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Hepatocellular carcinoma (HCC) with high heterogeneity is one of the most frequent malignant tumors. However, there were no
studies to create a clinical stage-related gene signature for HCC patients. Differentially expressed genes (DEGs) associated with
clinical stage of HCC were analyzed based on TCGA datasets. Functional enrichment analysis was carried out by the use of
stage-related DEGs. Then, the least absolute shrinkage and selection operator (LASSO) regression and univariate Cox
regression were performed to reduce the overfit and the number of genes for further analysis. Next, survival and ROC assays
were carried out to demonstrate the model using TCGA. Functional analysis and immune microenvironment analysis related
to stage-related DEGs were performed. Reverse transcriptase polymerase chain reaction (RT-PCR) and Cell Counting Kit-8
(CCK-8) assays were applied to examine the expression and function of PNCK in HCC. In this research, there were 21 DEGs
between HCC specimens with stage (I-II) and HCC specimens with stage (III-IV), including 20 increased genes and 1
decreased genes. A novel seven-gene signature (including PITX2, PNCK, GLIS1, SCNN1G, MMP1, ZNF488, and SHISA9) was
created for the prediction of outcomes of HCC patients. The ROC curves confirmed the prognostic value of the new model.
Cox assays demonstrated that the seven-gene signature can independently forecast overall survival. The immune analysis
revealed that patients with low risk score exhibited more immune activities. Moreover, we confirmed that PNCK expressions
were distinctly increased in HCC, and its silence suppressed the proliferation of HCC cells. Overall, our research offered a
robust and reliable gene signature which displayed an important value in the prediction of overall survival of HCC patients
and might deliver more effective personalized therapies.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most com-
mon malignant tumors of the digestive tract [1]. The dis-
ease’s prevalence and fatality rates are gradually rising,
particularly in Asia and Africa [2]. Chronic hepatitis c virus
infection, alcohol misuse, obesity, and metabolic syndrome
have all been linked to an increased risk of developing
HCC [3, 4]. Liver transplantation, percutaneous radiofre-
quency ablation, and resection are the most common thera-
pies for HCC, with liver resection being the most curative [5,
6]. The 5-year overall survival rate is up to 50%. However,
the prognosis for patients in advanced stages is bleak [7,

8]. Therefore, research into biomarkers for cancer prognosis
and the development of immunotherapy treatments are
essential for enhancing cancer patients’ survival.

The stage of HCC samples ranges from stage I to stage
IV, with increasing aggressiveness, according to the seventh
edition of the American Joint Committee on Cancer (AJCC)
cancer stagingmanual [9]. In the occurrence and development
of HCC, as well as the therapy and prognosis of this disease,
dynamic alterations in genes are critical [10]. Notably, the
prognosis differs greatly depending on when the condition is
discovered [11]. With early detection, the 5-year survival rate
is 92%, but this declines to 23% by stage IV [12]. Growing evi-
dences have confirmed that clinical stage is an independent
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prognostic factor for various tumor patients [13]. In addition,
the primary tumor, regional lymph nodes, and distant metas-
tasis (TNM) stage have been found to have predictive value for
early recurrence [14, 15]. Thus, HCC can be diagnosed and
treated more effectively with the identification of clinical
stage-related genes.

It is becoming increasingly common to use high-
throughput sequencing as a critical tool in the biological sci-
ences, such as for cancer early detection and stage prediction
and prognosis prediction [16, 17]. In this study, we utilized
the Edger R tool and the TCGA database to find genes that
were differentially expressed according to the stage of
HCC. Then, we developed a novel model based on critical
stage-related genes and explored its association with
immune cells. Together, our data revealed a clinical value
for the stage-related gene signature and identified a possible
marker for HCC prognosis.

2. Materials and Methods

2.1. Data Collection. TCGA-LIHC and cBioportal for Cancer
Genomics provided data on mRNA expression at level 3 and
clinical outcomes from 374 LIHC and 50 nontumor samples.
It was not necessary to obtain further ethical approval
because the data were obtained from a publicly accessible
database.

2.2. Differences in Gene Expression with Clinical Stage. The
data of HCC specimens from the TCGA datasets were
divided into two groups: with stage (I-II) and stage (III-
IV). Transcripts per million (TPM) was used to standardize
the raw count data before a log2 transformation was applied.
As a result of this, 19654 protein-coding genes were identi-
fied. In order to determine the DEMs, the Limma version
3.36.2 R package was used. An adjusted P value of < 0.05
was required for subsequent assays of DEMs with an abso-
lute log2 fold change (FC) of >2.

2.3. GO Annotation and KEGG Pathway Enrichment
Analyses of DEGs. GO annotation and KEGG pathway
enrichment analysis in the Enrichr database revealed the
roles of DEGs. The GO terms were comprised of the follow-
ing 3 divisions: molecular function (MF), cellular compo-
nent (CC), and biological process (BP).

2.4. The Establishment of a Prognostic Model and Prognostic
Analysis. LASSO regression methods and univariate assays
were applied to find the most closely connected genes with
21 genes strongly associated with clinical stage. There have
been seven genes linked to prognosis, and a seven-gene sig-
nature has been created. Based on the gene signature’s
regression coefficients and associated expression values, risk
score was computed for every case. Risk scores were calcu-
lated using the following formula: Risk score = expressions
of Gene 1 ∗A1 + expressions of Gene 2 ∗A2 +⋯+
expressions of Gene n ∗An. The “survminer” package was
used to calculate the cut-off point. We used Kaplan-Meier
survival curves and time-dependent receiver operating char-
acteristic curves (ROC curves) to evaluate the model’s capac-

ity to differentiate between distinct patient subgroups and its
efficiency.

2.5. Immunity Analysis and Gene Expression. Our signature
was used to compare cell components or cell immune
responses between the high-risk and low-risk groups using
MCPcounter [18], ESTIMATE [19], CIBERSORT, TIMER
[20], and single-sample gene set enrichment analysis
(ssGSEA) [21] algorithms. A heat map revealed the varia-
tions in immune response under various methods.

2.6. Cell Lines and Cell Culture. HCC cells (Huh7, HepG2,
HCCLM3, Hep3B, and SMMC-7721) and LO2 cells (as con-
trol cells) were bought from Fubo Bio (Haidian, Beijing,
China). The cells were cultured in RPMI 1640 medium
(Gibco, China) containing 10% fetal bovine serum (FBS,
Gibco, Shanghai, China) and 100 units/ml penicillin and
streptomycin at 37°C and 5% CO2.

2.7. RNA Interference. RiboBio (Guangzhou, China) created
and made available PNCK’s unique siRNA. Using Lipofecta-
mine 3000 transfection reagent (Invitrogen, Shanghai,
Pudong, USA), and the manufacturer’s instructions were
followed for temporary transfection.

2.8. Quantitative Real-Time PCR (qPCR). The total RNA
extraction kit was used to extract the total RNA (DP419,
Tiangen Biotech, China). Then, using super M-MLV reverse
transcriptase, the RNA was converted into cDNA (NG212,
Tiangen Biotech). Amplification was performed by 2× Taq
PCR MasterMix (KT201, Tiangen Biotech) at the presence
of SYBR Green (SY1020, Solarbio, China) as per the users’
instructions. For each system, the above operations were
performed in triplicate. It was GenScript Co., Ltd. that man-
ufactured the primers, and the primer sequences are pro-
vided in Table 1. Amplification of the DNA was carried
out using an ExicyclerTM 96 (Bioneer, Korea).

2.9. Cell Counting Kit-8 (CCK-8) Assay. The HCC cells were
planted in 96-well plates for measuring proliferation ability
by CCK-8 test (Dojindo, Kumamoto, Japan). Before adding
10 L of CCK8 (5mg/mL) to the culture media in each well,
cells were grown for 0, 1, 2, 3, or 4 days. A microplate reader
measured the absorbance at 450nm.

2.10. Statistical Analysis. Data were analyzed using Graph-
Pad Prism 6.0 Software (GraphPad Inc., San Diego, CA,
USA) and R software (Version 3.6.3, The R Foundation for
Statistical Computing). When comparing > two groups, the
two-way analysis of variance was utilized, whereas the Stu-
dent’s t-test was utilized when analyzing differences between

Table 1: The primer sequences included in this study.

Genes Primer sequences (5′-3′)
PNCK: forward GAAACACACGGAGGACATCAG

PNCK: reverse GAGCACTGCGATCTCGTTCT

GAPDH: forward GGAGCGAGATCCCTCCAAAAT

GAPDH: reverse GGCTGTTGTCATACTTCTCATGG
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just two groups. Plots of Kaplan-Meier curves and log-rank
tests were performed to determine whether or not there
was a statistically significant difference in OS between the
groups. In addition, univariate and multivariate Cox propor-
tional hazard regression analyses were carried out in order to
investigate the relationship between risk score and OS. An
examination of the sensitivity and specificity of employing
the gene signature risk score to predict survival was carried
out with the use of the receiver operating characteristic
(ROC) analysis. The area under the receiver operating char-
acteristic curve (AUC) was used as an indicator of the accu-
racy of the prognosis. P values were regarded to be
statistically significant if they were lower than 0.05 and were
two-sided.

3. Results

3.1. Identification of DEGs in HCC Specimens with Different
Clinical Stage. By the use of TCGA datasets, we firstly
examined the genes that exhibited differential expressions
in HCC with stage (I-II) and stage (III-IV). The results
revealed that there were 21 DEGs between HCC speci-
mens with stage (I-II) and HCC specimens with stage
(III-IV), including 20 increased genes and 1 decreased
genes (Figure 1(a)). The heat map of differential gene
expression reveals the 21 genes that show the most signif-
icant differences between the two groups (Figure 1(b)). In
addition, the expressing pattern of 21 genes was also
shown using histogram (Figure 1(c)).
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Figure 1: Identification of DEGs in HCC specimens with different clinical stages. (a) Volcano plot of DEGs in HCC specimens with
different clinical stage in TCGA datasets. (b) Heat map of DEGs in the TCGA datasets. (c) Expressions of the 21 genes in HCC
specimens with different clinical stage.
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3.2. Functional Enrichment Analysis of DEGs. Enrichment
analysis was performed on these 21 genes so that we could
have a better understanding of the molecular mechanisms
underlying genes that are connected to clinical stages. We
observed that the seven genes have important roles in posi-
tive regulation of protein-containing complex assembly,
peptidyl-serine phosphorylation, peptidyl-serine modifica-
tion, regulation of postsynaptic neurotransmitter receptor
activity, excretion, cation channel complex, ion channel

complex, transmembrane transporter complex, transporter
complex, apical plasma membrane, metal ion transmem-
brane transporter activity, endopeptidase activity, ligand-
gated cation channel activity, ligand-gated ion channel activ-
ity, and ligand-gated channel activity (Figures 2(a)–2(c)).
According to the findings of the KEGG study, the 21 genes
in question play significant parts in the pathophysiological
processes of rheumatoid arthritis, aldosterone-regulated salt
reabsorption, and bladder cancer (Figure 2(d)).
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Figure 2: GO and KEGG assays of the 21 genes. Circle plot of (a) BP, (b) CC, and (c) MF assays. (d) KEGG assays.
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Figure 3: Establishment of a stage-related gene signature in TCGA datasets. (a) Distribution of LASSO coefficients of the 21 stage-related
genes. (b) The generated coefficient distribution plots for the logarithmic (lambda) sequence for the selection of the best parameter
(lambda). (c) Univariate assays confirmed 7 genes as critical prognostic genes, including PITX2, PNCK, GLIS1, SCNN1G, MMP1,
ZNF488, and SHISA9. (d) Kaplan-Meier curves for overall survival. (e) The total survival risk score’s ability to forecast future events is
supported by time-dependent receiver operating characteristic curves. (f–h) Risk score, survival time, and survival status in TCGA datasets.
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3.3. Construction of a Prognostic Model in the TCGA Cohort.
A prognostic model was established by using LASSO and
Cox regression analysis on the expression profile of the 21
genes that were discussed earlier in this paragraph. Based
on the ideal value of, we were able to identify 13 genes
(Figures 3(a) and 3(b)). Further, univariate assays confirmed
7 genes as critical prognostic genes, including PITX2, PNCK,
GLIS1, SCNN1G, MMP1, ZNF488, and SHISA9
(Figure 3(c)). Then, we developed a prognostic model, and
risk score was computed by the use of the following formula:

Risk score = ð0:0616Þ ∗ PITX2 + ð0:0760Þ ∗ PNCK + ð
0:1238Þ ∗GLIS1 + ð0:0957Þ ∗ SCNN1G + ð0:2354Þ ∗MMP1
+ ð0:7193Þ ∗ ZNF488 + ð0:1077Þ ∗ SHISA9. In accordance
with the median value that was used as the dividing line,
the patients were classified as belonging to either a high-
risk group or a low-risk group. Survival assays indicated that
patients with high risk score exhibited a shorter OS
(Figure 3(d)). Using time-dependent ROC curves, the pre-
dictive ability of the risk score for OS was examined, and
AUC achieved 0.705 at 1 year, 0.683 at 2 years, and 0.614
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Figure 4: Univariate (a) and multivariate (b) assays were applied to further confirm the prognostic value of the 7-gene signature.
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at 3 years (Figure 3(e)). The survival status of all HCC
patients based on new signature was shown in (Figures 3(f
)–3(h)). We completed univariate and multivariate tests in
order to provide additional evidence supporting the diagnos-
tic utility of the 7-gene signature. The results confirmed that
risk score and stage are independent predictors of overall
survival of HCC patients (Figures 4(a) and 4(b)).

3.4. Correlation of Prognosis-Related Genes with TIICs in
HCC Patients. Then, we investigated the link between the
seven HCC genes and immune infiltration into the cancer-
ous tissue. Our group observed that PITX2, PNCK, GLIS1,
SCNN1G, MMP1, ZNF488, and SHISA9 were significantly
correlated with several immune cells, suggesting that the
presence of these genes helps to ease the entry of immune
cells into HCC, which can help prevent the disease
(Figure 5). In addition, Figure 6 displays a heat map of
immunological responses that was generated using five algo-
rithms. High-risk score was associated with B cell, T cell
CD4+, neutrophil, macrophage, and myeloid dendritic cell.

3.5. PNCK Expression Was Upregulated in HCC and
Promoted the Proliferation of HCC Cells. Among the seven
genes, we focused on PNCK which has been reported to be
involved in the progression of several tumors. We performed
RT-PCR to examine the expression of PNCK in HCC cells,
finding that its expression was distinctly increased in HCC
cells compared with LO2 cells (Figure 7(a)). Then, we per-
formed loss-of-function experiments to explore its function.

A distinct decrease of PNCK expression was observed in
Hep3B and HepG2 cells transfected with si-PNCK, which
was demonstrated using RT-PCR (Figure 7(b)). Further,
CCK-8 experiments revealed that PNCK knockdown dis-
tinctly suppressed the proliferation of Hep3B and HepG2
cells (Figure 7(c)).

4. Discussion

The incidence of HCC makes it the fifth most prevalent type
of tumor in the world and the third most common reason
for death from tumor [22]. Because there are currently no
reliable and accurate prognostic biomarkers or models, the
clinical prognosis of HCC patients continues to be a primary
area of focus for research and development [23, 24]. Over
the course of the last ten years, a substantial amount of
research has demonstrated that functional genes play an
essential part in the progression of tumor growth [25–27].
It has been common knowledge among us that the clinical
stage of HCC patients is connected to their overall progno-
sis. The prognostic model that is based on stage-related
genes has been described very infrequently up until this
point.

In the course of the last few decades, a great number of
studies have investigated various prognostic models for
HCC patients [28–30]. In this research, we examined the dif-
ferences in gene expressions between HCC specimens with
stage (I-II) and HCC specimens with stage (I-II) to identify
potential gene biomarkers using the TCGA database. In
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Figure 6: Heat map for immune responses according to five algorithms among low- and high-risk group.
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order to construct a risk model that can accurately predict
HCC prognosis, the differentially expressed genes were fil-
tered, and univariate, Lasso, and multivariate Cox analyses
were performed. We identified seven genes: PITX2, PNCK,
GLIS1, SCNN1G, MMP1, ZNF488, and SHISA9. High
expression levels of PITX2, PNCK, GLIS1, SCNN1G,
MMP1, ZNF488, and SHISA9 were relevant to a poor out-
come in HCC cases. Patients with HCC were separated into
a high-risk group and a low-risk group by the use of the
gene-based risk scoring predictive model. We discovered
that patients who were classified as having a high risk of
developing the disease had a much worse overall survival
rate than their low-risk peers. In addition, it is also worth
noting that, in terms of AUCs for the prognostic model’s
ROC curve, the seven-gene signature showed an excellent
performance for the prediction of 1-year, 2-year, and 3-
year survival rates. Multivariate assay confirmed that risk
score is an independent predictor of overall survival of
HCC patients. Our findings suggested the new signature
had significant implications in the prediction of clinical out-
come of HCC patients.

In the tumor microenvironment (TME), malignant cells
live alongside stromal and immune cells [31]. Tumor pro-
gression and immunotherapeutic response are dependent

on the presence of immune cells within the tumor [32].
New prognostic indicators can be discovered by analyzing
the tumor-infiltrating population to learn more about the
mechanisms that underlie anticancer immune responses
[33, 34]. Methods for determining the presence of tumor-
infiltrating immune cells rely heavily on immunohistochem-
istry (IHC) and flow cytometry [35, 36]. The volume of
tumor tissue that must be used and the number of cell types
that may be measured at the same time are two of the
numerous limitations that prevent these procedures from
being completely accurate. Tumor immune state can be
assessed using computational methods applied to gene
expression profiles of large samples of tumor tissue. In this
study, analysis of seven genes in HCC and immune infiltra-
tion was carried out. Our assays revealed that PITX2, PNCK,
GLIS1, SCNN1G, MMP1, ZNF488, and SHISA9 were signif-
icantly correlated with several immune cells, suggesting that
these genes may influence the functions of the immune infil-
tration of HCC. In addition, we also observed that high-risk
score was associated with B cell, T cell CD4+, neutrophil,
macrophage, and myeloid dendritic cell. HCC’s immunolog-
ical landscape has previously been studied by focusing on
the above immunes. Macrophages may have a role in cancer
spreading as well as immune suppression, while Tregs may
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Figure 7: The oncogenic roles of PNCK in HCC progression. (a) RT-PCR was used to examine the expressions of PNCK in four HCC cells
and LO2. (b) The expression of PNCK was distinctly decreased in HepG2 and Hep3B cells after the transfection of si-PNCK. (c)
Proliferation of HepG2 and Hep3B cells with knockdown of PNCK by CCK-8 assay. ∗∗P < 0:01.
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play a role in promoting tumor formation. Both an increased
and diminished immune response can have a positive or
negative impact on the efficacy of immunotherapy. Overall,
it is possible that the discrepancies in survival across patient
groups indicated by our signature are due to a dysregulated
immunological environment. Clinical integration of 7-gene
signature needs to be tested directly, though appears prom-
ising from these initial results.

Many studies have reported that some functional genes
may be involved in tumor growth of HCC cells. In this
study, we focused on PNCK. In recent years, several studies
have reported the roles of PNCK dysregulation in several
types of tumors. For instance, proliferation, clonal growth,
cell-cycle progression, and resistance to trastuzumab were
all boosted in SkBr3 cells when PNCK was overexpressed
[37]. Chen et al. reported that in human metastatic NPC
samples, both PNCK mRNA and protein expression were
shown to be increased. The NF-B/VEGF signaling pathway
was activated in vitro by upregulation of PNCK, which
increased NPC cell motility, invasion, and development of
lung metastases [38]. In addition, Cho and his group showed
that high levels of PNCK expression in HCC were linked to a
worse prognosis [39]. However, its specific function in HCC
remained largely unclear. In this study, we found that PNCK
expression was distinctly upregulated in HCC cells, which
was consistent with previous findings and the above results
from TCGA datasets. Moreover, the data of CCK-8 indi-
cated that knockdown of PNCK distinctly suppressed the
proliferation of HCC cells. Our findings may explain the rea-
son that patients with high PNCK showed a poor prognosis.

This study also has limitations. First, the TCGA database
was used to analyze the data. The sample size was too little,
so we could not conduct random grouping to evaluate and
verify the results. Second, in order to better understand the
role of the stage-related genes in the molecular mechanism,
further investigations with in vitro and in vivo were needed.

5. Conclusion

PITX2, PNCK, GLIS1, SCNN1G, MMP1, ZNF488, and
SHISA9 were all expressed in HCC patients, and the
seven-gene signature they produced exhibited a strong abil-
ity to predict patient survival. In addition, the study found a
link between tumor immune infiltration and risk score.
These findings offer a new perspective on the development
of new HCC-targeted medicines and the improvement of
immunotherapy.
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