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Background. Chronic kidney disease (CKD) is a global public health problem. Identifying new biomarkers that can be used to
calculate the glomerular filtration rate (GFR) would greatly improve the diagnosis and understanding of CKD at the molecular
level. A metabolomics study of blood samples derived from patients with widely divergent glomerular filtration rates could
potentially discover small molecule metabolites associated with varying kidney function. Methods. Using ultrahigh-performance
liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), serum was analyzed from 53 participants with a spectrum
of measured GFR (by iohexol plasma clearance) ranging from normal to severe renal insufficiency. An untargeted
metabolomics assay (N ¼ 214) was conducted at the Calibra-Metabolon Joint Laboratory. Results. From a large number of
metabolomics-derived metabolites, the top 30 metabolites correlated to increasing renal insufficiency according to mGFR were
selected by the random forest method. Significant differences in metabolite profiles with increasing stages of CKD were
observed. Combining candidate lists from six other unique statistical analyses, six novel, potential metabolites that were
reproducibly strongly associated with mGFR were selected, including erythronate, gulonate, C-glycosyltryptophan, N-acetylserine,
N6-carbamoylthreonyladenosine, and pseudouridine. In addition, hydroxyasparagine were strongly associated with mGFR
and CKD, which were unique to this study. Conclusions. Global metabolite profiling of serum yielded potentially valuable
biomarkers of different stages of CKD. Additionally, these potential biomarkers might provide insight into the underlying
pathophysiologic processes that contribute to the progression of CKD as well as improve GFR estimation.

1. Introduction

With an increasing elderly population and prevalence of
obesity and diabetes, chronic kidney disease (CKD) has
become a major public health concern, affecting approxi-
mately 10% of the population, posing a massive financial
burden on health-care systems, and substantially increasing
the risk of cardiovascular morbidity and mortality by at least
8-10 times compared to the general population [1–3].
Biomarkers offer the potential to distinguish etiologies of
CKD, uncover the diagnosis at an earlier stage, and discern
patients who respond to treatments from nonresponders.

Creatinine is a well-established biomarker to assess kidney
function [4]. However, it has limited sensitivity in the early
detection of CKD [5, 6], and its use to estimate the glo-
merular filtration rate (GFR) [7] can be influenced by
sex, age, and muscle mass. Because GFR is fundamental
in assessing kidney function, and blood metabolite concen-
trations are known to be dependent on kidney function, a
metabolomic approach to identify a metabolite signature
could potentially provide remarkable insight into CKD path-
ogenesis and management. From a procedural perspective,
a well-accepted current reference standard of measured
glomerular filtration rate (mGFR) would be critical for
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comparison and validation. Ideally suited for this is mea-
suring the clearance rate of the exogenous filtration
marker iohexol; it is safe, straightforward, reliable, and
inexpensive [8, 9].

Using a panel of filtration markers can improve preci-
sion, reduce errors caused by variation in each marker’s
non-GFR determinants, and decrease the need to use race
and clinical characteristics as surrogates for the non-GFR
determinants [10, 11]. Our study was aimed at identifying
new metabolite biomarkers to optimize the measurement
of GFR that perform equal to or better than creatinine.

Metabolomics is an omics technology that is a process to
identify and quantitatively evaluate all small molecule
metabolites among different types of biological samples such
as serum, tissue, and urine. This technology is perfectly
designed as a tool to discover novel glomerular filtration–
related blood metabolite biomarkers that can be used in
calculating the glomerular filtration rate (GFR). In the pres-
ent study, GFR was measured with the plasma clearance rate
of iohexol [12–14], and concurrently, estimated GFR (eGFR)
was assessed based on serum creatinine and cystatin C levels
[7] (a biomarker that accurately estimates GFR and report-
edly can predict future risk of end-stage renal disease and
death) [15]. Therefore, our metabolomic analysis of a wide
range of metabolites could be correlated with mGFR to focus
on potential novel filtration biomarkers with the aim of
improving the estimation of GFR.

Blood metabolite levels are altered in CKD progression,
prompting investigation utilizing metabolomics technologies
that have led to the identification of new biomarkers
[16–20]. The goal of the present study was to identify and
replicate novel and known metabolites that have been repro-
ducibly associated with mGFR and to characterize the
metabolome associated with kidney function.

2. Materials and Methods

2.1. Study Participants. The study was comprised of 53 par-
ticipants (19 females, 35.8%) with varying degrees of renal
dysfunction. The CKD diagnosis was based on the NKF-K/
DOQI guideline. The inclusion criteria were as follows:
(1) age > 18 years and (2) voluntary CKD patient partici-
pation. Exclusion criteria were as follows: (1) acute kidney
injury; (2) dehydration, congestive heart failure, obvious
peripheral edema, and other severe fluid balance disorders;
(3) physical disability and skeletal muscle atrophy; (4) uri-
nary tract obstruction; (5) those who had recently taken the
following drugs and could not suspend their use: aspirin,
nonsteroidal anti-inflammatory drugs, cimetidine, or raniti-
dine; (6) allergy to iodine contrast agents; (7) thyroid disease;
(8) pregnancy or breastfeeding; (9) cancer; and (10) dialysis.
The participants were tested in a nonfasting state and
received a single 5mL infusion of iohexol (300mg/mL, GE
Healthcare, Shanghai, China), and its plasma clearance was
calculated to measure GFR (mGFR) [14]. Blood samples were
drawn from the contralateral upper extremity at specific time
points to perform untargeted metabolomics assays (N ¼ 214)
using ultrahigh-performance liquid chromatography–mass
spectrometry, conducted at the Calibra-Metabolon Joint

Laboratory (Hangzhou, China) using Metabolon’s HD4
Discovery untargeted metabolomics platform in March
2021. The local ethics committee approved the protocol
(KWH 2018-001).

2.2. Metabolomic Analysis. The untargeted metabolomics
analysis was carried out at the Dian Calibra-Metabolon Joint
Metabolomics Laboratory (Hangzhou, China). Each sample
was assayed using four different UPLC-MS/MS methods.
Liquid transfer was processed using a Hamilton automated
MicroLab STAR® system (Hamilton, Switzerland) whenever
possible. After adding a methanol-based metabolite extrac-
tion solution to each sample, the mixture was shaken
vigorously for two minutes on a GenoGrinder 2010 (Spex
SamplePrep, USA) shaker. Denatured proteins and other
debris were removed by centrifugation. The resulting super-
natant containing the extracted metabolites was aliquoted to
four fractions corresponding to the four UPLC-MS/MS
assays: two fractions were used for reversed-phase (RP)
UPLC-MS/MS analyses in positive ion electrospray ioniza-
tion (ESI) mode; one fraction was used for RP/UPLC-MS/
MS analysis in negative ion ESI mode; one fraction was
used for hydrophilic interaction chromatography (HILIC)/
UPLC-MS/MS in negative ion ESI mode. Each fraction was
dried under nitrogen gas flow and then reconstituted in a
solution suited for each UPLC-MS/MS method. The raw
mass spectrometry data were processed using in-house
developed software. Metabolite identification was realized
by matching experimental ion features to in-house library
entries obtained from reference standard compounds. The
three matching criteria include retention time index (RI),
molecular ion mass to charge ratio (m/z), and MS/MS spec-
tral data. For identification with high confidence, strict
matching windows were applied to RI and m/z, and both
the MS/MS forward and reverse matching scores between
experimental data and standard compound entries were
considered.

2.3. Statistical Methods. Values are expressed as the mean
± standard deviation (SD). Mean values and proportions
were compared using one-way ANOVA and chi-square
tests, respectively. A significance level of p < 0:05 was uti-
lized in all tests, and SPSS-22 was used for these analyses.
Principal component analysis (PCA) was conducted using
R software. PCA is a dimension reduction technique that
allows differences between many variables to be represented
by a smaller number of variables.

A random forest was used to select metabolites that
contributed the most to the group distinction. In addition,
we used six well-known feature selection statistical methods,
namely, least absolute shrinkage and selection operator
(LASSO), optimal least absolute shrinkage and selection
operator (Opt-LASSO), smoothly clipped absolute devia-
tions (SCAD), iterative sure independent screening (ISIS),
robust rank correlation-based screening (RRCS), and partial
least squares (PLS), to further select the 30 most important
metabolites in explaining the mGFR, which were imple-
mented with RStudio [20].
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3. Result

3.1. Demographic and Clinical Characteristics of the Study
Population. Fifty-three samples were divided into four
groups. The control group (normal renal function) con-
tained 5 samples with mGFR > 90mL/min/1.73m2; the mild
kidney dysfunction group contained 15 samples with 60 ≤
mGFR < 90mL/min/1.73m2; the moderate nephropathy
group contained 11 samples with 30 ≤mGFR < 60mL/min/
1.73m2; and the severe nephropathy group contained 22
samples with mGFR < 30mL/min/1.73m2.

Of the 53 participants, there were 34 (64%) males, with a
mean age of 49:2 ± 14:6 years (range, 18–79 years), mean
height of 162:9 ± 8:2 cm (range, 148–180 cm), mean weight
of 61:7 ± 9:0 kg (range, 40–78 kg), and mean body mass
index of 23:2 ± 2:4 kg/m2 (range, 15:0 − 48:6 kg/m2). The
mean serum creatinine was 286:7 ± 260:6μmol/L (range,
44.0–945.0μmol/L), and cystatin C was 2:47 ± 1:52mg/L
(range, 0.63-5.67mg/L). There were no group differences
in sex distribution, body mass index (BMI), diabetes, and
hypertension (see Table 1).

3.2. Global Metabolite Determination and Significantly
Altered Biochemicals. The study dataset comprised 1094
compounds with known biochemical properties. A subset
of these metabolites was identified, and correlation with renal
function demonstrated significant differences by CKD stage
progression (p < 0:05). A large number of metabolites chan-
ged significantly when mGFR decreased. For example, when
comparing the severe nephropathy group with the normal
control group, 51.7% of the detected metabolites (566 out
of 1094) changed significantly (p < 0:05) (Table 2). The Venn
diagrams also help to visualize the differentially expressed
metabolites identified by different phenotype between the
groups according to degree of renal function (Figure 1).

3.3. High Level of Metabolite Overview. With the detected
metabolites as the variables, PCA permitted visualization of
how individuals within a group cluster with respect to their
data-compressed principal components. Figure 2 shows the
PCA of serum samples color-coded according to renal func-
tion grouping. There was a clear separation between the
groups, best displayed along the PC1 axis, with the normal
kidney function group on the left, severe nephropathy on
the right, and the mild and moderate nephropathy groups
in the middle; these results indicated a significantly different
phenotype between the groups (Figure 2).

3.4. Identification of TOP Ranking Metabolite Changes. In
addition to producing a metric of predictive accuracy,
random forest analysis also produced an associated list of
biochemical rankings in order of their importance to the
classification scheme. Therefore, random forest analysis
was used to identify metabolites that differentiated samples
from the four groups, and a predictive accuracy of 80.8%
was obtained in the serum dataset (Figure 3) [21], compared
to 25% by random chance alone. These results suggest that
significant metabolic differences could be used to discrimi-
nate the four groups, with metabolites in the amino acid

and nucleotide super pathways being of most importance
for the three models.

Many metabolites related to mGFR were identified
by the random forest method, which included thirteen
amino acids, seven nucleotides, and three carbohydrates
(Figure 3). The 30 metabolites that contributed most to
the group distinction by random forest analysis included
the following: N1-methylinosine (nucleotide), hydroxyas-
paragine (amino acid), pseudouridine (nucleotide), N-
acetyltaurine (amino acid), erythronate (Carbohydrate),
N6-carbamoylthreonyladenosine (nucleotide), C-
glycosyltryptophan (amino acid), s-adenosylhomocysteine
(SAH) (amino acid), creatinine (amino acid), N4-
acetylcytidine (nucleotide), N-acetylserine (amino acid), glu-
curonate (Carbohydrate), O-sulfo-L-tyrosine (amino acid),
N,N,N-trimethyl-alanylproline betaine (TMAP) (amino
acid), 3-(3-amino-3-carboxypropyl)uridine (lipid), gulonate
(cofactor and vitamins), pimeloylcarnitine/3-methyladipoyl-
carnitine (C7-DC) (lipid), 1-methyl-4-imidazoleacetate
(amino acid), 4-hydroxyphenytacetylglutamine (peptide),
4-guanidinobutanoate (amino acid), dimethylarginine
(SDMA+ADMA) (amino acid), 4-acetamidobutanoate
(amino acid), N2,N2-dimethyguanosine (nucleotide), sube-
rate (CS-DC) (lipid), alpha-ketoglutaramate (amino acid),
5,6-dihydrouridine (nucleotide), 5-(galactosylhydroxy)-L-
lysine (amino acid), ribonate (carbohydrate), quinolinate
(cofactor and vitamins), and heptenedioate (C7:1-DC)
(lipid).

3.5. Six Methods for Model Selection. In addition to the
random forest analysis, we used six screening methods to rank
the importance of the 1094metabolites. For each of the six sta-
tistical screening methods, we selected the top twenty markers
which were the most strongly correlated with the mGFR. The
top markers identified by a different method were quite differ-
ent, but the first ten markers were concordantly identified by
at least two methods. To further rank these top markers, we
suggested two possibilities. First, we could use an integrated
variable selection method. That is, the variables selected by
at least k (further determined by cross validation) methods
were considered as the key variables. Second, we rank the 60
variables by their Pearson correlation with the mGFR. This
would seem reasonable as only a limited number of variables
(60 of 1094) remained. Both are reasonable ways to provide
a rank of the important markers.

Creatinine was the most important metabolite in the
overall ranking derived from a weighted average of all six
methods. Some other metabolites were highly correlated
with kidney function, ranked from the highest down; these
features were creatinine, N-acetylglucosamine/N-acetylgalacto-
samine, corticosterone, cis-3,4-methyl gamma-glutamylgluta-
mine, 7-methylguanine, alanine, phenylalanylhydroxyproline,
hydroxyasparagine, gamma-glutamyl-isoleucine, undecylenoyl
carnitine (C11:1), trimethylamine N-oxide, N-acetylserine,
sphingomyelin (d18:0/18:0, d19:0/17:0), pseudouridine, epian-
drosterone sulfate, 5-methylthioribose, glutamine_degradant,
1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4),
5,6-dihydrouridine, N6-carbamoylthreonyladenosine, N,N-
dimethyl-pro-pro, 1-methylguanidine, retino (vitamin A), 3-
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(3-amino-3-carboxyproxypropyl)uridine, erythronate, 1-(1-
enyl-palmitoyl)-GPC (P-16:0), gulonate, arabitol/xylitol, and
C-glycosyltrptophan (Figure 4).

4. Discussion

Fundamental to the evaluation of renal function is an
accurate, reliable, straightforward, relatively inexpensive

method of assessing GFR. The most common laboratory
tests are serum creatinine and blood urea nitrogen from
which GFR is estimated. However, more accurate estima-
tion of GFR is needed and optimally would help differen-
tiate pathogenesis and rate of progression of CKD. In the
present study, metabolomic analysis of patients with CKD
revealed many metabolites linked to changes in carbohy-
drate, amino acid, nucleotide, and lipid metabolism.
Because the course of CKD is linked to changes in metab-
olism, these metabolites were investigated as possible bio-
markers. The identification of these potential biomarkers
could aid in analyzing the various pathophysiological
changes that occur in CKD, as they could indicate early
abnormalities in specific pathways. Metabolomics analyses
can yield hundreds to thousands of metabolites from a
single sample, necessitating rapid-throughput, high sensitiv-
ity, and resolution. Recently, advances in mass methodology
have allowed comprehensive studies of metabolomics and
its relationship with kidney function [22–26]. Thus, the
present study employed such methodologies as the heat-
map and plots, principal component analysis, and random
forest analysis on the entirety of the dataset. Significant
differences in metabolite profiles were demonstrated in
the subgroups of patients representing increasing severity
of CKD. The number of biochemicals increased with
CKD progression, whereas only a small number were
reduced, which might indicate stage-specific biomarkers
of CKD. Additionally, we found many metabolites associ-
ated with mGFR, and we analyzed the metabolites that
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Table 2: The numbers of significantly changed metabolites among different groups.

ANOVA contrasts
Mild Moderate Severe Moderate Severe Severe

Normal Normal Normal Mild Mild Moderate

Total metabolites 153 348 566 287 632 553

Metabolites (↑↓) 147/6 345/3 484/82 271/16 467/165 384/169

p < 0:05.
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were most strongly related to mGFR by the random forest
method (Figure 3).

Sekula et al. [27] reported 56 metabolites that were
associated with eGFRcr, including six that consistently
showed strong correlation with eGFRcr (pseudouridine, c-
mannosyltryptophan, N-acetylalanine, erythronate, myo-
inositol, and N-acetylcarnosine). Moreover, Coresh et al.
[16] reported a list of metabolites that could serve as a panel
of filtration markers, including pseudouridine, acetylthreo-
nine, myo-inositol, phenylacetylglutamine, and tryptophan,
and a high correlation with mGFR (including all of the
above metabolites except N-acetylcarnosine).

Our study identified pseudouridine and erythronate as
highly correlated with mGFR, consistent with previously
reported results [16, 27]. Both metabolites could be indica-
tors of protein turnover as N-acetylation of amino acids.
Pseudouridine is a derivative of uridine and is a modified
nucleoside found in RNA. Importantly, pseudouridine
might function as an ideal biomarker, being cited in the
top 5 metabolites of the above studies; it is a stable indicator
and not dependent on race.

Hydroxyasparagine were unique to the present study as
biomarkers. Hydroxyasparagine, known as β-hydroxyaspar-
agine (beta-hydroxyasparagine), is associated with mGFR
and CKD and is a modified asparagine amino acid. How-
ever, little is known about this metabolite. It appears in post-
translational modifications of EGF-like domains that can
occur in humans and other eukaryotes. The modified amino
acid residue is found in fibrillin-1 [28].

In addition to searching for potential markers associated
with GFR, we also investigated metabolites whose changes
could be correlated with different levels of kidney function
that would lend credibility to the results of our metabolo-
mics study. Creatine kinase catalyzes the transfer of high-
energy phosphate from ATP to creatine and the regenera-
tion of ATP from creatine phosphate and ADP. In solution,
creatine slowly and spontaneously cyclizes to creatinine,
which is eliminated in the urine and can be used as a marker
of kidney function. Creatinine has been commonly accepted
as a marker of kidney filtration function. From our data,
creatinine levels increased from the control group to the
mild nephropathy group, the moderate nephropathy group,
and the severe nephropathy group. A critical function of the
kidney is to regulate electrolyte balance and fluid volume.
Thus, with nephropathy, derangements in molecules neces-
sary for osmotic regulation would be expected. As seen in
Figure 3, increases in small molecules involved in osmotic
regulation, such as erythronate, were observed with increas-
ing nephropathy.

To discover and validate the novel metabolite markers
related to glomerular filtration that could be used for
improving eGFR, we combined the data analysis results
from six different statistical screening methods, including
SIS, LASSO, Optimal LASSO, SCAD, RRCS, and PLS, to
determine any link between the metabolites and mGFR
(Figure 4). The most frequently identified metabolites in all
six methods also included several identified in the random
forest (Figure 3). From our analyses, corroborated by the
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Figure 3: Random forest analysis of serum from subjects with normal kidney function, mild nephropathy, moderate nephropathy, and
severe nephropathy.
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results reported by Coresh et al. [16] and Sekula et al. [27],
the metabolites with the highest potential to measure eGFR
would be erythronate, gulonate, C-glycosyltryptophan, N-
acetylserine, N6-carbamoylthreonyladenosine, and pseu-
douridine, and hydroxyasparagine were unique to the pres-
ent study as biomarkers. Worth emphasis, however, we
found that creatinine was indeed included in the top 10
most important metabolites, ranking number 1 overall by
the six methods we utilized and ranking number 9 by ran-
dom forest.

In our study, the metabolomics results could be influ-
enced by the type of kidney disease (e.g., inflammatory vs.

noninflammatory), which makes it difficult to determine
the precise cause of the differential regulation of biochem-
icals. However, the metabolomics study could quantita-
tively compare all small molecule metabolite concentrations
(including well-known creatinine) based on the mGFR
values and discover novel glomerular filtration–related blood
biomarkers.

5. Conclusion

Initially, random forest analysis and six statistical models
were used to identify potential glomerular filtration-related
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Figure 4: Feature selection using 6 statistical methodologies in the form of a heat plot.
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biomarkers that demonstrated a strong correlation with
mGFR. Six novel, potential metabolites that were reproduc-
ibly strongly associated with mGFR were selected, including
erythronate, gulonate, C-glycosyltryptophan, N-acetylserine,
N6-carbamoylthreonyladenosine, and pseudouridine. In
addition, hydroxyasparagine were strongly associated with
mGFR and CKD, which were unique to this study. We con-
firmed that creatinine remained an irreplaceable biomarker
of kidney function. Future studies will need to increase the
number of participants to validate the biomarkers identified
in this study and investigate whether our 3-5 novel biomark-
ers could be used individually or in combination to more
accurately measure GFR.
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