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Hypoxia and angiogenesis are the leading causes of tumor progression, and their strong correlation has been discovered in many
cancers. However, their collective function’s prognostic and biological roles were not reported in gastric cancer. Hence, we aimed
to investigate the effects of hypoxia and angiogenesis on gastric cancer via sequencing data. This study used weighted gene
coexpression network analysis and random forest regression to build a hypoxia-angiogenesis-related model (HARM) via the
TCGA-STAD lncRNA data. It estimated the HARM’s correlation with clinical features and its accuracy for survival prediction.
Sequential functional analyses were conducted to investigate its biological role, and we next sought the immune landscape
status and immunological function variation by ESTIMATE score calculation and GSVA, respectively. Seven different
algorithms were conducted to assess the immunocyte infiltration, and TIDE score and immune checkpoint levels were
compared between the high- and low-HARM groups. As a result, we found that HARM predicted patient survival with high
accuracy and was correlated with higher stages of gastric cancer. Various cancer-associated pathways and macrophage-related
regulations were upregulated in the high-HRAM group. The high-HARM group harbored higher immune levels, and M2
macrophages and cancer-associated fibroblasts were particularly highly unfiltered. Furthermore, globally upregulated immune
checkpoints and higher TIDE scores were observed in the high-HARM group. Finally, we filtered eight drugs with lower IC50
in the high-HARM group as potential drugs for the HARM-targeted therapy. We believe this study opens up novel
perspectives into the interaction between hypoxia-angiogenesis and immunosuppression and will provide novel insights for
gastric cancer immunotherapy.

1. Introduction

Gastric carcinoma (GC) is one of the most common malig-
nant tumors of the digestive tract with high incidence and
fatality rates. More than 783,000 people die of gastric cancer
every year [1, 2]. Most GC patients were first diagnosed with
advanced stages, suffering from the limited therapeutic
effects of routine treatment, including surgery, radiotherapy,

and chemotherapy [3]. Hence, novel therapeutic strategies
are urgently required.

Molecular therapy is an effective approach [4] and has
recently been proved promising for treating GC patients.
The emerging gene targets, including HER2, EGFR, VEGF,
MET, and mTOR, were tested in clinical trials. Still, only
HER2 and microsatellite instability (MSI) were successfully
applied to clinical practice, and not all patients benefited
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from them [5]. Numerous efforts are still made to seek novel
and effective oncogene targets; these oncogenes participate
in various biological activities of gastric cancer, such as drug
resistance and ubiquitination [6, 7]. Among the various bio-
logical activities, hypoxia and angiogenesis were the leading
risky causes to support GC progress [8, 9, 10, 11, 12]. Angio-
genesis can be activated by cytokines and promote GC cell
metastasis [12]; hypoxia induces the long noncoding RNA
(lncRNA) expression and support GC cell proliferation and
metastasis [11]. Importantly, hypoxia showed a strong
mutual correlation with GC angiogenesis. For instance,
VEGF has been found to be highly expressed in GC cancer
cells under hypoxia [9], and activation of HIF-1α promoted
angiogenesis [8]. Similarly, HIF-1α downregulation inhib-
ited angiogenesis [10]. Given the high interaction between
angiogenesis and hypoxia, strategies targeting their coopera-
tion should be developed, but no such work has been
reported.

lncRNAs with a length of more than 200 nucleotides
have been proved to affect cancer fate [13, 14] and have been
noticed as risky factors contributing to GC progress [15, 16,
17], as well as other cancers [14]. They enhanced tumorigen-
esis via HIF-1α modulation [17], promoted angiogenesis via
VEGFR2 signaling pathway activation [18], and influenced
GC cell’s proliferation, migration, and invasion [15]. To
date, lncRNA-signature prediction models were found to
predict GC patient survival, including an angiogenesis-
related signature [19], while no model concerning hypoxia
was reported.

Environment immunity plays a critical but dual role in
GC cell progression [20]. Immunocytes attack cancer cells
once they are identified, while they can escape from immune
surveillance by destroying normal immunocytes or pro-
moting their protumor polarization [21]. During cancer
development, immune checkpoints were the predominant
targets of the immunosuppressive environment formation
[22], and immune checkpoint therapy has been validated as
an effective strategy, but how many immune checkpoints
function in GC remained unclear [23]. For the causes of
immunosuppression, hypoxia decreased macrophage M1
percentage and HIF-1α promoted their M2 polarization
[24, 25]; integrative therapy targeting both VEGF and
immune checkpoints has presented promising effects [26].
Therefore, hypoxia and angiogenesis showed a high correla-
tion with cancer immunity. In contrast, comprehensive anal-
yses of hypoxia, angiogenesis, and immune in GC are still
lacking.

In this study, we constructed a robust hypoxia-
angiogenesis-related lncRNA model (HARM) by weighted
gene coexpression network analysis (WGCNA), random
forest, and multivariate Cox regression. We validated its pre-
dictive ability for patient survival. The association between
the HARM and the immune was comprehensively explored
by immune scores, immunocyte infiltration, immunological
function, and immune checkpoint analyses. Finally, the sen-
sitivities of potential HALM-targeted drugs were calculated
(Figure 1). We believe this study will shed light on the immu-
nological roles of hypoxia and angiogenesis in GC and bene-
fit patients by providing novel therapeutic strategies.

2. Materials and Methods

2.1. Gene sets and Dataset Collection. The gene sets for prog-
nostic parameter selection were collected from the “Hall-
mark gene sets” from the Molecular Signatures Database
(MSigDB) of Gene Set Enrichment Analysis (GSEA). The
samples with sequence data and clinical information used
in this study were obtained from TCGA-STAD dataset,
and their clinical data is exhibited in Table 1.

2.2. Selection of Survival-Related Gene Sets and Assessment of
Their Prognostic Significance. We first collected the “hall-
mark gene sets” from the MSigDB of the GSEA, and we con-
ducted a univariate cox analysis to calculate their hazard
ratio to select the significantly risky gene sets for GC
patients. The levels of the selected risky gene sets were then
compared between alive and dead patients. Subsequently,
the patients were divided into the high-level and low-level
groups, and survival analyses were conducted between the
high- and low-level groups to estimate their prognostic
significance.

2.3. Consensus Clustering and Its Association with Survival
and Risky Gene Sets. To obtain the samples’ unsupervised
clustering results, we ran the Consensus Clustering, an unsu-
pervised clustering method to cluster samples according to
their intrinsic transcriptional features, using the R package
“ConsensusClusterPlus” [27]. The cumulative distribution
function (CDF) and the area under the CDF change plot
were drawn to determine the k value of the clustering. The
survival analysis was conducted to determine whether the
clusters can separate patient survival probabilities, and the
levels of risky gene sets were compared.

2.4. Weighted Gene Coexpression Network Analysis and
Random Forest Model Construction. WGCNA of the risky
gene sets was applied to filter the lncRNA firmly relevant
to hypoxia and angiogenesis using the r package “WGCNA”
[28], a package tool to select parameters firmly associated
with the interested phenotypes of cancers based on parame-
ters modules, and this was followed by a univariate cox anal-
ysis to further screen out the prognostic lncRNA with
statistical significance.

Subsequently, we performed random forest, a machine
learning regression approach to decrease the model’s param-
eters with a better generalization than a single tree, by
employing the randomForest function of the r package “ran-
domforest,” and applied the multivariate Cox regression to
construct the prediction model. The variable importance of
each lncRNA was listed, and the candidate models were also
presented in a bar chart. The top model with the lowest P
value was selected as the final HARM model.

2.5. The Prognostic Significance Estimation of the HARM.
According to the HARM score we constructed above, the
patients were divided into the the low- and high-HARM
groups. After grouping, we performed the survival analysis
to clarify whether the HARM can predict the survival of
the GC patients. We then present the HARM predictors’
expression of the samples in a heatmap to observe the
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consistency between the lncRNA and the HARM. More-
over, we ran a 3D principal clustering analysis (PCA) visu-
alization of the HARM predictor and compared the spatial
distribution of the low and high HARM scores in the clus-
tered samples. The receiver operating characteristic (ROC)
curve and c-index were applied to assess the discrimination
of the HARM for predicting 1-, 3-, and 5-year survival and
compare the predicting ability between HARM and age, gen-
der, grade, and stage, respectively. The age, gender, grade,
stage, and HARM hazard ratio were also exhibited in the for-
est plot. Moreover, we compared the mutual association
between risks and clusters in GC samples according to the
levels of one classifier within the groups of the other.

2.6. Clinical Relevance of the HARM. We calculated the
HARM score of samples divided by stage, TNM, gender,
and age groups to explore whether the HARM was corre-
lated with GC clinical features. The age higher than 60 was
defined as the “>60” group, and the remaining was divided
into “≤60” group. Additionally, we compared the prognostic
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Figure 1: The workflow of this study. The hypoxia-angiogenesis-related lncRNA was obtained to construct a HARM model by WGCNA,
Random Forest regression, and multivariate Cox analysis. The clinical significance of the HARM was analyzed, and the functional analyses
were conducted to detect its biological engagement in GC. A series of immune analyzing approaches were applied to investigate the
immunological diversity of the HARM groups. Finally, the HARM-sensitive drugs were screened out, and the single lncRNA’s clinical
significance in the HARM was investigated.

Table 1: The clinical data of the GC patients from the TCGA
dataset.

Characteristics
Alive

(n = 321)
Dead

(n = 82)
Total

(n = 403)
Gender

Female 123 (38.3%) 22 (26.8%) 145 (36.0%)

Male 198 (61.7%) 60 (73.2%) 258 (64.0%)

Age (mean (SD)) 64.9 (10.8) 67.9 (10.4) 65.5 (10.8)

Age (median [min, max]) 66 [30, 90] 69 [41, 90] 67 [30, 90]

Stage

Stage I 44 (13.7%) 11 (13.4%) 55 (13.6%)

Stage II 118 (36.8%) 9 (11.0%) 127 (31.5%)

Stage III 138 (43.0%) 42 (51.2%) 180 (44.7%)

Stage IV 21 (6.5%) 20 (24.4%) 41 (10.2%)
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Figure 2: Continued.
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ability of HARM for patients stratified by stage, gender, and
age. Finally, a clinical nomogram integrating age, stage, and
the HARM was established, and its predictive capabilities for
GC patients 1-, 3-, and 5-year overall survival (OS) were
evaluated by ROC and calibration curves.

2.7. Functional Enrichment Analyses of Differentially
Expressed Genes between HARM Groups. We conducted a
series of functional enrichment analyses to investigate the
biological roles of HARM in GC patients. The GSEA analy-
ses [29] of gene sets from biological processes of Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) for differentially enriched gene sets in
the high-HARM group were, respectively, conducted. Gene
set variation analysis (GSVA) of the GO and KEGG genes
was also performed to show the differentially variated gene
sets [30].

2.8. Immunological Role of HARM in GC Patients. To seek
whether the HARM interplayed with immunity in the GC
microenvironment, we firstly compared the global immune
landscape between the low- and high-HARM groups by
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Figure 2: The selection of survival-related gene sets. (a) The forest plot shows the hazard ratios of the “Hallmark gene sets”; the red box
represents the two gene sets with the highest hazard ratios. The box plot exhibits the expression differences of (b) hypoxia and (c)
angiogenesis between alive and dead patients. The ability of (d) hypoxia and (e) angiogenesis signatures to separate the survival risks of
patients presented by Kaplan-Meier plots.
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Figure 3: Continued.
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analyzing ESTIMATEScore, ImmuneScore, and Stromal-
Score [31]. To go further, we calculated the immunocyte
infiltration by seven different algorithms (TIMER, CIBER-
SORT, CIBERSORT-ABS, QIAMTISEQ, MCPCOUNTER,
XCELL, and EPIC) [32] and exhibited the infiltrating diver-
sity of each immunocyte between the low- and high-HARM
groups. The immune-related pathways were also enriched
for each sample and presented by a heatmap [30]. Finally,
the TIDE scores [33] and immune checkpoint gene expres-
sions were compared between the HARM groups [34].

2.9. Investigation of Drug Sensitivity Differences between Risk
Groups. For developing potential drugs targeting the HARM
signature, we calculated the 50% inhibitory concentration
(IC50) of the GDSC anticancer drugs against various cell
lines using the r package “pRRophetic” [35]. The IC50 was

compared between the low- and high-HARM groups for
each drug.

2.10. Clinical Significance of the Single lncRNA in the HARM.
We adopted GEPIA2.0, (http://gepia2.cancer-pku.cn/), a
web tool for investigating the comprehensive information
of human genes, to compare the expression differences of
the single lncRNA in the HARM between cancer and non-
cancer tissues. Besides, we analyzed single lncRNA’s prog-
nostic significance and its association between expression
and stages.

2.11. Statistical Analyses. For differences in comparison
between the two groups, Student’s t-test was used for nor-
mally distributed parameters, and Wilcoxon test was used
for nonnormally distributed parameters. Univariate cox
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Figure 3: Consensus clustering, WGCNA, and random forest regression for model construction. The processes of consensus clustering
show (a) CDF and (b) relative change in area under CDF curve for k = 2-9. (c) Heatmap of the patients’ genetic expression pattern
clustered by k = 2. (d) The ability to predict survival rates of consensus clusters is presented by Kaplan-Meier curves. (e) The box plot
exhibits the expression differences of hypoxia and angiogenesis between the consensus clusters A and B. The WGCNA clustering
modules of (f) gastric cancer and univariate cox analysis of the lncRNA selected from the (g) WGCNA module. (h) The bar chart listed
the top 10 lncRNAs ranked by variable importance calculated by the random forest regression. (i) The best combination of the ten
lncRNA was selected from multivariate Cox regression to build a prognostic model. ∗∗∗ represents the P value less than 0.001.
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analysis was conducted to select survival-associated parame-
ters. Correlations were calculated using Pearson’s correlation
coefficients. The discrimination of the model predictive abil-
ity was estimated using ROC. χ2 test was applied to test the
percentage differences. A one-way ANOVA tested grouped
analyses for normally distributed values, and a nonparamet-
ric Kruskal-Wallis test was applied for nonnormally distrib-
uted values of the grouped test. P values less or equal to 0.05
were considered statistically significant.

3. Results

3.1. Hypoxia and Angiogenesis in GC Were Associated with
Poor Prognosis. The “hallmark gene set” collected from
MSigDB of GSEA was filtered by univariate cox analysis. We
found that hypoxia and angiogenesis were the most significant
risk factors for predicting overall survival (Figure 2(a)). The
hypoxia and angiogenesis levels were higher in the dead
group than in the alive group (Figures 2(b) and 2(c)).
Moreover, patients with elevated hypoxia and angiogenesis
levels exhibited worse survival probability as the Kaplan-
Meier curves presented (Figures 2(d) and 2(e)). These sug-

gested that hypoxia and angiogenesis in GC were closely
related to patient survival.

3.2. Consensus Clustering, WGCNA, and Random Forest
Model Construction. Unsupervised consensus clustering
was applied to divide the GC samples into different clusters,
and the samples presented apparent diversity when k = 2
(Figures 3(a)–3(c)). Survival analyses tested the prognostic
value of the clusters, and the results showed that patients
in cluster A exhibited worse overall survival than the
patients in cluster B (Figure 3(d)). Besides, the boxplots
showing the levels of hypoxia and angiogenesis were signifi-
cantly elevated in cluster A (Figure 3(e)).

We then performed WGCNA analysis, divided the
hypoxia and angiogenesis-related lncRNA into seven mod-
ules, and applied the critical module lncRNA to univariate
cox analysis (Figures 3(f) and 3(g)). The survival-related
lncRNAs were filtered under the statistically significant
threshold (Figure 3(g)). Subsequently, the top 10 impor-
tant lncRNA were selected by the random forest algorithm
and applied to the multivariate Cox regression to build the
HARM with the best combination. Finally, nine lncRNAs
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Figure 4: Estimation of the HARM prognostic values. (a) The Kaplan-Meier curves present the ability of HARM to separate patient survival.
(b) The HARM levels of all gastric cancer samples and the expression of HARM lncRNAs in each patient were ranked by the HARM scores.
(c) HARM level distribution in the samples visualized by 3D PCA. (d) ROC test exhibited the AUC value of the prediction ability for the
HARM in predicting patients’ 1-, 3-, and 5-year OS. (e) The comparison of the accuracy in predicting patient OS among HARM, age,
gender, grade, and stage by c-index. (f) The forest plot exhibited the hazard ratios of age, gender, grade, stage, and HARM. (g) The
Sankey diagram displayed the data flow from the HARM to clusters and survival status. (h) The violin plot compared the HARM sores
between clusters A and B. (i) The bar chart compared the percentage of clusters A and B in the low- and high-HARM groups, respectively.
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Figure 5: Continued.
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were determined for HARM construction (Figures 3(h)
and 3(i)).

3.3. The HARM Predicted Survival and Hypoxia
Angiogenesis Levels with High Accuracy. To validate the
prognostic value of the HARM, we performed a survival
analysis, and the HARM separated the survival of the GC
patients remarkably as high HARM patients suffered lower
survival rates (Figure 4(a)). The heatmap showed the expres-

sion of the nine lncRNA in the HARM score-ranked
patients. CYP4A22-AS1 was highly expressed in the low-
HARM group, while POT1-AS1 and LNC01094 presented
the opposite trend (Figure 4(b)). Figure 4(c) exhibits the
clustering of the patients, and the high-HARM samples were
apart from those with low-HARM. ROC and c-index results
showed that the HARM performed well in predicting 1-, 3-,
and 5-year OS and outperformed age, gender, grade, and
stage (Figures 4(d)–4(f)). Additionally, we analyzed the

Low

High

HARM⁎⁎⁎

Stage I

Stage II

Stage III

Stage IV

Stage⁎⁎⁎

35 45 55 65 75 85
Age⁎⁎

0 10 20 30 40 50 60 70 80 90 100
Points

Total points

40 60 80 100 120 140 160 180 200 220

0.20.40.60.80.860.90.94
Pr (futime > 1)

0.0050.030.10.20.40.60.8
Pr (futime > 3)

0.0020.0150.060.150.30.50.7
Pr (futime > 5)

134

0.737

0.38

0.244

(m)

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty
 (T

PR
)

1–Year (AUC = 0.716)
3–Year (AUC = 0.678)
5–Year (AUC = 0.743)

0.0 0.2 0.4 0.6 0.8 1.0

1–Specificity (FPR)

(n)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

O
bs

er
ve

d 
O

S 
(%

)

1–year
3–year
5–year

Nomogram–predicted OS (%)

(o)

Figure 5: Clinical relevance of the HARM and its independent prognostic value. The violin plots displayed the HARM levels of patients in
different stages (a), T stage (b), N stage (c), M stage (d), genders (e), and age groups (f). The Kaplan-Meier plots exhibited the ability of
HARM to predict survival rates of patients in stages I and II (g), stages III and IV (h), male (i), female (j), age ≤ 60 (k), and age > 60
group (l). The nomogram was built by integrating age, stage, and the HARM (m), and its performance was estimated by ROC (n) and
calibration curves (o). Ns means not statistically significant; ∗∗and ∗∗∗ represent the P value less than 0.01 and 0.001, respectively.
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Figure 6: Continued.
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HARM’s correlation with the clusters. Most of the high-
HARM data flowed to cluster A, as samples in cluster A har-
bored higher HARM scores. Most of the cluster A samples
were included in the high-HARM group (Figures 4(g)–
4(i)), demonstrating that HARM was a robust model with
a higher prognostic value.

3.4. HARM Correlated with Higher Clinical Stages and
Predicted Patient Survival Independently. To investigate
HARM’s correlation with clinical features, we compared the
HARM scores among various clinical features, and the results
showed that the HARM score increased with the TNM stage
(Figures 5(a)–5(d)). However, no correlations were found
between HARM and gender and age (Figures 5(e) and
5(f)). To seek whether the HARM can independently sep-
arate the prognosis of patients under different stages,
gender, and age groups, we conducted survival analyses
on them, and high HARM predicted poor prognosis in
all these groups significantly (Figures 5(g)–5(l)). Finally,
HARM, stage, and age, which were significantly associated
with survival, were integrated to construct a clinical nomo-
gram for predicting gastric cancer patients’ survival
(Figure 5(m)). The ROC and calibration curve demonstrated
the high discrimination and calibration of the nomogram,
respectively, when predicting 1-, 3-, and 5-year OS
(Figures 5(n) and 5(o)). Shortly, these results indicated that
the HARM can also predict the GC stage and survival inde-
pendently and can present higher accuracy when integrated
with common clinical features.

3.5. High HARM Was Associated with Immune, Cancer-
Related Activities, and Pathways. To explore the role of
HARM in the biological processes of gastric cancer, we per-
formed functional enrichment analyses for differentially
expressed genes (DEGs) between the high-and low-HARM
groups. The enrichment results of GO database exhibited
that immune-related biological processes and pathways were
highly enriched in the high-HARM group, including
chemokine-mediated signaling pathway, dendritic cell che-
motaxis, and macrophage-associated activities (Figure 6(a)).
For KEGG datasets, many cancer-related pathways are
shown, such as JAK-STAT, PI3K-Akt, and TGF-β signaling
pathways (Figure 6(b)). Besides, we performed GSVA in
discovering highly variated pathways in GO and KEGG
gene sets, and we noticed that GO biological processes of
cellular response to macrophage-colony stimulating factor
stimulus, integrin biosynthetic process, and vascular-
related pathways were highly expressed in the high-HARM
group (Figure 6(c)). In the KEGG dataset, JAK-STAT,
TGF-β, MAPK, and other cancer-related pathways were
upregulated in the high-HARM group (Figure 6(d)), similar
to the GSEA results. The functional results suggested that
hypoxia and angiogenesis might activate many cancer-
associated pathways and affect the cancer immunity.

3.6. High-HARS GC Presented Higher Immunosuppressive
Checkpoint Levels and Immunocyte Infiltration. Since the
HARS was suggested to affect immunity as the func-
tional analyses presented above, we first compared the
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Figure 6: Functional enrichment of GO and KEGG datasets. The differentially expressed genes in the high-HARM group were analyzed by
GO (a), KEGG (b) functional enrichment. Gene set variation analyses of the upregulated processes in GO (c) and KEGG (d) datasets.
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ESTIMATEScore, ImmuneScore, and StromalScore between
the low-and high-HARM groups, and the results showed that
the three scores were higher in the high-HARM group
(Figures 7(a)). Further, the GSVA [30] analysis of the
immune-related pathways was conducted, and the top 13
pathways were presented in a heatmap; the majority of them
were highly enriched in the high-HARM group (Figure 7(b)).

Subsequently, we applied 7 different algorithms to com-
pare the immunocyte infiltration levels between high-and
low-HARM groups, and we noticed that high-HARM was
associated with high immunocyte infiltration. Notably, M2
macrophages and cancer-associated fibroblasts (CAFs) infil-
tration were remarkably elevated in the high-HARM group
(Figure 7(c)), which were immunosuppressive cells in the
tumor microenvironment. The high levels of immunosup-
pressive cell infiltration arose the question whether the
HARM can affect immunotherapy and whether immune
checkpoints were highly expressed, to investigate this, we
compared the TIDE [33] score and levels of immune check-
points between the two groups, and surprisingly, we discov-
ered that TIDE score was higher and most of the immune
checkpoints were highly expressed in the high-HARM group
(Figures 7(d) and 7(e)), implying that hypoxia and angio-
genesis contributed to the immunosuppressive microenvi-
ronment formation.

3.7. Compound Development with High-HARH GC. To
develop potential drugs against high hypoxia and angiogen-
esis levels in the GC microenvironment, we then predicted
the IC50 of the GDSC compounds against the GCs in both
the low- and high-HARM groups. And the top8 compounds

are presented in Figures 8(a)–8(h), and all these compounds
showed lower IC50 in the high-HARM group.

3.8. Single HARM lncRNA Exhibits Clinical Significance in
GC Patients. Finally, we investigated the clinical signifi-
cance of the single lncRNA in the HARM. The results
showed that LINC01094 was significantly upregulated in
cancers, and POT1-AS1 was also upregulated, though with-
out statistical significance (Figure 9(a)). High LINC01094
and POT1-AS1 levels predicted a worse prognosis for the
prognostic value, and CYPA22-AS1 indicated better survival
rates (Figure 9(b)). Moreover, LINC01094 expression
seemed increased as the cancer stage grew, though with p-
value slightly higher than 0.05 (Figure 9(c)). These results
suggested LINC01094, POT1-AS1 potential oncogenes, and
CYP4A22-AS1 as possible tumor suppressors.

4. Discussion

The intense interaction between hypoxia and angiogenesis
collectively contributes to the GC progression. This study
takes it as the starting point and builds a robust HARM
prognostic model for predicting GC patient survival. The
accuracy for long-term survival prediction of our HARM
model reached 0.783, which was near high discrimination
according to the criteria we previously proposed [36]. More-
over, when the HARM was integrated with age and stage, the
accuracy for predicting short-term survival was improved,
demonstrating the critical roles of hypoxia and angiogenesis
in affecting tumor fate. Previously, solo hypoxia or angio-
genesis risk scores were constructed [18, 35], but our model
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Figure 7: Investigation of immune diversity between the high-and low-HARM groups. (a) The violin plots exhibited the StromalScore,
ImmuneScore, and ESTIMATEScore differences between the high- and low-HARM groups. (b) The heatmap shows the immune
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outperformed them in survival prediction accuracy, which
suggested that the roles of hypoxia and angiogenesis in GC
should be considered simultaneously than singly.

The interplay between hypoxia and angiogenesis has
been widely proved. Hypoxia condition has been found to
promote endothelial cells, vessel formation by exosome reas-
sembly [37], and regulatory T cell employment [38], and
direct causes of angiogenesis by hypoxia was mainly attrib-
uted to the upregulated VEGF and reprogramming of cancer
cells [39]. lncRNA was recently discovered as a bridge that
connects upstream hypoxia genes and downstream targets
to activate angiogenesis. RAB11B-AS1 was activated by
HIF-2α under hypoxia and interacted with RNA polymerase
II to enhance the proangiogenic gene expression [39]; also,
the SNHG1 can be upregulated by HIF-1, and it bound to
microRNA-199a-3p to promote TFAM expression for sub-
sequent angiogenesis [40]. However, few studies concerning
the involvement of lncRNA in GC hypoxia-angiogenesis
interplay were reported. Our study first developed a
lncRNA-based hypoxia-angiogenesis signature for GC, and
we found a strong association between hypoxia, angiogene-
sis, and the high-HARM group. This will benefit GC therapy
development, and the therapies targeting the “vicious cycle”
between hypoxia and angiogenesis have shown promise [41].

For the nine lncRNAs in the HARM, no study of
AC090907.1, AC090204.1, or AP00034193 has been reported
so far, and our study firstly discovered their prognostic value
in cancer. The remaining five lncRNAs (AC019080.5, POT1-
AS1, AP000695.2, AP000695.1, and LINC01094) and
CYP4A22-AS1 were identified as risky oncogenes and a pro-
tective factor, respectively, and this was consistent with the
recent findings [42, 43, 44, 45, 46]. And particularly,
LINC01094 has been experimentally validated in various
cancers to promote their progress [43, 47, 48, 49, 50], demon-
strating the high prognostic significance of HARM lncRNAs.

Interestingly, 5 HARM lncRNAs (CYP4A22-AS1,
AC019080.5, AP000695.2, AP000695.1, and LINC01094)
presented associations with immune in recently published
studies [42, 43, 51, 52, 53], suggesting the roles of HARM
in cancer immunity modulation. Similarly, we found the
high-HARM group was correlated to higher immune infil-
tration. Notably, M2 macrophages and CAFs were highly
infiltrated in this group. Hypoxia can drive the M2 polariza-
tion of macrophages in the tumor microenvironment, and
the M2 macrophage can, in turn, promote angiogenesis
[54], and this modulation has also been elicited in GC [25,
55]. CAFs can trigger angiogenesis under the stimulation
of hypoxia-derived extracellular vesicles [56], and hypoxia
also activated CAFs’ immunosuppressive roles on T cells
[57]. In GC, CAFs were found to promote GC cell prolifer-
ation under hypoxia [58], while currently, no angiogenetic
role of CAFs is discovered in GC. Hence, our study indicated
that during hypoxia and angiogenesis, several immunocytes
were employed to support cancer growth, and we first sug-
gested the effects of hypoxia-angiogenesis on the association
between CAFs and angiogenesis in GC. Besides, the globally
increased expression of immune checkpoints in the high-
HARM group strongly implied the immunosuppressive
roles of the infiltrated immunocytes associated with hypoxia
and angiogenesis. Current studies have presented only a few
clues about the association between immune checkpoints
and angiogenesis/hypoxia. For instance, PD-L1 expressed
on tumor-associated macrophages induced T cell apoptosis
via binding to PD-1, which was induced by hypoxia [59] in
multiple cancer types. Anti-CD40 or anti-VEGFA treatment
independently promoted proinflammatory macrophage
skewing, and their combination prompted the anticancer
function of CD8+ T cells [60]. These suggested HARM’s
correlations with immune checkpoints and indicated the
potential of united therapy of anti-HARM and immune

2e−07

0.0

2.5

5.0

7.5

Low High

A
.7

70
04

1 
se

ns
tiv

ity
 (I

C5
0)

Harm
Low

High

(g)

0.0017

2

3

4

5

6

Low High

A
G

.0
14

69
9 

se
ns

tiv
ity

 (I
C5

0)

Harm
Low

High

(h)

Figure 8: The IC50 differences of the GDSC drugs between the high- and low-HARM groups. (a–h) The box plots displayed the IC50
differences of the 8 GDSC drugs between the HARM groups; the drugs containing AZD.0530 (a), AUY922 (b), AZ628 (c), AS601245
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checkpoint blockage; this is novel that no clinical trial con-
cerning any of the HARM lncRNA was carried on. Addi-
tionally, since the current evidence is limited, our study
first implied the association between hypoxia/angiogenesis
and the numerous immune checkpoints in GC.

5. Conclusions

Comprehensively, we built a robust HARM lncRNA predic-
tion model by WGCNA and random forest regression and
confirmed its high clinical significance for GC patients.
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Figure 9: The clinical significance of the single lncRNA in the HARM. The figures presented the expression differences between cancer and
noncancer tissues (a), prognostic significance in predicting survival rates (b), and the expression in different stages (c) of LINC01094, POT1-
AS1, and CYPA22-AS1 in GCs.
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The functional analyses indicated that the HARM signa-
ture was involved in cancer-associated pathways and
macrophage-related immunity regulations. Sequential immu-
nological analyses discovered high infiltration of M2 macro-
phages and CAFs in the high-HARM group, and immune
checkpoints were globally upregulated in this group. Finally,
the IC50 of potential HARM-targeted drugs was calculated.
This study allowed for novel insights into the interplay
between hypoxia-angiogenesis and immunosuppression in
GC and will provide novel targets for immunotherapy of GC
patients.
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