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Background. Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer (LC) and one of the leading
causes of cancer-related death worldwide. LUAD has a low survival rate owing to tumour invasion and metastasis. Circulating
tumour cells (CTCs) are precursors of distant metastasis, which are considered to adopt the characteristics of cancer stem cells
(CSCs). Therefore, analysing the risk factors of LUAD from the perspective of CTCs may provide novel insights into the
metastatic mechanisms and may help to develop diagnostic and therapeutic strategies. Methods. A total of 447 patients from
TCGA dataset were included in the training cohort, and 460 patients from the GEO dataset were included in the validation
cohort. A CTC-related-gene risk model was constructed using LASSO penalty–Cox analysis, and its predictive value was
further verified. Functional enrichment analysis was performed on differentially expressed genes (DEGs), followed by immune
correlation analysis based on the results. In addition, western blot, CCK-8 and colony formation assays were used to validate
the biological function of RAB26 in LUAD. Results. A novel in-silico CTC-related-gene risk model, named the CTCR model,
was constructed, which successfully divided patients into the high- and low-risk groups. The prognosis of the high-risk group
was worse than that of the low-risk group. ROC analysis revealed that the risk model outperformed traditional clinical markers
in predicting the prognosis of patients with LUAD. Further study demonstrated that the identified DEGs were significantly
enriched in immune-related pathways. The immune score of the low-risk group was higher than that of the high-risk group. In
addition, RAB26 was found to promote the proliferation of LUAD. Conclusion. A prognostic risk model based on CTC-related
genes was successfully constructed, and the relationship between DEGs and tumour immunity was analysed. In addition,
RAB26 was found to promote the proliferation of LUAD cells.

1. Introduction

Lung cancer (LC) is one of the leading causes of cancer-
related death worldwide. In addition, it is the malignant
tumour with the highest morbidity and mortality in China
[1]. Late diagnosis and distant metastasis are the two main
reasons for its high mortality [2]. The morbidity of lung ade-
nocarcinoma (LUAD) (the most common histological sub-
type of LC) is rapidly increasing [3, 4] owing to cigarette
or tobacco abuse [5]. Although modern medicine has made
significant progress in diagnosis and treatment, the 5-year
survival rate of LC remains poor [6]. Early diagnosis and

prompt treatment are particularly important to improve
the long-term survival rate. In recent years, circulating
tumour cells (CTCs) have gradually emerged as biomarkers
for the early diagnosis of tumours.

CTCs are mainly derived from solid tumours, invade the
blood circulation and are widely distributed in peripheral
blood [7]. Most tumour cells die rapidly after entering
peripheral blood circulation owing to hypoxia, immune rec-
ognition and other factors. Only a few CTCs with stem-cell-
like characteristics survive [8], which can accumulate to
form a tiny tumour thrombus, breaking through the vascular
wall and invading distant organs. CTCs proliferate and
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metastasise to target organs with an appropriate microenvi-
ronment if they can evade recognition by the immune sys-
tem. Jiang et al. found that CTCs can be detected in the
peripheral blood of patients with early-stage cancer and
those with benign diseases in addition to patients with dis-
tant metastasis of malignant tumours [9–11]. Their study
suggests that CTC detection may be one of the reliable indi-
cators for the early diagnosis and prediction of lymph node
metastasis of LUAD. Jin et al. found that the overall survival
(OS) and disease-free survival rates of patients with stage I
or II non-small cell lung cancer (NSCLC) with >50 CTCs
per 10mL of peripheral blood were significantly reduced
after tumour resection [12]. A recent study evaluating stage
I tumours found that all patients with postoperative CTC
elevation subsequently relapsed [13]. In addition, many
studies have confirmed that CTCs are closely related to the
prognosis of patients with malignant tumours such as pros-
tate and breast cancers [14, 15]. Therefore, CTCs are of great
significance for the early diagnosis, detection of recurrence
and metastasis and prognosis evaluation of tumours.

In this study, we constructed an in silico risk model to
analyse the correlation between CTC-related genes and the
prognosis of patients with LUAD. The risk model, which
was named the CTCR model, was based on CTC-related
genes identified using the TCGA cohort and was validated
in other cohorts. Furthermore, DEGs identified using the
CTCR model were analysed via functional enrichment and
immune correlation analyses. In addition, the biological
function of RAB26 in LUAD cells was verified via experi-
ments. Overall, the novel CTCR model could guide the prog-
nosis of patients with LUAD, and the immune correlation
analysis provided new insights into the tumour microenvi-
ronment and immune infiltration of LUAD.

2. Materials and Methods

2.1. Patient Data Acquisition. The RNA-sequencing (RNA-
seq) data and clinical follow-up information of 535 patients
with LUAD were downloaded from TCGA database (https://

portal.gdc.cancer.gov/repository). Owing to the lack of criti-
cal clinical data for follow-up analysis (such as survival time,
tumour stage, survival status and smoking history), 88
patient samples were excluded from the study. The data of
447 patients with LUAD were used to establish a training
cohort to identify prognostic metastasis-related genes to
construct a prognostic prediction model. Two LUAD gene
expression datasets were downloaded from the GEO data-
base (https://www.ncbi.nlm.nih.gov/GEO/). After screening
patients according to the inclusion and exclusion criteria,
328 samples in the GSE72094 dataset and 132 samples in
the GSE42127 dataset were, respectively, used to construct
validation cohorts to verify the prognostic risk model.
(Table 1, Figure 1).

2.2. Identification of CTC-Related DEGs in TCGA-LUAD
Cohort. The GSE58355 dataset contains the gene expression
profile of H1299 cells derived from a 4D tissue model,
including the gene expression profiles of the primary
tumour, CTCs and metastatic lesions. A Venn diagram was
generated to analyse the GSE58355 dataset, and 26 DEGs
related to CTCs, primary tumour and metastasis lesions
were identified in LUAD (|log FC|>1.5, p < 0.05). Further-
more, the expression of the 26 DEGs in 347 normal tissues
from the GTEx database and 447 cancer tissues from
TCGA-LUAD cohort was analysed using the R package
‘limma’. A heat map was drawn using the ‘gplots’ R package
to visualise the expression of DEGs in the clinical subgroup
of 447 TCGA-LUAD samples. A Sankey diagram was drawn
to analyse the association of DEGs with clinical features and
prognosis (|r|>0.15, p<0.05). In addition, a heat map was
generated to analyse the correlation among CTC-related
DEGs.

2.3. Construction and Validation of the CTCR Model. Uni-
variate and multivariate regression analyses were performed
on DEGs to evaluate their role in predicting the OS of
patients. Subsequently, candidate genes were identified using
LASSO analysis with 10 cross-validations to construct the

Table 1: Clinical characteristics of patients in the training cohort and validation cohort.

Variables
Training cohort Validation cohorts
TCGA(n = 447) GSE72094(n = 328) GSE42127(n = 132)

No. % No. % No. %

Age — — — — — —

Median (years) 70.0 — 69.7 — 65.8 —

< 60 128 28.6 46 14.0 35 26.5

≥ 60 319 71.4 282 86.0 97 73.5

Gender — — — — — —

Male 207 46.3 156 47.6 67 50.8

Female 240 53.7 172 52.4 65 49.2

Stage — — — — — —

WHO I 259 57.9 218 66.5 89 67.4

WHO II 103 23.1 53 16.2 22 16.7

WHO III 64 14.3 46 14.0 20 15.1

WHO IV 21 4.7 11 3.3 1 0.8
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prognostic risk model. The risk score of each sample was cal-
culated using the following formula: risk score = sum (each
candidate gene expression × corresponding LASSO regres-
sion coefficient) [16].

Kaplan–Meier (KM) survival curves were plotted using
the R package ‘survival’, risk plots were generated using the
R package ‘ggrisk’ and principal component analysis (PCA)
was performed using the R package ‘stats’. The R package
‘survival ROC’ was used for time-dependent receiver operat-
ing characteristic (ROC) curve analysis and to calculate the
area under the curve (AUC) values at 1, 3 and 5 years.

The two validation cohorts were divided into the high-
and low-risk groups based on their median risk score. KM
survival curves, ROC curves and the expression of candidate
genes were analysed in both cohorts after confirming the
reliability of the risk model through PCA.

2.4. Enrichment Analysis. The ‘limma’ R package was used to
identify DEGs between the high- and low-risk groups in
TCGA-LUAD cohort (|log2FC|>1, p<0.05). Gene Ontology
(GO) was used to analyse the biological processes, molecular
functions and cellular components. Kyoto Encyclopedia of
Genes and Genomes (KEGG) was used to identify the
related signalling pathways. Furthermore, DEGs were sub-
jected to gene set enrichment analysis (GSEA) using the
‘gseaplot2’ package to analyse their biological functions
and signal transduction pathways.

2.5. Assessment of the Immune Microenvironment. The
ESTIMATE, immune and stromal scores were evaluated
using the R package ‘estimate’ [17, 18]. Violin plots were
generated using the R package ‘ggplot2’ to evaluate the
scores of 6 immune checkpoints.

2.6. Analysis of the Association between RAB26 and Immune
Cells. Samples from the training cohort were analysed using
the ssGSEA algorithm, and the enrichment scores of 24
immune cells were demonstrated in a box plot. A lollipop
chart generated using the ‘ggplot2’ R package demonstrated

the correlation between RAB26 and immune cells. Subse-
quently, 8 cells with the most significant correlation coeffi-
cient were selected for generating a scatter plot (|r|>0.15,
p<0.01).

2.7. Cell Culture, Plasmids and shRNAs. The LUAD cell lines
H1299 (ATCC: CRL-5803™) and A549 (ATCC: CCL-185™)
were obtained from American type culture collection
(ATCC). H1299 cells were cultured in RPMI 1640 (Gibco,
Carlsbad, CA, United States), whereas A549 cells were cul-
tured in DMEM/F12 (Hyclone, Logan, UT, United States).
Both media were supplemented with 10% (v/v) fetal bovine
serum (FBS, Biological Industries, Israel) and antibiotics,
and all cells were maintained at 37°C in an atmosphere of
5% CO2. Both cell lines yielded a negative result for myco-
plasma contamination. They were passaged <10 times after
their initial revival from frozen stocks and were authenti-
cated by performing short tandem repeat profiling before
use.

A lentiviral vector overexpressing RAB26 was generated
by cloning RAB26 cDNA into a pLVX-EF1α-IRES-Puro vec-
tor (catalogue no. 631988; Clontech, Mountain View, CA,
USA) using the restriction enzymes EcoRI and BamHI
(Takara).

Lentiviral shRNA vectors targeting human RAB26 and a
scramble control vector were purchased from Genechem
(https://www.genechem.com.cn; Shanghai, China). All plas-
mid vectors were verified via sequencing. The target
sequences used are as follows:

Mock: 5′-CCTAAGGTTAAGTCGCCCTCG-3′
shRAB26#1: 5′-CCGGCTGCATGATTACGTTAA-3′
shRAB26#2: 5′-ACAGAAGGCTTCACTGCTAAT-3′
All transfection procedures were performed according to

the manufacturer’s instructions.

2.8. Western Blot. Cells were digested, collected and washed
twice with cold phosphate-buffered saline (PBS). Thereafter,
they were lysed on ice using lysate buffer (#87787, Thermo
Fisher) with a protease inhibitor (#P1010, Beyotime) for
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Figure 1: The flow chart of the study.
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30min and centrifuged at 15,000 g at 4°C for 15min. The
supernatants were collected as whole cell lysates, and protein
concentration was determined via BCA assay (#E112-01,
Vazyme). A quantity of 50μg of total protein and the follow-
ing antibodies were used for western blot: mouse monoclo-
nal anti-human β-actin antibody (#AF7018, Affinity),
rabbit anti-human RAB26 antibody (#14284-1-AP, Protein-
tech), goat anti-rabbit antibody (#S0001, Affinity) and goat
anti-mouse antibody (#A21010, Abbkine).

2.9. Cell Proliferation Assay. Stable RAB26-overexpressing
A549 cells and RAB26-knockdown H1299 cells were seeded
in RPMI-1640 or DMEM/F12 medium (100μL) in 96-well
plates at a density of 2× 103 cells/well. Cell viability was
measured at 0, 24, 48 and 72 h using Cell Counting Kit-8
(CCK-8, Code: A311-01, Vazyme, Nanjing, China) accord-
ing to the manufacturer’s instructions. Briefly, the Cell
Counting Kit-8 solution was added to cells (10μL/well)
and incubated for 2 h. The absorbance was at 450nm mea-
sured using a microplate reader (Synengy2, Bio-Tek, USA),
and the GraphPad Prism (version 9.1.0) software was used
for plotting the proliferation curve.

2.10. Colony Formation Assay. Approximately 200 cells/well
were inoculated in a 6-well plate and cultured in a medium.
After 2 weeks, the cells were fixed with methanol for 15min
and stained with 0.1% crystal violet for 20min. The number
of visible colonies was calculated using the ImageJ software,
and the colonies with a diameter of >0.05mm were scored.

2.11. Statistical Analysis. The chi-square test was used to
analyse differences in the proportion of clinical features.
Univariate and multivariate Cox regression analyses were
performed to determine the independent prognostic factors
of OS. Time-dependent ROC curve analysis was performed
to examine the prediction accuracy of the prognostic model.
KM analysis was performed to assess OS. Wilcoxon test was
used to compare the proportion of tumour-infiltrating
immune cells and the expression of immune checkpoint
molecules between the high- and low-risk groups. Spearman
correlation coefficients were used for correlation analyses.
All experiments were performed in triplicate. All statistical
analyses were performed using the SPSS Statistics (version
23.0) or R (version 4.0.5) software. In addition, p-values gen-
erated via bioinformatic analyses were adjusted via multiple
testing correction using the Benjamini–Hochberg procedure,
with p-values of <0.05 being considered statistically signifi-
cant. The statistical methods and algorithms used are
described in the corresponding sections.

3. Results

3.1. A Total of 22 DEGs Associated with CTCs and Metastasis
Were Identified in TCGA Cohort. On analysing the RNA-seq
data of patients with LUAD in the GSE58355 dataset, 126
genes related to CTCs and primary tumours and 165 genes
associated with CTCs and metastasis were identified. The
interaction among these genes was analysed, revealing 26
DEGs (Figure 2(a),|logFC|> 1.5, p < 0.05). Of these 26 DEGs,
22 were significantly differentially expressed in normal and

tumour tissues (Figure 2(b)). A heat map was generated to
demonstrate the expression of the 22 DEGs among patients
with different clinical characteristics such as age, sex, tumour
clinical stage, smoking history, survival status and treatment
methods (Figure 2(c)). A Sankey diagram (Figure 2(d)) was
generated to understand the relationship between these
genes and the clinical characteristic of patients, which
revealed that most DEGs were associated with age, smoking
history and tumour staging. In particular, smoking history
and tumour stage were significantly correlated with progno-
sis. In addition, some correlation was observed among the
DEGs. For example, RAB26 had a significantly negative cor-
relation with EPYC and MMP7 (Figure 2(e), (p)< 0.01).
Additionally, the cluster dendrogram reflected the similarity
among 22 DEGs (Supplementary Figure S1). These results
revealed that the 22 DEGs were closely related to CTCs
and metastasis in TCGA-LUAD and GSE58355 datasets.

3.2. The CTCR Model Was Constructed Using 4 Genes. Uni-
variate and multivariate Cox regression analyses were used to
evaluate the hazard ratio (HR) and p-value of 22 DEGs
(Figures 3(a) and 3(b)). Based on the abovementioned data-
sets, 6 genes (EPYC, RAB26,MMP7, FOS,KLRC1 and KLRC2)
were selected for subsequent analysis, with the threshold set as
|logFC|values of >2.0 and p-values of <0.001. LASSO penalty–
Cox analysis indicated that the deviation was smallest when
the number of genes in the model was 4 (Figures 3(c) and
3(d)). Therefore, the optimal candidate genes RAB26, EPYC,
MMP7 and FOS were used to build a prognostic signature,
and the risk score was calculated using the following formula:
risk score=1.879×RAB26+1.540×EPYC+0.018×MMP7
+0.030×FOS.

Patients in the training cohort were divided into the
high- and low-risk groups based on the median risk score.
Furthermore, the relative expression of the 4 risk genes dra-
matically changed in the primary tumour, CTCs and metas-
tasis, with no fixed trend (Figure 3(e)). The heat map
demonstrated that the expression of the 4 risk genes was sig-
nificantly higher in the high-risk group (Figure 3(f)), and the
data are shown in Supplementary Data 1. Subsequently, the
training cohort was divided into different subgroups based
on the smoking history (Yes, No) and disease stage (WHO
I, WHO II and WHO III–IV) of patients. The dot plot
showed that the risk score was higher in patients with
advanced-WHO-stage cancer, and no significant difference
was observed in the risk score between patients who smoked
and those who did not smoke (Figure 3(g)). The KM curve
indicated that OS was prominently lower in the high-risk
group than in the low-risk group in different subgroups
(Figure 3(h)). Besides, The KM curves with high and low
expression groups for the four DEGs were presented in Sup-
plemental Figures S2. Therefore, a novel in silico CTC-
related risk model, named the CTCR model, was
successfully constructed based on 4 genes, including
RAB26, EPYC, MMP7 and FOS.

3.3. High Predictive Ability of the CTCR Model Was Verified
in the Training Cohort. The risk curve and prognosis distri-
bution of patients in the training cohort revealed that
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patients in the low-risk group had a higher survival proba-
bility than those in the high-risk group (Figure 4(a)). PCA
showed that the prognosis of the low- and high-risk groups
was different, which further indicated the effectiveness of
the CTCR model (Figure 4(b)). KM analysis showed that
the OS of patients was significantly lower in the high-risk
group than in the low-risk group (Figure 4(c), (p)< 0.001).
The AUC value was 0.586 at 1 year, 0.666 at 3 years and
0.775 at 5 years (Figure 4(d)), which suggested that the risk
model had an excellent ability to predict the long-term prog-
nosis of patients with LUAD.

Univariate Cox regression analysis suggested that the
pathological stage (HR=1.226, 95% CI=1.008–1.492,

p<0.05) and risk scores (HR=3.863, 95% CI=2.291–6.514,
p< 0.001) were prognostic factors for patients with LUAD
(Figure 4(e)), whereas multivariate Cox regression analysis
showed that only the risk score could be considered an inde-
pendent prognostic indicator for patients with LUAD
(Figure 4(f), HR=3.623, 95% CI=2.083–6.299, p< 0.001).
Furthermore, the AUC values of the risk score (Figure 4(g))
and the combination of clinical characteristics and risk score
(Supplementary Figure S3) were 0.699 and 0.713, which
were higher than those of other clinical characteristics.

A prognostic nomogram was constructed to predict 1-, 3-
and 5-year survival in TCGA cohort (Figure 4(h)). As shown
in Figure 4(h), the expression of each prognostic gene in the risk
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Figure 2: Identification and analysis of CTC-related DEGs in patients with LUAD. (a) Venn diagram demonstrating genes related to CTCs,
primary tumour and metastasis. (b) The expression level of 26 overlapping genes in tumour samples in TCGA-LUAD cohort (n = 447) and
normal samples in the GTEx dataset (n = 347). (c) Unsupervised clustering of DEG expression in TCGA cohort. The age, sex, tumour stage,
smoking history, survival status and drug therapy are used as patient annotations. (d) Sankey diagram demonstrating the degree of
association among DEGs, clinical features and prognosis. (e) Heat map demonstrating the correlation among 22 genes in TCGA-LUAD
cohort. The asterisks represent the statistical p-value (∗p < 0:05 ; ∗∗ p < 0:01 ; ∗∗∗p < 0:001).
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Figure 3: Establishment of the CTCR model in TCGA-LUAD cohort (n = 447). (A, B) Univariate and multivariate Cox regression analyses
were used to examine the correlation between DEGs and OS. (C) LASSO coefficient profiles of 6 DEGs. (D) Cross-validation revealed an
optimum parameter of 4 in the LASSO model. (E) The relative expression of 4 risk genes in the primary tumour, CTCs and metastasis.
(F) Unsupervised clustering of the 4 candidate genes using the tumour stage, smoking history and risk score as patient annotations. (G)
Dot chart reflecting the risk scores of samples grouped based on the clinical stage and smoking history (H) Prognostic value in the high-
and low-risk groups of different clinical subgroups (tumour stages and smoking history). The asterisks represent the statistical p-value
(∗p < 0:05 ; ∗∗ p < 0:01 ; ∗∗∗p < 0:001).
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model had a corresponding score The total score was obtained
by adding the scores of all variables, and the survival probability
of patients with LUAD was calculated according to the total
score. Furthermore, the calibration plots of the nomogram sug-
gested that the bias-corrected line was close to the ideal line,
which indicated definitive agreement between the actual and
predicted 1-, 3- and 5-year survival probabilities (Figure 4(i)).
Therefore, the CTCR model had an excellent ability to predict
the long-term survival of patients with LUAD.

3.4. Predictive Ability of the CTCR Model Was Verified in
Validation Cohorts. To test the robustness of the CTCR
model, GSE72094 and GSE42127 datasets were used as vali-

dation cohorts. In both cohorts, the expression of RAB26
and EPYC was higher in the high-risk group as shown in
the heat map (Supplementary Figure S4). The risk scores
and survival status of samples in both cohorts are shown
in Figure 5(a) and Supplementary Figure S5A. In addition,
their grouping was validated (Figure 5(b), Supplementary
Figure S5B). Subsequently, the KM survival curve showed a
poor prognosis for high-risk groups (Figure 5(c),
Supplementary Figure S5C). In the GSE72094 and
GSE42127 cohorts, the CTCR model was found to have
good ability to predict the survival of patients with LUAD,
particularly 5-year OS (Figure 5(d), Supplementary
Figure S5D). Furthermore, the risk model had higher
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Figure 4: Evaluation of the CTCR model in TCGA-LUAD cohort (n = 447). (a) Survival status and risk scores in the training cohort. (b)
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predictive accuracy than traditional clinical characteristics
(Figure 5(e), Supplementary Figure S5E). The AUC value
of the combination of clinical characteristics and risk score
was 0.777 in the GSE72094 cohort and 0.830 in the
GSE42127 cohort, which was higher than that of other
clinical characteristics (Figure 5(f), Supplementary
Figure S5F). Overall, these results were consistent with
those observed in the training cohort and indicated the
reliability of the CTCR model.

3.5. Enrichment Analysis Showed That DEGs Were
Significantly Correlated with Tumour Immunity. Based on
the CTCR model, DEGs (low-risk versus high-risk group)
were identified using data from TCGA-LUAD cohort, with
a total of 566 upregulated and 1350 downregulated genes
(Supplementary Data 2; Figure 6(a), |log2FC|>1, p<0.05).
These DEGs were used for subsequent analysis, and the rel-
evant data are presented in Supplementary Data 3 and 4. GO
pathway enrichment analysis showed that the DEGs were
significantly enriched in many immune-related biological
processes, such as humoral immune response, antibacterial
humoral response, defence against bacterial infection, cell

chemotaxis and acute inflammatory response (Figure 6(b)).
KEGG pathway analysis also revealed that the DEGs were
enriched in immune-related pathways, such as the IL-17 sig-
nalling pathway (Figure 6(c), Supplementary Figure S6).
GSEA revealed that the DEGs were mainly enriched in 6
pathways, including ‘innate immune system’ (Figure 6(d)),
which contributes to tumour control by activating DCs
[19]. Enrichment analysis showed that the DEGs were
significantly correlated with immune-related functions and
signalling, which indicated the role of DEGs in tumour
immunity. However, the association between the CTCR
model and tumour immunity warrants further investigation.

3.6. Immune Cell Infiltration Was Analysed Based on the
CTCR Model. Given the significant enrichment of DEGs in
immune function and related pathways, we further analysed
the correlation between immunity and the CTCR model. In
the assessment of the tumour microenvironment, the ESTI-
MATE algorithm demonstrated that the high-risk group in
TCGA cohort was significantly associated with low ESTI-
MATE, immune and stromal scores. The same results were
obtained in the two validation cohorts (Figures 7(a) and
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7(b), Supplementary Figure S7A). Subsequently, 6 common
immune checkpoints were selected, and the expression of
CTLA4, CD96, CD47 and KLRC1 was found to be higher
in the training and validation cohorts. This finding
indicated that patients with low risk scores might benefit
from immune checkpoint inhibitor (ICI) therapy [20]
(Figures 7(c) and 7(d), Supplementary Figure S7B).

3.7. Association Analysis between RAB26 and Immune Cells.
RAB26 was selected for further immune infiltration analysis
owing to its highest LASSO regression coefficient. Based on
the median expression level of RAB26, samples in the train-
ing cohort were divided into two groups. ssGSEA was per-
formed to assess the immune status of patients in TCGA-
LUAD cohort, and it was found that the patients with high
expression of RAB26 had more abundant immune-
infiltrating cells (Figure 8(a)). In addition, RAB26 expression
was negatively correlated with CD56bright NK cells and pos-
itively correlated with other cells (Th1 cells, Macrophages,
DC, iDC, aDC, Neutrophils, T cells, TReg, NIL CD56dim
cells, Cytotoxic cells, Th2 cells, Tgd, Mast cells, B cells,
Eosinophils, Tcm, NIK cells, Tem, pDC); however, the cor-
relation between RAB26 expression and TFH, T helper,
CD8 T and Th17 cells was not significant (Figure 8(b)). Sub-
sequently, eight immune cells with the highest correlation
coefficients were selected (Th1, macrophages, DCs, iDCs,
CD56bright NK cells, aDCs, neutrophils and T cells) for gen-
erating a scatter plot demonstrating the correlation between
RAB26 expression and immune infiltration (Figure 8(c)).

These results suggested that the group with high RAB26
expression had higher levels of immune cell infiltration,
which also implied that high RAB26 expression might be
associated with a poor prognosis in patients with LUAD.

3.8. RAB26 Promoted the Proliferation of LUAD Cells. A
study [21] involving the established human NSCLC cell lines
showed that the expression of RAB26 was higher in H1299
cells and lower in A549 cells. In this study, RAB26 was over-
expressed in A549 cells and knocked down in H1299 cells
using a lentivirus to examine whether RAB26 plays an essen-
tial role in the progress of LUAD. Western blot showed that
RAB26 was successfully overexpressed in A549 cells and
knocked down in H1299 cells (Figure 9(a)). CCK-8 assay
revealed that overexpression of RAB26 promoted the prolif-
eration of A549 cells and knockdown of RAB26 inhibited the
proliferation of H1299 cells (Figures 9(b) and 9(c)). In addi-
tion, the colony formation assay revealed that RAB26 pro-
moted LUAD cell proliferation (Figures 9(d) and 9(e)).

4. Discussion

CTCs capable of surviving in the blood circulation have
CSC-like features and are a sign of cancer recurrence and
distant metastasis. Considering the advantages of CTCs in
early tumour diagnosis, CTC-related genes were screened
in this study based on the data of patients with LUAD.
The identified DEGs were used to construct an in silico risk
signature, named the CTCR model. Furthermore, KM
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Figure 6: Enrichment analysis of DEGs in TCGA-LUAD cohort (n = 447). (a) Volcano plot depicting DEGs in the high- and low-risk
groups in the training cohort (including 566 upregulated and 1350 downregulated genes). (b) GO analysis was used to determine critical
biological processes, cellular components and molecular functions, indicating that the DEGs were significantly enriched in immune-
related processes. (c) Chord diagram demonstrating the results of KEGG analysis, indicating that the DEGs were considerably enriched
in immune-related signalling pathways. (d) GSEA of the high- and low-risk groups based on the CTCR model.

10 Journal of Immunology Research



survival and ROC analyses were performed in the training
and validation cohorts. The 5-year AUC values of both val-
idation cohorts exceeded 0.8, indicating that the CTCR
model had a superior ability to predict the long-term sur-
vival of patients with LUAD. Although two validation sets
were used to verify the credibility of the model, further
investigation is required to validate the results owing to the
use of public databases.

Four genes (RAB26, EPYC, MMP7 and FOS) were
selected to construct the risk signature. These genes are asso-
ciated with tumour development; some have been reported
in studies on LC. For example, in a study, overexpression
of RAB26 in pulmonary microvascular endothelial cells
inhibited LPS-induced apoptosis through the TLR4 pathway

[22]. This finding suggests that RAB26 promotes the occur-
rence and development of LC by regulating apoptosis [21].
In addition, RAB26 benefits the proliferation of nasopharyn-
geal carcinoma cells [23], which is consistent with the results
of the cell proliferation assay performed in this study. Fur-
thermore, upregulation of MMP7 promotes the migration
and invasion of LUAD [24]. Studies on human hepatoma
cell lines have shown that c-FOS plays an essential role in
cell migration [25]. Related studies have also indicated that
EPYC promotes intestinal metastasis of ovarian cancer and
is significantly associated with a poor prognosis [26].

Subsequent analyses showed that DEGs between the
high- and low-risk groups were significantly enriched in
immune-related pathways and functions. Considering that
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Figure 7: Immune cell infiltration landscape of LUAD. (A, B) ESTIMATE, immune and stromal scores of high- and low-risk patients in
TCGA (a) (n = 447) and GSE72094 (b) (n = 328) datasets. (C, D) The expression levels of immune checkpoint molecules in the high- and
low-risk groups in TCGA (c) and GSE72094 (d) datasets. The asterisks represent the statistical p-value
(∗p < 0:05 ; ∗∗ p < 0:01 ; ∗∗∗p < 0:001).

11Journal of Immunology Research



the tumour microenvironment and immune cell infiltration
are correlated with the prognosis of cancer [27], it is neces-
sary to explore the tumour immune microenvironment of
LUAD. Each immune cell type plays a different role. For
example, Jonge et al. reported that the abundance of
CD56bright NK cells was negatively correlated with OS and
distant metastases in human melanoma [28]. In this study,
the infiltration levels of CD56bright NK cells were found to
be higher in the high-RAB26-expression group
(Figure 8(a)). On analysing the correlation between RAB26
and 24 types of immune cells, only CD56bright NK cells were
found to be positively correlated with RAB26 expression.
This finding suggested that high RAB26 expression indicated
tumour metastasis and a poor prognosis. In addition, RAB26
expression was negatively correlated with cells that mediate
immune surveillance, such as NK cells (Figure 8(b)). NK
cells play a key role in destroying CTCs and avoiding cancer

metastasis [29]. When immune escape occurs, the number
and cytotoxic activity of NK cells are reduced [30]. There-
fore, we concluded that RAB26 might help CTCs to evade
immune surveillance and promote LUAD progression by
regulating immune cell infiltration in the tumour
microenvironment.

An immunosuppressive tumour microenvironment is a
sanctuary for primary tumours [31]. However, as the
tumour cells proliferate, some cells slough off the edges of
a tumor and enter the circulatory system, only a few CTCs
survive in the active immune surveillance environment [8,
32]. These surviving CTCs can accumulate to form circulat-
ing tumour microemboli (CTM). The crosstalk between
CTCs and other components in CTM creates a tumour
microenvironment favourable for cancer cell survival. Dur-
ing this process, genetic alterations or abnormal expression
of some genes and physiological changes affect the survival
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Figure 8: Correlation between RAB26 expression and immune cells in TCGA-LUAD cohort (n = 447). (a) Box plot demonstrating the
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of CTCs in peripheral blood, thus promoting new distant
metastases [33]. Therefore, CTC-related genes (genes related
to CTCs, primary tumours and metastatic lesions) may
mediate immune evasion of CTCs and promote the metasta-
sis, proliferation or drug resistance of cancer cells [34]. Epi-

thelial–mesenchymal transition (EMT) is a process by which
cells lose their epithelial properties and gain mesenchymal
characteristics [35]. It leads to the production of CTCs from
the primary tumour and promotes the metastatic ability of
CTCs in the circulation [36]. In addition, EMT promotes
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Figure 9: RAB26 promoted LUAD cell proliferation. (a) Western blot was performed to confirm the overexpression of RAB26 in A549 cells
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the invasive growth and distant metastasis of LC cells [37].
Numerous studies have proven that signal transducer and
activator of transcription 3 (STAT3) affect EMT in cancer
[38–40]. Coincidentally, RAB26 was identified as a novel
target gene for SNRPB-mediated RNA maturation and dem-
onstrated that RAB26 partly contributes to the oncogenic
functions of SNRPB in NSCLC [21]. Therefore, we speculate
that RAB26, one of the CTC-related DEGs identified in this
study, promotes the development and metastasis of LUAD
and helps CTCs to evade immune-mediated killing by
inducing EMT. These CTCs survive in the inhospitable cir-
culatory microenvironment and colonise distant sites [41].

In conclusion, a prognostic risk model based on 4 CTC-
related genes was established, and its predictive value was
evaluated. The results provide new insights into the prog-
nostic prediction of LUAD, which may help to develop diag-
nostic and individualised treatment strategies. Furthermore,
in this study, DEGs related to CTCs and metastasis were
screened in patients with LUAD. Because metastasis signifi-
cantly affects the prognosis of patients, DEGs identified in
this study should be further analysed and verified. RAB26,
as a gene related to CTCs, primary tumours and metastatic
lesions, promoted the proliferation of LUAD cells. There-
fore, RAB26 may be a candidate target for the treatment of
patients with LUAD [42]. However, the specific mechanisms
and pathways of RAB26 affecting the tumour microenviron-
ment warrant further investigation.

5. Conclusion

A prognostic risk model was constructed based on CTC-
related genes, which could predict the prognosis of patients
with LUAD. It was especially reliable in predicting long-
term prognosis. In addition, the identified DEGs were
closely associated with tumour immunity, and RAB26 was
found to promote the proliferation of LUAD cells. This
study may provide new insights into the diagnosis and treat-
ment of LUAD.
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