an increased
number of organ failures, a poorer outcome, and higher
mortality [15, 124]. Bacterial infection control measures

are therefore important in medical treatment [125]. A broad
antibiotic regimen should cover all potential pathogens, with
high-dose antibiotics administered within 48 and 72 hours
of infection diagnosis to enhance clinical outcome and
decrease selection of resistant strains [125]. Fluoroquinolone
antibiotics have a clear therapeutic role in the prevention of
spontaneous bacterial peritonitis [126]. The use of fluoroqui-
nolones results in the expansion of Tregs and an improved
proinflammatory milieu in the cirrhotic liver [127].

In addition to bacterial infections, patients with hepatitis B
should be treated with potent antiviral drugs, such as tenofovir,
tenofovir alafenamide, or entecavir [13], which can improve
the prognosis of patients with HBV-ACLF [128–130]. What
is more, one study reported that 43% of ACLF patients have
invasive mycosis, which had higher mortality than patients
negative for fungal infection [131, 132]. Invasive pulmonary
aspergillosis (IPA) infection accounts for 5–8.3% of HBV-
ACLF and 14% of severe alcoholic hepatitis (sAH) patients
[133, 134]. Voriconazole is recommended as a first-line choice
for IPA primary treatment, but due to its hepatotoxicity, its use
in ACLF patients needed to be closely monitored, and its ther-
apeutic trough concentration range of 1-5μg/mL should be
maintained [135].

9.2. Treatment for Alcohol-Related ACLF. In western coun-
tries, active alcoholism and sAH contribute to alcohol-
related ACLF [136]. One study recommends starting gluco-
corticoids in early-stage ACLF (the first stage) and early dis-
continuation of the drug before the onset of advanced
immune paralysis (the second stage) [137]. Prednisolone, an
anti-inflammatory corticosteroid, is widely recommended for
sAH therapy [138, 139]. Glucocorticoid-mediated immuno-
suppression may increase the chance of bacterial infection
with alcoholic hepatitis. Therefore, corticosteroids are best
used for short periods of the first stage [140, 141].

However, the use of steroids in the later stages (the
second stage) of ACLF, where the anti-inflammatory effect
prevails, can be detrimental because it may increase suscep-
tibility to infection [50]. For this reason, it is necessary to
evaluate the efficacy of steroids with Lille score, which is
based on age, total bilirubin levels, baseline creatinine levels,
albumin levels, prothrombin time, and repeated total biliru-
bin levels [142, 143]. Patients can be classified as complete
responders (≤0.16), partial responders (0.16–0.56), or non-
responders (>0.56) based on the Lille score to determine
whether to continue or discontinue corticosteroid therapy
[140]. Corticosteroid responses in ACLF patients are further
reduced as the severity of ACLF increased. Patients with a
Lille score of <0.45 had a poorer response to corticosteroids
and had a lower 6-month survival rate [143].

What is more, some preliminary studies suggest that fecal
microbiota transplantation from healthy donors also has bene-
ficial effects on patients with alcohol-related ACLF [144, 145].

9.3. Other General Treatments for ACLF. Some vasoactive
agents also play a role in ACLF therapy. Carvedilol improves
survival rate and reduces acute kidney injury (AKI) and
spontaneous bacterial peritonitis (SBP) events within 28
days in ACLF patients who have mild esophageal varices
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with a hepatic venous pressure gradient ≥ 12mmHg [146].
In ACLF patients with hepatorenal syndrome-AKI, infusion
of terlipressin has an earlier and higher response than treat-
ment with norepinephrine, improving patient survival
rate [147].

ALSS can remove toxic substances from the circulation
through dialysis techniques [148] and improve the survival
rate of HBV-ACLF patients compared with standard medi-
cal treatment [149]. Whole plasma exchange improves
systemic inflammation and reduces the development of mul-
tiorgan failure in patients with ACLF and may be the pre-
ferred form of liver support in patients with ACLF [150].

ACLF patients who choose LT therapy have a better
prognosis than ACLF patients who are ineligible or not
selected for LT therapy [151], with 1-year survival rate
approaching 80% after LT compared with less than 20% in
patients who do not undergo LT [152–154]. Posttransplant
survival in mild ACLF is similar to that in patients without
ACLF [155].

9.4. Treatment of Systemic Inflammation (the First Stage) in
ACLF. Because systemic inflammation plays a large role in
ACLF, drugs targeting systemic inflammation are being
explored. IL-22 treatment results in the reorganization of
damaged regeneration pathways and protects cells from bac-
terial infection [45]. IL-22Fc could improve the survival of
ACLF mice that enhance many antimicrobial genes via the
antiapoptotic protein BCL2 [45].

In addition, stem cell transplantation clearly benefits
HBV-ACLF patients through exerting a paracrine immune
regulation effect [156]. Hepatocyte transplantation and treat-
ment with bone marrow-derived stem cells, mesenchymal
stem cells (MSCs), and multipotent mesenchymal stromal
cells are called cell therapies. In two open-label controlled
studies, ACLF patients are treated with MSCs or allogenic
bone marrow MSCs [156, 157]. A study showed that MSCs
have immunomodulatory and anti-inflammatory functions,
which can alleviate liver inflammation, improve liver function
and serum albumin, and decrease the chance of infection,
which benefits survival rate. The 24-week survival rate is
enhanced in the MSC group (73.2%) compared to the stan-
dard care group (55.6%) [14, 157].

Human serum albumin (HSA) is demonstrated to be a
disease-modifying anti-inflammatory agent capable of
reducing inflammatory cytokines in AD cirrhosis patients
[97]. Albumin may also act intracellularly by internalizing
into endocytic vesicles, thereby blocking inflammatory sig-
naling pathways in ACLF [158]. Transcytosis caused by reg-
ulating albumin binding and endocytosis depends on at least
seven endothelial and immune cell-associated proteins and
receptors [159]. In addition to that, O’Brien et al. previously
found that HSA can reverse PEG2-induced immune dys-
function [47].

Other immunomodulatory drugs are also being explored
in ACLF [14]. TLR4 inhibitor TAK-242 improved survival
rate in experimental ACLF-induced mice [160]. G-CSF can
be used to treat hepatic encephalopathy, hepatorenal syn-
drome, and sepsis [161, 162]. Patients with ACLF had
increased leukocyte and neutrophil counts and a decreased

disease severity index after getting G-CSF treatment [161].
Moreover, studies have shown that pyroptosis plays an
important role in the pathogenesis of ACLF. The pyroptosis
of hepatocytes induced by high mobility group box-1
(HMGB1) amplifies the inflammatory response, thereby
aggravating ACLF. Therefore, HMGB1 is also a potential
target for ACLF therapy [163, 164].

9.5. Treatment of Targeting Monocyte and Macrophage.
Monocyte and macrophage (including KCs) play a decisive
role during the occurrence and development of ACLF; there-
fore, various abnormalities of them in ACLF can be targeted
for treatment.

9.5.1. Targeting Liver Macrophages. A study proposes that
MERTK antagonism could be used in advanced ACLF (the
second stage), when prolonged CARS is prone to infectious
complications [48]. Addition of the MERTK inhibitor
UNC569 restored response of monocytes to LPS [48].
Silencing HIF1A-AS1 decreased KC apoptosis induced by
TNF-α, which also provides a molecular basis for the ACLF
therapy [56].

More importantly, the high scavenging capacity of liver
macrophages, especially KCs, enables them to be preferen-
tially targeted by drug carrier materials, including hard shell
microvesicles, polymers, and liposomes [165], which helps
these carrier materials to play a more direct role in control-
ling liver inflammation.

9.5.2. Inhibiting Activation of Kupffer Cell. In early stages of
ACLF (the first stage), limiting profound innate immune
activation is a useful immunotherapy strategy. The initial
inflammation is primarily mediated by KCs. Then, NF-κB
signaling pathways and the P3 inflammasome are also acti-
vated, which can be targets of immunotherapy. Another
strategy is to target DAMPs, including HMGB-1 and his-
tones [5]. Affecting the gut barrier or gut microbiota, the
use of probiotics or antibiotics may alleviate KC activa-
tion [166].

9.5.3. Inhibiting Recruitment of Monocyte to the Liver.
Monocytes expand in liver disease. In animal models and
patients, they are driven by chemokine-chemokine receptor
interactions, such as CCL2/CCR2- and CCL5/CCR5-medi-
ated pathways which have a primary function in ACLF
[48, 167]. This leads to ideas for targeted therapies, for
example, with monoclonal antibodies or small molecule
inhibitors [168]. Interestingly, TLR-3 agonists are worthy
of further study as potential drugs [55].

9.6. Treatment of Targeting Immunometabolism. By feeding
glutamine or α-ketoglutarate into the TCA cycle, the
phagocytosis of monocytes in ACLF patients could be restored
[54, 169]. Succinic acid is also a potential therapeutic target for
patients with ACLF [169]. Peroxisome proliferator-activated
receptor γ coactivator 1α (PGC-1α), as a major regulator of
mitochondria, is a potential therapeutic target for improving
mitochondrial dysfunction [170]. To restore lipid metabolism
balance, HDL can be increased or the liver X receptor (LXR)
can be activated [171, 172].
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9.7. Treatments Targeting Gut Microbiota. Probiotics are live
microorganisms that, when ingested, provide benefits to the
host, either directly or indirectly. It has been shown that they
are effective in SCFA production, intestinal barrier integrity,
alterations in colonic pH, and modulation of the immune
system [173]. Obeticholic acid can reduce portal hyperten-
sion and improve intestinal flora, which may have potential
benefits in ACLF patients [174]. Long-term oral administra-
tion of poorly absorbed antibiotic to prevent bacterial trans-
location can prevent major cirrhosis complications such as
hepatic encephalopathy and AKI [175–177]. Recent transla-
tional studies suggest that defective farnesoid X receptor sig-
naling plays a critical role in liver inflammation, intestinal
bacterial translocation, and portal hypertension, promoting
inflammation in ACLF, and may be targeted by drug ago-
nists [7]. Fecal microbial transplantation (FMT) has been
tested in primary sclerosing cholangitis and has been shown
to be safe and closely related with significantly increased bio-
diversity and improved alkaline phosphatase activity. In an
animal model of diet-induced nonalcoholic steatohepatitis
(NASH), normalization of the gut microbiota could directly
reverse portal hypertension [178].

10. Transcriptomics and ACLF

10.1. PBMC Transcriptomics in HBV-ACLF. Compared with
alcoholic liver disease-associated ACLF patients, abnormal
immune processes are more pronounced in HBV-ACLF
patients [24]. Transcriptome analysis of HBV-ACLF
suggests that viral, immune, and metabolic processes play a
central role in the biological process network from acute-
on-chronic hepatic dysfunction (ACHD) to ACLF. Virus
correlation analysis suggests that virus is involved in various
stages of HBV-ACLF. Analysis of immune-related blood
transcriptional module (BTM) shows that the expression of
genes associated with innate immune response is signifi-
cantly upregulated while that of genes associated with adap-
tive immune response (T cells, B cells, and NK cells) is
downregulated; as a result, adaptive immunity of ACLF
patients may be exhausted [179].

The differentially expressed genes (DEGs) associated
with innate immune responses are most significant in five
modules (interferon, monocytes, neutrophils, inflammation,
and dendritic cells). In the interferon module, including
antiviral interferon signature, innate antiviral response and
type I interferon response are significantly upregulated.
The expression level of these DEGs is the highest in the
ACHD group and significantly downregulated in the ACLF
group, suggesting that the interferon module may be the ini-
tial factor for the occurrence of ACLF. Compared with the
normal control (NC) group, monocyte module genes in the
ACHD and ACLF groups are significantly upregulated and
BTMs associated with neutrophils, inflammatory, dendritic
cells, and antigen presentation show consistent changes in
the ACHD and ACLF groups [179].

Compared with other diseases, the increased expression
of metabolic genes in ACLF patients, most notably genes
in PPAR and mTOR signaling pathways, further suggests
that lipid metabolic disorders may play a key role in the

development of ACLF. Compared with the NC group, the
expressions of thrombospondin 1 (THBS1), MERTK, sema-
phorin 6B (SEMA6B), and PPAR γ (PPARG) genes are sig-
nificantly increased in the ACLF group, and these four genes
are closely related to innate immune response, adaptive
immune response, complement activation, fatty acid oxida-
tion, and reactive oxygen species metabolism, suggesting a
virus-based immune metabolic disorder [179].

10.2. Prospects of Application of Single-Cell RNA Sequencing
in ACLF. While transcriptomics can assess immunity and
metabolism during ACLF, it may obscure the key contribu-
tion of individual cell populations, while single-cell RNA
sequencing can understand the role of single-cell population
in ACLF by classifying each cell into different subpopula-
tions based on DEGs.

The application of single-cell RNA sequencing technology
in a variety of diseases is conducive to a deeper understanding
of diseases and more effective treatment. Its application in the
liver can provide a framework for understanding the cellular
basis of human liver functions and diseases [180]. It has
revealed different subsets of liver nonparenchymal cells and
highly specific gene expression pathways in liver fibrosis,
NAFLD, and other pathological states, which is helpful to bet-
ter guide the diagnosis and treatment of the liver diseases
[181]. For example, it shows a new TREM2+CD9+ macro-
phage subpopulation in human cirrhosis, refines the definition
of endothelial subsets, and proposes new therapeutic targets
for cirrhosis [182]. It also shows that alpha-smooth muscle
actin, a key marker of HSC activation, is only present in a sub-
set of activated myofibroblasts, and S100A6 is a novel univer-
sal marker of activatedmyofibroblasts in liver fibrosis [183]. In
addition, Trem2+ macrophages are termed “NASH-associated
macrophages” by single-cell RNA sequencing technology in
NASHmice [184]. The proportion of cells in chronic liver dis-
ease can also be measured using single-cell RNA sequencing
data from healthy liver and peripheral immune cells, and the
role of different cell types in each liver disease can be predicted
based on large amounts of RNA sequencing data [185].

By application of single-cell RNA sequencing technology
in acute liver failure (ALF) mice, it shows that new subpop-
ulations of stellate cells, endothelial cells, KCs, monocytes,
and neutrophils, along with their complex intercellular
interactions, contribute to the development of ALF. The
hepatic stellate cells are divided into four different popula-
tions (Lrathigh quiescent, Col1a1-positive fibrotic, Acta2-
positive ALF-activated, and cycling stellate cells); the endo-
thelial cell population is defined as three subpopulations
and ALF-activated endothelial cells; Kupffer cells are identi-
fied as one quiescent and one ALF-activated population.
Gene Ontology enrichment analysis of ALF-activated stellate
cells finds terms associated with cell death and upregulated
genes (Trp53, Cdkn1a, Timp1, and Ereg), which triggers cell
cycle arrest and senescence. Gene Ontology term enrich-
ment analysis of upregulated genes in ALF-activated endo-
thelial cells reveals terms associated with gene expression
and vascular remodeling. Gene Ontology enrichment analy-
sis of ALF-activated Kupffer cells reveals terms about che-
motaxis, cell migration, immune response, and apoptosis.
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Two populations of Ly6C-positive monocytes are identified,
and the gene expression heterogeneity in the main population
reveals that one consists of monocyte homing to the liver and
the other induction of MHCII complex gene expression. Two
neutrophil subpopulations are found; the smaller group is the

proinflammatory subtype, participating in the regulation of
the antioxidant transcriptional program. It also reveals that
the activation of stellate cells, endothelial cells, and KCs during
ALF is related with a common MYC-dependent transcription
program, which is regulated by the gut microbiome through
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Figure 2: The initiation of hepatic inflammation. Bacteria, HBV, alcohol, and other external factors lead to hepatocyte necrosis through
regulatory proteins such as RIPK3 and MLKL, and DAMPs produced by them are recognized by DAMP receptors such as TLR4, TLR9,
P2X7, and RAGE expressed by macrophages/KCs. Or PAMPs produced by various pathogens, recognized by PRRs expressed by
macrophages/KCs. Macrophages/KCs can secrete reactive oxygen species (ROS), proinflammatory cytokines, and chemokines; enhance
inflammatory signals; and recruit other immune cells to the liver, speeding up the inflammatory process.
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Figure 1: The clinical features of ACLF. Combining the definitions of EASL-CLIF ACLF and APASL ACLF, we defined ACLF as a
syndrome of acute liver deterioration induced by precipitating events in patients with cirrhosis or noncirrhotic chronic liver disease,
leading to failure of two or more organs, accompanied by short-term high mortality.
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Toll-like receptor (TLR) signaling. In humans, it shows that
the MYC expression is upregulated in the liver of ALF trans-
plant recipients compared to healthy donors [186].

Currently, single-cell RNA sequencing is beginning to
be used in ACLF, it can be used to classify various immune
cells in ACLF to study the role of various immune cell sub-
populations in the occurrence and development of ACLF,
and single-cell RNA sequencing reveals a panel of apopto-
tic and dysfunctional lymphatic endothelial cells as a result
of secreted phosphoprotein 1 released by infiltrating
monocytes/macrophages, which is closely related to the sig-
nificant reduction of intrahepatic lymphatic vessels in
HBV-ACLF patients [187]. However, this is only the begin-
ning, as the sample size of ACLF increases and the incorpo-
ration of single-cell RNA sequencing into other functional
assays will greatly improve our understanding of ACLF.

11. Prognosis

The prognosis of ACLF is closely related to infection and
severity. ACLF can be divided into three grades according

to the number of organ failure: ACLF-1 represents single
renal failure or single nonrenal organ failure, ACLF-2
represents failure of two organs, and ACLF-3 represents
failure of three to six organs [188]. The survival rate of
mild ACLF, including ACLF-1 and ACLF-2, decreases
significantly with infection, while infection has no signif-
icant effect on the prognosis of severe ACLF, such as
ACLF-3 [15].

There are also many prognostic predictors of ACLF.
The P5 score, a prognostic score that includes plasmino-
gen levels, the incidence of hepatic encephalopathy, age,
the international normalized ratio, and total bilirubin,
is a promising prognostic score for HBV-ACLF [189].
In addition, macrophage secretions, such as sCD163
and macrophage inflammatory protein 3α, can be used
as prognostic indicators of ACLF [190, 191]. What is
more, some odd type predictors, such as neutrophil/lym-
phocyte ratio (NLR), can also predict ACLF mortality
[192]. NLR scores of ≥3 are associated with low mortal-
ity; however, NLR scores of >6 are associated with
higher mortality [26].
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12. Conclusion

ACLF is a syndrome of acute liver deterioration induced by
precipitating events (especially alcoholic and hepatitis B) in
patients with cirrhosis or noncirrhotic chronic liver disease,
leading to failure of two or more organs, accompanied by
short-term high mortality (Figure 1). ACLF is usually initi-
ated by hepatic inflammation (Figure 2). The persistence of
hepatic inflammation can develop into systemic inflamma-
tion, and macrophages play a leading role in this process.
They could secrete a large number of cytokines and recruit
various immune cells, leading to liver and systemic
inflammation. Among the mediators of inflammation, the
proinflammatory cytokines (TNF-α, IL-1β, and IL-6) are
involved in the occurrence of liver injury, while G-CSF
improves liver function and survival in ACLF. As the disease
progresses, it is also associated with immunosuppressive and
some phenotypic changes of immune cells that play a major
role in the process; for example, monocyte and macrophage
show a decrease in the HLA-DR expression and an increase
in the MERTK expression. What is more, during the
development of ACLF, immunometabolism (mitochondrial
dysfunction, AAs, and lipid metabolism disorder) and

microorganisms (bacterial translocation and gut-liver axis)
play an important role in it. Based on the detailed study of
the development of ACLF, we summarize the general treat-
ment and immunotherapy for different stages of ACLF
(Figure 3). PBMC transcriptome analysis of HBV-ACLF
suggests that viral, immune, and metabolic processes play a
central role in the biological process network from ACHD
to ACLF. And single-cell RNA sequencing reveals a panel
of apoptotic and dysfunctional lymphatic endothelial cells
as a result of secreted phosphoprotein 1 released by infiltrat-
ing monocytes/macrophages in HBV-ACLF patients, and we
prospect further application of single-cell RNA sequencing
in ACLF (Figure 4). Finally, the prognosis of ACLF is closely
related to infection and severity, and the P5 score can be
used to predict the prognosis of ACLF.
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