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Lung adenocarcinoma (LUAD) has been the major cause of tumor-associated mortality in recent years and exhibits a poor
outcome. New data revealed that peroxisomes have a function in the regulation of the development and progression of several
tumors. However, the prognostic values of peroxisome-related genes (PRGs) were rarely reported. Genomic sequence,
mutation, and clinical data of 535 LUAD tissues were obtained from TCGA data sets. Within the TCGA cohort, a multigene
signature was constructed with the assistance of the LASSO Cox regression model. Three GEO data sets, including GSE3141,
GSE31210, and GSE72094, were obtained as validation cohorts. ROC assays, Kaplan-Meier methods, and multivariate assays
were applied to examine the prognostic capacities of the novel signature. Gene Set Enrichment Analysis (GSEA) was
performed to further understand the underlying molecular mechanisms. In this study, we identified 47 differentially expressed
peroxisome-related genes (PRGs), including 25 increased and 22 decreased PRGs. A prognostic model of six PRGs was
established. The univariate and multivariate Cox analyses both showed that the p value of risk score was less than 0.05. In
LUAD patients, the strong connection between the risk score and overall survival was further verified in three other GEO data
sets. TMB and cancer stem cell infiltration were shown to be significantly higher in the high-risk group in comparison to the
low-risk group. The TIDE score of the group with the low risk was considerably greater than that of the group with the high
risk. Several drugs, targeting PRG-related genes, were available for the treatments of LUAD. Overall, we developed a novel
peroxisome-related prognostic signature for LUAD patients. This signature could successfully indicate LUAD patients’ chances
of survival as well as their immune system’s responsiveness to treatments. In addition, it has the potential to serve as
immunotherapeutic targets for LUAD patients.

1. Introduction

Lung carcinoma is one of malignant cancers with the highest
incidence and the worst prognosis worldwide [1]. Among all
lung carcinoma subtypes, lung adenocarcinoma (LUAD) is
the most common and aggressive subgroup [2]. Despite recent
breakthroughs in the diagnosis and treatment of malignancies,
the clinical outcome for LUAD remains unsatisfactory [3, 4].
Tumor excision, for example, can result in systemic inflamma-
tion and the release of cancer cells into the bloodstream, both of
which aid cancer dissemination [5, 6]. In this regard, a thor-

ough knowledge of the potential mechanism underlying LUAD
formation and progression is essential to enhance diagnosis
and prognosis at the beginning.

Peroxisomes are metabolic organelles which play an
important role in cellular redox balance and lipid metabolism
[7]. Peroxisomal functions are very critical to reactive oxygen
species homeostasis, bile acid synthesis, ether phospholipid
synthesis, and fatty acid oxidation [8, 9]. The regular function-
ing of cells depends on the peroxisome’s free radical production
and scavenging process being in equilibrium [10]. Peroxisomal
disorders can be caused by mutations in genes coding for
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peroxisomal proteins, many of which demonstrate metabolic
abnormalities [11, 12]. Peroxisomes have recently been impli-
cated in the formation and progression of a variety of cancers,
including LUAD, according to recent researches [13, 14]. In
LUAD and other malignancies, a number of peroxisomal
enzymes and metabolic processes are changed. Therefore, an
in-depth understanding of the peroxisome process in LUAD
could provide an important solution for the development of a
new treatment method. Gene chips and high-throughput
sequencing technology have advanced significantly in the last
few years, indicating that the peroxisome’s genetic signature
can be utilized to predict LUAD’s overall survival [15, 16].

In this study, we identified the differentially expressed
peroxisome-related genes (PRGs) between LUAD specimens
and nontumor specimens. Then, using univariate and least
absolute shrinkage and selection operator (LASSO) Cox regres-
sion analysis, we established a unique predictive signature from
PRGs in LUAD cohorts. Moreover, we confirmed the prognos-
tic value of the novel model and its association with immune
cell infiltration. On the basis of our findings, we suggested that
this novel signature could aid in developing personalized can-
cer treatment strategies and that the relevant PRGs could serve
as potential LUAD therapeutic targets.

2. Materials and Methods

2.1. LUAD Sequencing Data and Peroxisome-Related Gene
Collection. TCGA database (https://cancergenome.nih.gov/)
provides genomic sequence, mutation, and clinical data of
more than 30 different types of cancer. For this study, genomic
sequence, mutation, and clinical data of 535 LUAD tissues
were obtained from it. In addition, the sequencing data of 59
normal tissues were downloaded for differential expression
analysis. Of the 535 LUAD patients, 49 patients, which lacked
follow-up time or were followed up for less than 1 month,
were removed.

GEO database (https://www.ncbi.nlm.nih.gov/geo/) also
provides sequence and clinical data of various diseases.
GSE3141, GSE31210, and GSE72094, which were consisted
of LUAD sequence and clinical data, were downloaded as
validation data sets. GSE3141 included 111 LUAD cases.
GSE31210 included 174 LUAD cases. GSE72094 included
442 LUAD cases.

The peroxisomeDB database (http://www.peroxisomedb
.org) integrates genomic information about peroxisome pro-
teomes in humans and other organisms [17]. Total 73
peroxisome-related genes (PRGs) were obtained from it
(Table S1).

2.2. Differential Expression Analysis of Peroxisome-Related
Genes. The differentially expressed PRGs were screened
according to FDR < 0:05 using “limma” package, and the
result was demonstrated with boxplot using “ggpubr” package.
Functional enrichment analyses of differentially expressed
PRGs, including KEGG and GO analysis, were conducted
using org “org.Hs.eg.db,” “enrichplot,” and “clusterprofiler”
packages. The interaction between protein-protein was ana-
lyzed in STRING website (http://string.embl.de/).

2.3. Construction of a Prognostic Signature with LASSO Logistic
Regression. Based on differentially expressed PRGs, prognosis-
related PRGs were selected with the univariate Cox regression
analysis using “survival” package (p value < 0.05). Based on
prognosis-related PRGs, LASSO logistic regression was utilized
to construct the prognostic signature using “glmnet” R pack-
age. The penalty parameter (λ) of LASSO logistic regression
was estimated. The formula was displayed: Risk score = sum ð
Genei’s coefficient ∗Genei’s expressionÞ. According to the
median of risk score, the risk score of patients was classified
into binary variables, including high risk and low risk. Survival
analysis was performed between the two groups to assess
whether there were differences in survival. ROC, PCA, and t-
SNE analyses were utilized to evaluate the effectiveness of the
signature. The Cox regression analysis was conducted to see if
the signature was a significant independent predictor.

2.4. Validation of the Signature with GEO Data Sets. To
observe whether the performance of the signature was robust,
three GEO data sets, including GSE3141, GSE31210, and
GSE72094, were obtained as validation cohorts.

2.5. Analysis of Immune Microenvironment. To find out the
difference of immune microenvironment between two risk
groups, infiltration of immune cells and expressions of
immune checkpoints were analyzed. Using the “estimate”
package, the ESTIMATE method was used to estimate the
stromal and immune cell proportions in each of the LUAD
samples. ssGSEA was applied to quantify the enrichment
degrees of sixteen immune cells in TCGA data set and
GSE72094 using “GSEABase” and “GSVA” packages. The
expression of 47 immune checkpoints was analyzed between
the two risk groups, and the differentially expressed check-
points were exhibited.

TIDE (tumor immune dysfunction and exclusion) is a
computational method that simulates tumor immune eva-
sion. A high TIDE score indicates the greater tendency of
tumor immune escape and the worse effect of immune
checkpoint blockade treatment (ICB) [18]. TIDE score of
patients in TCGA data set was downloaded from TIDE web-
site (http://tide.dfci.harvard.edu/).

2.6. Relationship between Risk Score and Ferroptosis. It has
been reported that peroxisome induced ferroptosis by synthe-
sizing polyunsaturated lipids [19]. To observe whether there
were differences in the activity of ferroptosis between the
two risk groups, we obtained four representative ferroptosis-
related genes from the literature, including ACSL4, TFRC,
PTGS2, and CHAC1 [20]. Ferroptosis in different risk groups
was observed by comparing the expression of these four genes
in different risk groups.

2.7. Relationship between Risk Score and Cancer Stem Cell
Infiltration. Cancer stem cells may be the source of tumor
cells and could cause drug resistance and lead to distant
metastasis [21]. The cancer stem cell index, representing
the infiltration degrees of cancer stem cells, was calculated
at the DNA and RNA levels, respectively, to examine the dif-
ferences in stem cell infiltration between risk groups.
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Figure 1: Differentially expressed PRGs and their functional enrichment analysis. (a) Expression of 47 PRGs. (b) Interaction of differentially
expressed PRGs’ protein. (c) GO analysis of differentially expressed PRGs. (d) KEGG analysis of differentially expressed PRGs. N: normal; T:
tumor.
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Figure 2: Continued.
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2.8. Relationship between Risk Score and Tumor Mutation
Burden. Tumor mutation burden (TMB) has been proved
to be a useful biomarker for the selection of ICB in some
cancer types, including lung cancer [22]. We compared
TMB of two risk groups by calculating the TMB of each
sample in the TCGA data set. The information about signa-

ture genes mutation was obtained from cBioPortal database
(http://www.cbioportal.org/).

2.9. Gene Set Enrichment Analysis. To find out different biolog-
ical processes and possible pathways between two risk groups,
GSEA was conducted, including GO and KEGG assays.
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Figure 2: Construction of a prognostic PRG signature. (a) Forest plot showing nine prognosis-related PRGs. (b) Selection of penalty
parameter in LASSO logistic regression. (c) Coefficient of the signature genes when the penalty parameter was minimum. (d) Survival
analysis of patients in TCGA data set. (e) ROC curve of TCGA data set. (f) ROC curve of risk score and clinical features. (g) PCA of
TCGA data set. (h) t-SNE of TCGA data set. (i) Scatter plots showing the distribution of risk scores. (j) Scatter plots the relationship
between risk score and survival time. (k) Forest plot of the univariate Cox analysis. (l) Forest plot of the multivariate Cox analysis.

5Journal of Immunology Research

http://www.cbioportal.org/


p = 1.02e–02

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0

1
n.

ce
ns

or
Number of censoring

Time (years)
0 1 2 3 4 5 6 7

Time (years)
0 1 2 3 4 5 6 7

Low risk
High risk

Risk

(a)

p = 8.831e–05

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0
1
2

n.
ce

ns
or

Number of censoring
Time (years)

0 1 2 3 4 5 6 7

Time (years)
0 1 2 3 4 5 6 7

Low risk
High risk

Risk

(b)

p = 2.713e–05

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

01
23

n.
ce

ns
or

Number of censoring
Time (years)

0 1 2 3 4 5 6 7

Time (years)
0 1 2 3 4 5 6 7

Low risk
High risk

Risk

(c)

1 − specificity

Se
ns

iti
vi

ty

AUC at 1 years: 0.611
AUC at 2 years: 0.649
AUC at 3 years: 0.746

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d)

1 − specificity

Se
ns

iti
vi

ty

AUC at 1 years: 0.706
AUC at 2 years: 0.707
AUC at 3 years: 0.660

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e)

1 − specificity

Se
ns

iti
vi

ty

AUC at 1 years: 0.696
AUC at 2 years: 0.670
AUC at 3 years: 0.641

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f)

Figure 3: Continued.
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2.10. Screening of Targeted Drugs. CellMiner integrates a vari-
ety of drugs approved by FDA and the expression of genes,
providing drug sensitivity information file for free. Thus, we
downloaded gene expression and drug files from it to explore
the relationship between signature genes and drugs. Based on
the p value, the results of the first 20 analyses were visualized.

2.11. Immunohistochemistry Assay. The Human Protein Atlas
(HPA) database provides immunohistochemical verification
of genes in various normal tissues and tumors. We obtained
immunohistochemical verification of all signature genes in
normal and LUAD tissues from it.

2.12. Statistical Methods for Processing Data. All statistics
were conducted using R software (version 4.1.2). All results
were considered statistically significant with p < 0:05.

3. Results

3.1. Differential Expression Analysis of PRGs. There were 47 dif-
ferentially expressed PRGs, including 25 increased and 22
decreased PRGs (Figure 1(a)). The proteins expressed by these
47 PRGs were interrelated (Figure 1(b)). The results of GO
showed that these differentially expressed PRGs were largely
related to the biological processes related to peroxisome and
lipidmetabolism, such as peroxisome organization, peroxisomal
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Figure 3: Validation of the signature using GSE3141, GSE31210, and GSE72094. (a–c) Survival analysis of GEO data sets. (d–f) ROC curve
of GEO data sets. (g–i) PCA of GEO data sets. (j–l) t-SNE of GEO data sets. (a, d, g, and j) GSE3141. (b, e, h, and k) GSE31210. (c, f, i, and l)
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Figure 4: Continued.
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matrix, and fatty acid ligase activity (Figure 1(c)). KEGG showed
that these genes were involved in a variety of pathways, in addi-
tion to fatty metabolism-related pathways, but also PPAR sig-
naling pathway, glyoxylate and dicarboxylate metabolism,
ferroptosis, and so on (Figure 1(d)). These results indicated that
these differentially expressed genes were indeed peroxisome-
related genes and played some role in a variety of pathways. It
was worth further studying their role in LUAD.

3.2. Construction of a Prognostic PRG Signature. To screen the
prognostic genes in LUAD, we performed the univariate Cox
regression analysis. The results confirmed that total nine PRGs
were associated with clinical outcomes of LUAD (Figure 2(a)).
Six PRGs were screened to construct the signature when λ was
at minimum (Figures 2(b) and 2(c)). The formula was as fol-
lows: Risk score = ½ð0:180594464 ∗ABCD1Þ + ð−0:14906947
∗ACAT1Þ + ð− 0:080152934 ∗ ACSL1Þ + ð0:26612956 ∗
ACSL3Þ + ð−0:052574859 ∗ CATÞ + ð0:431596295 ∗ LDHAÞ�
. The patients with high risk score showed a shorter overall sur-
vival than those with low risk score (Figure 2(d)). The AUCs at
1, 2, and 3 years were 0.718, 0.721, and 0.707, respectively
(Figure 2(e)). Compared with AUCs of multiple clinical fea-
tures, the AUC of risk score had obvious advantages
(Figure 2(f)). The PCA and t-SEN analyses showed that the
signature could well distinguish low-risk patients from high-
risk patients (Figures 2(g) and 2(h)). The relationship between
risk score and survival time and the distribution of risk score
were visualized as scatter plots (Figures 2(i) and 2(j)). The uni-
variate and multivariate Cox analyses both showed that the p
value of risk score was less than 0.05, indicating that risk score
was an independent indicator for patients with LUAD
(Figures 2(k) and 2(l)). Our findings suggested that this new
model may be used to predict the clinical outcome of LUAD
patients.

3.3. Validation of the Signature with External Data Sets. The
risk score of all patients in validation data sets was calcu-
lated. The survival analysis results of all validation data sets
showed that the survival probability of high-risk group was
significantly lower than the low-risk group, consisting with

the results of TCGA data set (Figures 3(a)–3(c)). The AUCs of
GSE3141 at 1, 2, and 3 years were 0.611, 0.649, and 0.746,
respectively (Figure 3(d)). The AUCs of GSE31210 at 1, 2, and
3 years were 0.706, 0.707, and 0.660, respectively (Figure 3(e)).
The AUCs of GSE72094 at 1, 2, and 3 years were 0.696, 0.670,
and 0.641, respectively (Figure 3(f)). PCA and tSNE analyses
also demonstrated that the signature can distinguish between
low-risk and high-risk patients (Figures 3(g)–3(l)). The relation-
ship between risk score and survival time and the distribution of
risk score were also visualized (Figure S1A–F).

3.4. Analysis of ImmuneMicroenvironment. It showed that the
infiltration of immune cells was negatively associated with the
risk score, while there was no correlation between the infiltra-
tion of stromal cell and risk score (Figures 4(a) and 4(b)). The
TIDE score of low-risk group was significantly higher than
high-risk group, suggesting that the high-risk group had a bet-
ter response to ICB treatment (Figure 4(c)). Furthermore, we
analyzed which cells were associated with the risk score. The
ssGSEA results of TCGA data set and GSE72094 showed that
the infiltration of DCs, B cells, mast cells, neutrophils, T helper
cells, and TIL cells were higher in low-risk than high-risk
group (Figures 4(d) and 4(e)). There were 18 immune check-
points in TCGA data set, and 23 immune checkpoints in
GSE72094 exhibited a dysregulated level between two risk
groups (Figures 4(f) and 4(g)). And there were 16 common
differentially expressed immune checkpoints in these two data
sets, such as CD276, BTLA, and CD28.

3.5. Relationship between Risk Score and Ferroptosis. The
expression of ACSL4, TFRC, PTGS2, and CHAC1 was
higher in high-risk group than in the low-risk group
(Figures 5(a)–5(d)), indicating that ferroptosis in high-risk
group is more active.

3.6. Relationship between Risk Score and Cancer Stem Cell
Infiltration. The R value was 0.31 (p = 8:2e − 11) in the
RNA score, and 0.17 (p = 0:00043) in DNA score, indicating
that risk score was positively associated with the degree of
tumor stem cell infiltration (Figures 5(e) and 5(f)).
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Figure 5: Analyses of ferroptosis, cancer stem cell infiltration, and TMB in two risk groups. (k–p) Mutation type and mutation rate of
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3.7. Relationship between Risk Score and TMB. The TMB of
high-risk group was higher than low-risk group (Figure 5(g)).
The gene mutation rate was 90.68% in the high-risk group
and 86.15% in the low-risk group (Figures 5(h) and 5(i)). The
gene with the highest mutation rate in the high-risk group
was TNN. Among six signature genes, the mutation rates of
ACSL1 were the highest, and ACSL1 was the lowest
(Figure 5(j)). The commonmutation type in six genes was deep
deletion (Figures 5(k)–5(p)).

3.8. Gene Set Enrichment Analysis. KEGG showed that path-
ways of high-risk group enriched in proteasome, cell cycle,
DNA replication, and so on and pathways of low-risk group
enriched in α-linolenic acid metabolism, asthma, drug
metabolism cytochrome P450, and so on (Figures 6(a) and
6(b)). GO showed that biological processes of high-risk
group were chromosome segregation, cell cycle G2-M phase
transition, DNA replication, and so on, and low-risk group
were axoneme assembly, cilium movement, ciliary plasm,
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Figure 6: The result of GSVA. (a and b) The result of KEGG analysis. (c and d) The result of GO analysis. (a and c) High-risk group. (b and
d) Low-risk group.
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and so on (Figures 6(c) and 6(d)). More results of KEGG
and GO are listed in Tables S2 and S3.

3.9. Screening of Targeted Drugs. If the correlation coefficient
was greater than 0, the gene was sensitive to drugs, and if the
correlation coefficient was less than 0, the gene was resistant
to drugs. It showed that ABCD1, ACSL1, ACSL3, and LDHA
were sensitive to dabrafenib (Figure 7). ACAT1 was sensitive
to parthenolide and CAT was sensitive to crizotinib (Table S4).

3.10. Validation of Signature Genes with Immunohistochemistry.
The result of immunohistochemistry showed that the expres-
sion of ABCD1, ACSL3, and LDHAwas higher in LUAD tissue
than normal tissue and the expression of ACAT1, ACSL1, and
CAT was lower in LUAD tissues, consistent with the results of
differential expression analysis (Figures 8(a)–8(f)).

4. Discussion

LUAD is a public health concern for its high morbidity and
mortality [23]. There are numerous difficulties in designing
personalized treatment plans for LUAD because of its high
tumor heterogeneity and complex tumorigenic mechanism
[24, 25]. Therefore, robust prognostic signature is necessary.
In recent years, novel prognostic biomarkers based on PRGs
have been developed in hepatocellular carcinoma. Wu et al.
developed a prognostic model of 9 PRGs. They also con-

firmed that overall survival was much greater in the low-
risk group compared to the high-risk group [26]. However,
in other types of tumors, the diagnostic and prognostic
models based on PRGs have not been reported.

In this study, we analyzed TCGA data sets and identified
47 differentially expressed PRGs, including 25 increased and
22 decreased PRGs. KEGG showed that these genes were
involved in a variety of pathways, in addition to fatty
metabolism-related pathways, but also PPAR signaling path-
way, glyoxylate and dicarboxylate metabolism, ferroptosis,
and so on. These results indicated that these differentially
expressed genes were indeed peroxisome-related genes and
played some role in a variety of pathways. After that, a prog-
nostic risk model based on the univariate Cox and LASSO
Cox regression was developed, which included nine genes.
Finally, six PRGs (ABCD1, ACAT1, ACSL1, ACSL3, CAT,
and LDHA) were screened to construct the prognostic signa-
ture. Survival assays revealed that the patients with high risk
score showed a shorter overall survival than those with low
risk score. The multivariate Cox analyses further confirmed
that risk score was an independent predictor of LUAD, high-
lighting the potential of the new model used as a novel prog-
nostic biomarkers for LUAD patients. Moreover, the risk
model was effective and can be applied to predict clinical
outcome of LUAD patients via external validations, includ-
ing GSE3141, GSE31210, and GSE72094 data sets.
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Figure 7: The relationship between expression of signature genes and drugs.

13Journal of Immunology Research



There is clear doubt that the immune system has a role
in promoting or suppressing cancer, and one of the most
effective new anticancer medications is the immunocheck-
point therapy [27, 28]. Our findings showed that the immu-
nological status of low- and high-risk LUAD patients
differed significantly, including DCs, B cells, mast cells, neu-
trophils, T helper cells, and TIL cells. There were 18 immune

checkpoints in TCGA data set, and 23 immune checkpoints
in GSE72094 were differentially expressed between two risk
groups. And there were 16 common differentially expressed
immune checkpoints in these two data sets, such as CD276,
BTLA, and CD28. Experiments in vivo and vitro are gradu-
ally uncovering the cryptic and complex relationships
between immunity and ferroptosis. There was an abundance
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Figure 8: Validation of signature genes with immunohistochemistry. (a) ABCD1. (b) ACAT1. (c) ACSL1. (d) ACSL3. (e) CAT. (f) LDHA.
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of lipids and polyunsaturated fats in DCs in tumor-bearing
animals, which reduced their ability to deliver antigen and
trigger CD8+ T cell responses. DCs and CD8+ T lymphocytes
may be involved in ferroptosis via modulating lipid and PUFA
levels, according to previous studies. In addition, experimental
evidence shows that T cell lipoperoxidation can impair immu-
nity to infection by inducing ferroptosis in the cells. Consistent
with the results of previous studies, CD8+ T lymphocytes have
been shown to induce ferroptosis-specific lipid peroxidation
and ferroptosis, therefore enhancing immunotherapy’s effi-
cacy in preclinical models. The PRG signature has emerged
as an important prognostic marker and therapy option for
LUAD patients, as evidenced by the correlation between risk
scores and immunity.

A subset of tumor cells known as cancer stem cells
(CSCs) has been identified as having the ability to control
self-renewal and differentiation, making it difficult to eradi-
cate the tumor [29, 30]. Breast cancer, glioma, and LUAD
are among the many solid tumors where CSCs have been
found [31–33]. In addition, we checked whether there was
a link between the expression of PRG and RNAss in LUAD.
Intriguingly, the outcomes were shown to be negatively
related to the expression of stem cells in distinct malignan-
cies. As a result, it was clear that the model we developed
was capable of identifying CSC scores and that focusing on
those genes might alter CSCs in order to prevent LUAD.

Drug resistance in LUAD treatment is on the rise, according
to mounting evidence, and this is resulting in less-than-optimal
therapeutic outcomes [34, 35]. The increased expression of
genes associated with multidrug resistance and the decrease in
drug sensitivity have piqued interest. As a result, the LUAD che-
motherapy prognostic model was given additional attention.
Consistently, the findings exhibited that ABCD1, ACSL1,
ACSL3, and LDHA were sensitive to dabrafenib. ACAT1 was
sensitive to parthenolide and CAT was sensitive to crizotinib.
Our findings suggested that chemotherapy for LUAD patients
with lower expression of prognostic genes was beneficial.

However, our study has several limitations. First, using a
single characteristic (peroxisome-related genes) to establish
the predictive model was an intrinsic weakness. In fact,
LUAD progress and development were influenced by a wide
range of factors. Second, retrospective data sets from a pub-
lic database were used to both create and validate the current
model. In order to confirm its clinical value, additional data
from prospective studies were still required. Third, these
prognostic PRGs in LUAD necessitated more investigation
to better understand their functions and processes.

5. Conclusion

A stable prognostic signature was established based on
peroxisome-related genes to help the classification of LUAD
patients. In addition, we conducted a complete review of
immunology, TMB, and tumor stem cell invasion to find
new therapy options. A wide range of medications targeting
various genes and patient populations were examined. Novel
prognostic biomarkers and therapeutic targets can be
derived from the genes found in the prognostic signature.
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