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Klebsiella pneumoniae (K. pneumoniae), especially those with hypervirulence, is becoming a global concern and posing great
threat to human health. Studies on individual immune cells or cytokines have partially revealed the function of the host
immune defense against K. pneumoniae pulmonary infection. However, systematic immune response against K. pneumoniae
has not been fully elucidated. Herein, we report a transcriptome analysis of the lungs from a mouse pneumonia model infected
with a newly isolated K. pneumoniae clinical strain YBQ. Total RNA was isolated from the lungs of mice 48 hours post
infection to assess transcriptional alteration of genes. Transcriptome data were analyzed with KEGG, GO, and ICEPOP.
Results indicated that upregulated transcription level of numerous cytokines and chemokines was coordinated with remarkably
activated ribosome and several critical immune signaling pathways, including IL-17 and TNF signaling pathways. Notably,
transcription of cysteine cathepsin inhibitor (stfa1, stfa2, and stfa3) and potential cysteine-type endopeptidase inhibitor (cstdc4,
cstdc5, and cstdc6) were upregulated. Results of ICEPOP showed neutrophils functions as the most essential cell type against K.
pneumoniae infection. Critical gene alterations were further validated by rt-PCR. Our findings provided a global transcriptional
perspective on the mechanisms of host defense against K. pneumoniae infection and revealed some unique responding genes.

1. Introduction

Klebsiella pneumoniae (K. pneumoniae) is a critical opportu-
nistic bacterial pathogen and a frequent cause of life-
threatening nosocomial or community infections, including
bacteremia, pneumonia, liver abscess, and urinary tract
infection [1]. Due to the steadily increase in antibiotic resis-
tance and hypervirulent K. pneumoniae (hvKp) strains, this
bacterium was listed as a top threat to public health by
World Health Organization in 2017 [2], with reports of mor-
tality rates up to 50% or higher [3]. Given the fact that a
variety of virulence determinates were identified in this bac-

terium [4], studies focused on the host response to hvKp are
relatively limited.

Several cytokines have been reported to be involved in
mediating host defense against K. pneumoniae infection.
Deficiency or impairment of TNFR1 [5], CCL3 [6], CXCL15
[7], leukotrienes synthesis [8], or nitric oxide production [9]
in mouse impaired clearance of K. pneumoniae. In addition,
intrapulmonary over-expression of CCL3 [10] and intratra-
cheal instillation of CpG [11] promoted recruitment of neu-
trophils, αβ T cells, γδ T cells, and activated NK cells to the
site of infection. Further, downstream of these stimulators,
such as IL-23 [12], IL-17 [13], IL-12 [12], and IFN-γ [14],
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was also required for efficient eradication of K. pneumoniae.
Besides, the role of type I IFN in host defense against K.
pneumoniae infections was also reported recently [15].
Moreover, the role of pathogen recognition receptors and
their downstream signaling pathways in host defense against
K. pneumoniae infections were elucidated in mice deficiency
of MyD88 [16], which is an indispensable hub for TLRs sig-
naling except for TLR3 [17], and TRIF [16], a sole adaptor
for TLR3.

Meanwhile, extensive immune cells were reported to
participate in combating K. pneumoniae infection. In a
murine model, monocytes, inflammatory macrophages,
and dendritic cells were accumulated in lungs, but the num-
bers of alveolar macrophages were not altered by infection
[18]. CCR2-deficiency mouse infected with K. pneumoniae
showed reduction of all subsets of lung mononuclear phago-
cytes but not neutrophils [18]. Furthermore, eradication of
the rodent-adapted and 4 clinical K. pneumoniae strains
required either neutrophils or CCR2+ monocytes. Strikingly,
neutrophil depletion did not impact clearance of a
carbapenem-resistant strain, ST258. In contrast, depletion
of CCR2+ monocytes significantly increased the mortality
of mice infected with ST258 [19]. Detailed investigation
revealed that the CCR2+ monocytes-mediated bacterial
uptake and killing are enhanced by IL-17A, which is pro-
duced by innate lymphocytes stimulated with TNF [20].

The hvKp typically exists as hypermucoviscous pheno-
type characterized by increased expression of extracellular
polysaccharides, which is a major virulence factor of K.
pneumoniae [21]. Recently, we have isolated a clinical strain
of K. pneumoniae, named YBQ, from the sputum of an acute
pneumonia patient with K. pneumoniae infection. String test
showed a greater than 5mm “string” between an inoculating
loop and a plated bacterial colony, which indicated a hyper-
mucoviscous phenotype [22]. Challenge studies confirmed
that YBQ is an hvKp since all mice died within 96 hours
after infected with 5 × 106 CFUs of YBQ; and the death
was accompanied with high bacteria burden, cytokine storm
and tissue damage in the lungs of infected mice [23].
Although a number of studies have revealed the function
and mechanism of some host factors in K. pneumoniae
infection, a global perspective on the host immune response
in response to hvKp is needed. Herein, we proposed a tran-
scriptome analysis of pulmonary infection with K. pneumo-
niae YBQ strain in mice, and the transcriptome data was
further processed with KEGG, GO, and ICEPOP bioinfor-
matic methods. These data may shed light on the immune
response to K. pneumoniae infection in vivo.

2. Materials and Methods

2.1. Mice and Bacteria Strain. 6 to 8-week-old female BALB/
c mice were purchased from HUNAN SJA LABORATORY
ANIMAL CO., LTD., raised under specific pathogen free
conditions. All animal experiments were approved and car-
ried out according to the guidelines of the Animal Ethical
and Experimental Committee of the Third Military Medical
University (Chongqing, Permit No. 2011–04). K. pneumo-

niae strain YBQ was isolated from the sputum of a patient
with severe pneumonia [24].

2.2. Mouse Pneumonia Model. BALB/c mice were infected
with K. pneumoniae strain YBQ as described previously
[23]. In brief, YBQ was grown in LB medium to exponential
phase (OD600nm = 0:5 − 1:0), and then adjusted to final con-
centration. After anesthetized with pentobarbital sodium (1-
1.25mg/20 g), mice (n=10) were intratracheally challenged
with different doses of strain YBQ (1:0 × 107 CFUs, 5:0 ×
106 CFUs and 1:0 × 106 CFUs, respectively) in a total vol-
ume of 20μl, and the control group was injected with an
equal amount of PBS, the survival of mice was recorded daily
for 14 days to determine the virulence of the strain. To
determine bacterial burden, mice in each group (n = 3) were
challenged with a sublethal dose (1 × 106 CFUs/mice) of
strain YBQ, lung tissue and blood were collected at 24 h,
48 h and 72 h after infection, respectively. Lung homoge-
nates prepared in PBS and blood were plated at 10-fold serial
dilutions on LB agar, and the colonies were quantified after
24 h of incubation at 37°C.

2.3. Histopathology Analysis. Forty-eight hours after infec-
tion, the lungs of the mice were harvested and fixed in 4%
paraformaldehyde. Next, the lungs were dissected into
4mm thick sections, embedded in paraffin, and stained with
hematoxylin and eosin for microscopic examination.

2.4. RNA Extraction, Library Construction, and Sequencing.
Lung total RNA was extracted using the TRIZol (Invitrogen)
RNA extraction reagent. According to the instruction of
VAHTS mRNA-seq V3 Library Prep Kit for Illumina,
mRNA was purified and reverse transcribed into cDNA,
and cDNA was further purified and enriched. The quantity
and quality of cDNA libraries were determined by Agilent
2100 Bioanalyzer (Agilent), Agilent High Sensitivity DNA
Kit (Agilent), Quantifluor-ST fluorometer (Promega), and
Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen), respec-
tively. Illumina Novaseq 600 platform (Illumina, USA) was
used for sequencing.

2.5. RNA-Seq Analysis. Cutadapt (v1.16) was used to filter
the sequencing data to get high quality sequence for further
analysis. Reference genome index was built by Bowtie2
(2.2.6), and the filtered reads were aligned to the reference
genome using Tophat2 (2.0.14), the default mismatch was
no more than 2. HTSeq (0.9.1) was used to compare the read
count values on each gene as the original expression of the
gene and then used FPKM to standardize the expression.
DESeq (1.30.0) was used to analyze the genes of difference
expression with screened conditions as follows: expression
difference multiple ∣log2FoldChange ∣ >1, significant P
value < 0:05.

2.6. Immune Cell Typing. ICEPOP (Immune CEll POPula-
tion) interactive web site: (https://vdynamics.shinyapps.io/
icepop/) and Pythonpackage: (https://github.com/ewijaya/
icepop) were used to perform in-silico analysis of immune
cell population from differential gene expression data. The
gene expression of immune cell types was obtained from
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two public datasets: ImmGen (http://www.immgen.org/)
and IRIS (http://share.gene.com/share/clark.iris.2004/iris/
iris.html). Different immune cell subtypes were grouped into
10 major cell types.

2.7. Quantitative Real-Time PCR. Lungs were homogenized
in liquid nitrogen via Dounce Tissue Grinder. And total
RNAs were extracted using TRIzol (Invitrogen). 1μg of total
RNA was reverse transcribed into cDNA using PrimeScript
RT reagent Kit (Takara). Quantitative real-time PCR was
performed with SYBR Green on CFX96 (Bio-Rad). Relative
gene expression levels were normalized to GAPDH as con-
trol and further to levels of mock-infected control samples
(2−ΔΔCT).

2.8. Statistical Analysis. GraphPad Prism software (version
8.01) was used to analyze statistical data. Unpaired student’s
t-test was performed to compare two data sets. Data were
presented as means ± SD.

3. Results

3.1. Acute Pneumonia Induced by K. Pneumoniae YBQ
Reached a Turning Point at 48 Hours Post Infection. The vir-
ulence of K. pneumoniae clinical strains isolated from the
First Hospital Affiliated to Army Medical University (South-
west Hospital) was determined previously [23]. To confirm
the virulence of K. pneumoniae YBQ in mice from different
batch, BALB/c mice were challenged with different dosages
of K. pneumoniae YBQ. The survival in each group was con-
tinuously monitored in 14 days post challenge. 1 × 106 CFUs
of YBQ did not exhibit significant lethal effect compared
with PBS, but induced observable pneumonia-related symp-
toms. All mice challenged with 1x107 CFUs of YBQ died in 4
days, one mouse survived from pneumonia induced by 5 ×
106 CFUs (Figure 1(a)), these data were in consistent with
our previous findings [23].

After confirming the virulence of different dosages of
YBQ, 1 × 106 CFUs YBQ was chosen to construct sublethal
K. pneumoniae pneumonia model. To better understand
the host response to K. pneumoniae infection, bacterial bur-
den and histopathological characteristics at different time
points post infection were assessed. Bacterial burden were
peaked at 48 hours post infection and then decreased over
time (Figures 1(b) and 1(c)), which suggests that the host
immune system was able to control the infection when
infected with low dose of K. pneumoniae. Consistent with
bacterial burden, pulmonary inflammation and injury also
reached a most severe degree at 48 hours post infection
(Figure 1(d)). Taken together, 48 hours post infection is a
critical time point of host immune system to control the K.
pneumoniae pulmonary infection.

3.2. Pulmonary Gene Expression Profile in Response to
Sublethal K. Pneumoniae Pneumonia. After establishing the
sublethal pneumonia model of K. pneumoniae YBQ, lungs
from mice challenged with 1 × 106 CFUs of YBQ were col-
lected at 48 hours post infection. Total RNA extracted from
these lungs was performed with transcriptome analysis. In

RNA-seq analysis, the number of total reads of control
group was 43543288, 40817300, and 42651910, and that of
infection group was 46551494, 46144342 and 46546712.
Q20 of control group was 97.58%, 97.68% and 97.49% and
which was 97.7%, 97.71%, and 97.08% for infection group.
Q30 of control group was 93.93%, 94.17% and 93.54%, and
was 94.22%, 94.32% and 92.64% for infection group. Vol-
cano plot showed the distribution and significant differences
in gene transcription (Figure 2(a)). At 48 hours post infec-
tion, 1285 genes were unregulated whereas 1359 genes were
downregulated (Figure 2(b)), the details of differentiated
genes were listed in Tables S1 and S2. The top 50
upregulated genes were presented as heatmap, and several
chemokines were enriched in this gene list, including ccl3,
ccl4, cxcl3, and ccl2. Besides, immune response associated
cytokines, il-17a, il-17f, il-6, and tnf, were also upregulated
to a highly significant extent (Figure 2(c)). Interestingly,
the top 50 upregulated genes embodied several cysteine
protease inhibitors (stfa1, stfa2, and stfa3) and potential
cysteine-type endopeptidase inhibitors (cstdc4, cstdc5, and
cstdc6), which play important roles in antigen processing
and presentation [25].

3.3. GO Analysis of Significant Differentiated Genes of K.
Pneumoniae-Infected Lungs. To better understand the bio-
logical relevance of significant differentiated genes, Gene
Ontology (GO) enrichment analysis of up- and downregu-
lated genes was performed, respectively. The enrichment
was grouped into 3 classes, including biological process, cel-
lular component, and molecular function.

The predominant upregulated genes enriched in the bio-
logical process were involved in immune response, response
to external stimulus, inflammatory response, defense
response, and other synthetic processes. Upregulated genes
were mainly parts of the ribosome, proteasome, endopepti-
dase, peptidase, which was consistent with their role in cyto-
kines activity, chemokine activity, chemokine receptor
binding, and signaling transduction (Figure 3(a)).

The downregulated genes mainly participant in biologi-
cal process indicated the inhibition of cell adhesion, biolog-
ical adhesion, multicellular organism development,
anatomical structure development, and system development.
As expected in cellular component part, significant down-
regulation occurred in the junctions among the cells and
plasma membrane components, which may provide the con-
dition for immune cell infiltration and bacterial dissemina-
tion. Interestingly, several types of bindings were inhibited
by the infection of K. pneumoniae (Figure 3(b)). Taken
together, transcriptome systematic alteration induced by K.
pneumoniae infection indicated the coordination between
non-immune response and immune response.

3.4. KEGG Analysis of Significant Differentiated Genes of K.
Pneumoniae-Infected Lungs. To detail the signaling path-
ways involved in K. pneumoniae pulmonary infection, Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway clas-
sification of up- and downregulated genes was carried out,
respectively. Upregulated genes were enriched at several
immune associated pathways, including B cell receptor
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signaling pathway, Toll-like receptor signaling pathways,
NF-κB signaling pathways, FcγR mediated phagocytosis,
cytosolic DNA sensing pathways, TNF pathways, IL-17
pathways, complement and coagulation cascades, NOD-
like receptor signaling pathways, C-type lectin receptor sig-
naling pathways, phagosome, lysosome, and neutrophil
extracellular trap formation (Figure 4(a)). These signaling
pathways depicted the recognition, engulfment, and diges-
tion of K. pneumoniae by host immune system. Downregu-
lated genes were enriched in some carcinoma pathways,
suggesting inhibition of proliferation, promotion of differen-
tiation, and consistence with activation of immune cells.
Several types of cell junctions were decreased, which may
promote immune cell infiltration (Figure 4(b)). As depicted
in GO analysis, these data elucidated the synergy of immune
system and non-immune system.

3.5. Activation of Pulmonary IL-17 and TNF Signaling
Pathways Induced by K. Pneumoniae Infection. IL-17 path-
way has been identified as a critical defense factor against
bacterial infection [26–28]. According to RNA-seq analysis,
transcription of IL-17A, IL-17F, and IL-17RA were signifi-
cantly elevated during K. pneumoniae infection
(Figure S1A). Besides, KEGG analysis of transcriptome
data were enriched into IL-17 pathways (P < 0:00004871)
and several critical IL-17 pathway downstream genes were
upregulated, including chemokines (cxcl1, cxcl2, cxcl5,
cxcl10, ccl2, ccl7, and ccl20), cytokines (il-6,TNF-α, and G-
CSF), and antimicrobial factors (MUC5AC, S100A8,
S100A9, and LCN2). These data suggest that IL-17 pathway
may play an essential role in eradication of K. pneumoniae.

TNF pathway was also highlighted in KEGG analysis
(P < 9:212 × 10−7) and several critical TNF pathway
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Figure 1: K. pneumoniae strain YBQ induced lethal pneumonia. (a) Group-randomized BALB/c mice (n = 10) were intratracheally
inoculated with 1 × 107, 5 × 106 , and 1 × 106 CFU of K. pneumoniae YBQ, and survival was monitored for 14 days. Bacterial burden
(n = 3) of lungs (b) and blood (c) were detected 24, 48, and 72 hours post infection. (d) Histopathology analysis (200×) of lungs was
captured 24, 48, and 72 hours post infection. Bacterial burdens were presented as means ± SEM.
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downstream genes were upregulated, including csf1, fas, and
nod2. (Figure S1B). TNF-α is required in immune defense
against Mycobacterium tuberculosis in mice [29] via
inducing bactericidal granulomas [30]. Besides, anti-TNF-α
therapy rendered patients susceptible to bacterial infection
[31]. Given this, it is not surprising that TNF pathway was
activated during K. pneumoniae infection and may play an
essential role in clearing the infection.

3.6. Immune Cell Typing of Infected Lung. ICEPOP (Immune
CEll POPulation) is the method for estimating immune cell
population in the expressed genes and enabling analysis of
differentially expressed genes [32]. To further elucidate the
major immune cell types responsible for reversing the exac-
erbation of K. pneumoniae infection, ICEPOP was applied to
analysis the differentially expressed genes. The cell type, with
ICEPOP score over the cell type response threshold (CRT),
was considered as responsive to the infection. As shown in
Figure 5, neutrophils and macrophages had the highest and
second highest ICEPOP scores, respectively, while mono-
cytes, dendritic cells, stromal cells, NK cells, and γδT cells
had relatively lower response. These data suggest that neu-
trophils may be the dominant cell subtype required for erad-
icating K. pneumoniae infection, which is consistent with
our previous report [23].

3.7. Validation of Key Differentially Expressed Genes. To con-
firm the significance of differentially expressed genes, 11
genes were evaluated by quantitative real-time PCR, includ-
ing ccl2, ccl3, ccl4, cxcl2, cxcl3, il-1b, il-6, tnf-a, il-17a, il-17f,
and ly-6g (Figure 6). Transcription of chemokines responsi-
ble for recruiting monocytes or/and neutrophils (ccl2, ccl3,
ccl4, cxcl2, and cxcl3) were boosted to an extent ranging from
58.22 to 425.9-folds. Three upregulated cytokines, il-1b
(18:09 ± 0:7539-fold change), il-6 (49:40 ± 1:641-fold
change), and tnf-a (79:59 ± 6:921-fold change), indicated
significant pulmonary inflammation levels post infection.
The activation of IL-17 signaling pathways was also vali-
dated by il-17a (191:4 ± 6:152 -fold change) and il-17f
(6:224 ± 0:2050-fold change), suggesting that IL-17A played
a dominant role in activation of IL-17 pathways. Neutrophils
recruitment was confirmed indirectly by ly-6g (15:58 ± 1:240
-fold change), a surface marker of neutrophils. Taken
together, key results of transcriptome analysis were con-
firmed by quantitative real-time PCR.

4. Discussion

In this study, a sublethal pneumonia caused by K. pneu-
moniae was carried out and bacteria burden was peaked
at 48 hours post infection, another study showed that
body weight loss of mouse infected with sublethal dose
of four clinical strains was also peaked at 48 hours post
infection [20]. These data suggested that murine immune
systems failed to control the proliferation of K. pneumo-
niae clinical strains isolated from patients in 48 hours post
infection. Here, our data revealed the global immune
response to K. pneumoniae clinical strains infection at
turning point via transcriptome analysis.

Klebsiella pneumoniae strain YBQ was newly isolated
from the sputum of a patient with severe pneumonia, and
its genome was sequenced [24]. CPS genotyping by PCR
detection of serotype-specific alleles at wzy and wzx loci
[33] showed that YBQ belongs to neither K1 nor K2 sero-
types. However, it exerted high lethal effects on a mouse
model, and the virulence was comparable or even higher
than some K1 strains, such as YYD [23]. Given the domi-
nant prevalence of K1 and K2 type strains, a nonK1 or -K2
type strain harbors high pathogenicity indicate that some
other types of capsular can also greatly contribute to the
pathogenicity of K. pneumoniae.

In this study, several cysteine cathepsin inhibitors (stfa1,
stfa2, and stfa3) were significantly upregulated upon K.
pneumoniae infection. Cysteine cathepsin was initially iden-
tified as proteases responsible for the bulk proteolysis of
intracellular and extracellular proteins in the acidic environ-
ment of the endosomal/lysosomal compartment [34]. On
the other side, phagolysosome functions as a dominant bac-
terial eradication site of phagocytes [35]. Cysteine cathepsin
inhibitors regulated the immune response by upregulating
anti-inflammatory cytokines and downregulating proinflam-
matory cytokines to modulate T-cell responses and promote
macrophage polarization [36]. Our data suggests inhibition
rather than activation of cysteine cathepsin may be required
for effective immune response to K. pneumoniae pulmonary
infection. Cstdc4, cstdc5, and cstdc6 were termed as cysteine-
type endopeptidase inhibitors by GO and also listed into top
50 upregulated genes. However, their function in antiK.
pneumoniae has not been studied previously. These immune
factors may play an essential role in effective eradication of
K. pneumoniae.

Extensive studies have defined the importance of neutro-
phils in clearance of K. pneumoniae infection [37, 38]. Neu-
trophils recruitment partially depends on activation of
signaling pathways network including MyD88, TRIF,
interleukin-1 receptor (IL-1R), Toll-like receptor 4 (TLR4),
and leukotriene B4 and positively correlated with defense
against K. pneumoniae [16, 39–41]. However, deficiency of
C-type lectin receptors increased neutrophil recruitment
but impaired host eradication of K. pneumoniae [42]. Fully
antibacterial function of neutrophils required specific micro-
environment, including aid of other cells, cytokines, and
nutrition molecules. In this study, neutrophil response was
identified by ICEPOP analysis and pulmonary ly-6g tran-
scription upregulation, which was consistent with our previ-
ous results of neutrophil depletion assay [23].

CCR2+ monocytes (Ly6Chi and CD11b), termed inflam-
matory monocytes, have been reported as a dominant cell
type in eradicating particular K. pneumoniae strain but dis-
pensable participation in clearance of other strains [20].
On the other side, recruitment of monocytes required
CCL2-CCR2 mediated signaling pathways [43]. In this
study, the results showed that CCL2 was remarkably ele-
vated and monocyte response was identified by ICEPOP,
suggesting CCR2+ monocytes may play a role in resolution
of pulmonary infection of YBQ. TH17 cells were reported
to confer protection under conditions of transplant immu-
nosuppression [44], and innate lymphocytes 3-(ILC3s-)
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Figure 6: Continued.
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producing IL-17A enhances eradication of K. pneumoniae
by CCR2+ monocytes via IL-17R highly expressed on
CCR2+ monocytes surface [20]. In this study, differentially
expressed genes were significantly enriched into IL-17 sig-
naling pathway, and upregulated transcription level of IL-
17A and IL-17F were confirmed with rt-PCR. Apart from
enhancement of CCR2+ monocytes antibacterial function,
neutrophils recruitment also requires IL-17A [45]. Data of
this study further support the critical role of IL-17, CCR2+
monocytes, and neutrophils in host defense against K.
pneumoniae.

Macrophages were identified as secondary significant
responding cells by ICEPOP in this study. Alveolar macro-
phages engulf K. pneumoniae by CD36, a scavenger receptor
[46]. But numbers of alveolar macrophages were not altered
during K. pneumoniae infection. Macrophages take part in
immune protection against this pathogen in the intestine
with the development of bacteroidetes and IL-36 signaling
[47]. However, to our knowledge, there is lack of studies
directly investigating the role of macrophages in clearance
of K. pneumoniae.

There are also some limitations in our study. First, tran-
scriptome analysis only unraveled the transcriptional alter-
ation of effector proteins, but actual quantity and
activation of these proteins required further determination.
Second, the results of ICEPOP analysis also needed further
elucidation and detailed investigation with flow cytometry.

5. Conclusion

In this study, we detected the transcriptional alteration of
genes from the lungs of mice 48 hours post infection with
a newly isolated K. pneumoniae clinical strain YBQ and ana-
lyzed with KEGG, GO, and ICEPOP. We found that upreg-
ulated transcription level of numerous cytokines and
chemokines was coordinated with IL-17 and TNF signaling
pathways, and neutrophils may be the dominant cell subtype
required for eradicating K. pneumoniae infection. In addi-
tion, we validated the critical gene alterations by rt-PCR.
Further analysis of these critical genes and immune cells
are required to clarify their mechanism during the infection,
thereby providing new insights into the treatment of K.
pneumoniae infection.

Data Availability

Raw data files of RNA-seq have been deposited in the NCBI
Gene Expression Omnibus under accession number GEO:
GSE171048.
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Figure 6: Validation of mRNA expression level of selected significant chemokines, cytokines, and cell markers. BALB/c mice were
intratracheally inoculated with 1x106 CFUs K. pneumoniae YBQ for 48 hours or not. Chemokines ccl2 (a), ccl3 (b), ccl4 (c), cxcl2 (d),
cxcl3 (e); cytokines il-1b (f), il-6 (g), tnfa (h), il-17a (i), il-17f (j); neutrophil marker ly-6g (k). Unpaired t-test was performed to calculate
the significance of difference between infected lungs and normal lungs (n = 3). ∗∗, P < 0:01; ∗∗∗, P < 0:001; ∗∗∗∗, P < 0:0001.
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