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The osteosarcoma (OS) microenvironment is composed of tumor cells, immune cells, and stromal tissue and is emerging as a
pivotal player in OS development and progression. Thus, microenvironment-targeted strategies are urgently needed to improve
OS treatment outcomes. Using principal component analysis (PCA), we systematically examined the tumor microenvironment
(TME) and immune cell infiltration of 88 OS cases and constructed a TME scoring system based on the TMEscore high and
TMEscore low phenotypes. Our analysis revealed that TMEscore high correlates with longer survival in OS patients, elevated
immune cell infiltration, increased immune checkpoints, and increased sensitivity to chemotherapy. TMEscore low strongly
correlated with immune exclusion. These observations were externally validated using a GEO dataset (GSE21257) from 53 OS
patients. Our laboratory data also proved our findings. This finding enhances our understanding of the immunological
landscape in OS and may uncover novel targeted therapeutic strategies.

1. Introduction

Osteosarcoma (OS) is the most common primary malig-
nancy of the bone [1–3]. OS is characterized by a relatively
high degree of malignancy with a predilection for children
and adolescents. Although its morbidity rate is low, metasta-
tic spread and chemotherapy resistance are the main cause
of OS-associated mortality. Although neoadjuvant chemo-
therapy in combination with surgery has improved the sur-
vival rate of OS, and its 5-year survival rate remains low.

Due to their low immunogenicity, tumor cells often
escape the host’s immune system [4, 5]. Tumor immunoge-

nicity is mediated by tumor-associated immune cells and
TME. The possible explanation of antitumor immune
response is that tumor cells evade TME surveillance, leading
to uncontrollable disease in the subsequent stage [6]. In
other words, a tumor exploits immune checkpoint pathways
to regulate tumor-reactive T cells, creating a TME that is
conducive for cancer growth and metastasis [7, 8].

The TME is characterized by a complex relationship
between TME-resident cell types and tumor cells [9–11].
Numerous studies have investigated the relationship
between the TME and impact of patient prognosis [12–14].
Thus, in order to improve OS survival rates, a better
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understanding of its immune microenvironment is needed.
This would elucidate novel ways of preventing tumor recur-
rence and metastasis and promoting tumor cell apoptosis
and differentiation, thereby improving patient survival and
quality of life.

Recent studies indicate that tumor cells also can contrib-
ute to resistance to chemotherapy by modifying the TME.
Although immunotherapy has been developed for treating
OS, it is difficult to predict which patients it is likely to ben-
efit [15]. Considering that the TME is highly heterogeneous,
it is necessary to characterize the TME in individual tumor.

However, few studies have investigated the TME in OS.
Here, we sought to characterize TME subtypes in OS that
exhibit disparate biological behaviors. We also investigated
accuracy and rationality classification of TME subtypes, OS
responses to therapy, and clinical outcomes.

2. Materials and Methods

2.1. Raw Data. The RNAseq data analyzed in this study was
from The Cancer Genome Atlas OS cohort (TCGA-OS)
obtained from 88 OS samples. Dataset GSE21257 (n = 53)
was downloaded from GEO and used for external validation.
SVA, an R package, was used to merge raw data from both
datasets and to eliminate batch-to-batch differences [16].

2.2. Evaluation of the Immune Score. We used the ESTI-
MATE algorithm, which quantifies the proportion of TME
in OS samples from cell transcripts [17]. Based on median
values, all samples were categorized into high score and
low score groups.

2.3. Single-Sample Gene Set Enrichment Analysis (ssGSEA).
Twenty-nine immune datasets, including category of
immune cell, immune-related functions, and immune-
related pathways, were subjected to ssGSEA in order to
determine population-specific immune infiltration [18].
Genetic characterization of immune cell population expres-
sion in individual cancer samples was obtained using
ssGSEA. Based on ssGSEA results, OS cases in TCGA data-
set were classified into the high or low immune cell infiltra-
tion groups using “hclust.”

2.4. Identification of Immune-Related Genes in the Low and
High Immune Score Groups. TCGA transcriptomic data
from 88 OS patients was divided into the top and bottom
parts (high vs. low immune score group and high vs. low
immune cell infiltration group) based on their immune cat-
egory. Then, the identification of immune-related genes
(IRGs) was achieved by using LIMMA analysis [19] to com-
pare standardized expression data between high and low
immune groups. ∣logFC ∣ >1 and adjusted p < 0:05 were set
as cutoffs for identifying IRGs.

2.5. Inference of Infiltrating Cells in the TME. We used
CIBERSORT and the LM22 gene signatures to determine
the proportion of immune cells in OS samples, which
allows for high sensitivity and specific discrimination of
22 human immune phenotypes, including B cells, natural
killer cells, macrophages, T cells, myeloid subsets, and

dendritic cells (DCs). CIBERSORT is a deconvolution
algorithm based on a set of reference gene expression
values (signatures of 547 genes), which are considered to
be the minimum representation of each cell type. On this
basis, the proportion of cell types in tumor sample data
with mixed cell types was inferred based on support vector
regression [20].

2.6. Identify Genes Related to Immune Cell Infiltration.
Spearman correlation analysis was used to identify genes
highly correlated with immune cell infiltration (∣R ∣ >0:3, p
< 0:05). Univariate Cox regression analysis was used to
assess the impact of IRGs on patient survival.

2.7. Dimension Reduction and Generation of TME Gene
Signatures. To construct TME metagenes, we first used
LASSO (least absolute shrinkage and selection operator)
analysis using the “glmnet” package on R for dimension
reduction so as to minimize noise from redundant genes
[21]. Next, each member of the immune cell-related genes
was standardized across all samples in the OS datasets
(TCGA OS and GSE21257). The hub genes were then ana-
lyzed using unsupervised clustering (K-means), and the
patients were divided into several subgroups for further
analysis. The cluster profiler package on R was then used
to annotate gene clusters [22]. Gene clustering was deter-
mined by consensus clustering algorithm. PCA analysis
was then performed on each patient to determine the TME-
score of each patient:

TMEscore = PCiA − PCiB: ð1Þ

2.8. GSVA. Differences in biological processes between the
low- and high-TMEscore groups were analyzed using the
“GSVA” package on R [23]. GSVA is a nonparametric and
unsupervised approach to evaluating pathway changes or
biological processes by expressing matrix samples. The
“C2. Cp.kegg. V7.2. Symbol” gene set is used as the reference
gene set from the molecular signature database (https://www
.gsea-msigdb.org/gsea/msigdb). For each statistically signifi-
cant enrichment pathway, adjusted p < 0:05 was considered
statistically significant.

2.9. Exploration of the Significance of TMEscore in Predicting
Response to Chemotherapy and Targeted Therapy. To assess
TMEscore’s capacity to predict clinical response to OS treat-
ment, we calculated the IC50 of common chemotherapeutic
drugs and targeted agents in tumor clinical treatment,
including axitinib, AZD6244, CI.1040, cisplatin, and JNK
inhibitor VIII. The difference in IC50 between the high-
and low-TMEscore groups was determined by Wilcoxon
signed-rank test and the R packages pRRophetic and ggplot2
[24, 25] used to visualize the results.

2.10. Prediction of Immunotherapy Response. Next, we eval-
uated the correlation between OS response to immunother-
apy and TMEscore. The tumor immune dysfunction and
exclusion (TIDE) scoring system [26] (http://tide.dfci
.harvard.edu/) was used to evaluate responses to immuno-
therapy in the TMEscore subgroups. The higher the immune
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exclusion score, the worse the tumor response to immuno-
therapy and the worse the prognosis. Kaplan-Meier (KM)
analysis was used to determine overall survival in patients
after stratification by TME score. Differences were consid-
ered statistically significant when two-tailed p < 0:05. Violin
plot analysis using the ggstatsplot package on R was used to
study the relationship between the subgroup and the expres-
sion level of immune checkpoint genes, including CD274,
PDCD1LG2, CD27, CTLA-4, LAIR1, and TIGIT [27–30].

2.11. Human OS Tissue Collection. In the present study, the
consent forms must be signed before each patient is included
in the present study and all aspects of the study were
approved by the Ethics Committees of Zhujiang Hospital,
Southern Medical University (no. 2018-GJGBWK-002). We
collected the tissues of 36 patients with OS from Zhujiang
Hospital.

2.12. RNA Extraction and Gene Expression Measurements.
According to the manufacturer’s instructions, the RNAiso
Plus Reagent Kit (Accurate Biotechnology (Hunan) Co.,
Ltd., China) was used to extract the total RNA in the tissues
of OS patients. After quantification of RNA, cDNA was syn-
thesized using PrimeScript RT Reagent Kit (TaKaRa, Japan).

Subsequently, RT-PCR was performed using the SYBR Pre-
mix Ex Taq II (TaKaRa, Japan). The primers were as follows:
GAPDH forward: 5′-GGAGCGAGATCCCTCCAAAAT-3′
and GAPDH reverse: 5′-GGCTGTTGTCATACTTCTCAT
GG-3′; EVI2B forward: 5′-AAGCAGTCACAGCCTACCT
TA-3′ and EVI2B reverse: 5′-TGAATTGTGTTGGTTG
ACCCAAA-3′; and CD4 forward: 5′-TGCCTCAGTAT
GCTGGCTCT-3′ and CD4 reverse: 5′-GAGACCTTTGC
CTCCTTGTTC-3′.

2.13. Cells and Cell Culture. Human OS cells (143B and
MNNG) were obtained from American Type Culture Col-
lection (ATCC, Manassas, US) and cultured in DMEM
(Invitrogen, US) supplemented with 10% FBS and 1% peni-
cillin/streptavidin (Gibco), at 37°C [31].

2.14. OS Cell Transfection. The cells were cultured in a 6-well
culture plate and washed with PBS before lentivirus trans-
duction; then, the overexpressed lentivirus carrying EVI2B
was cultured with composite transfer solution for 24 hours,
and then, the cells were cultured in puromycin (2μg/mL,
Invitrogen, USA) selective medium to screen stably trans-
fected cells.
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Figure 1: Flow diagram of the study design.
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2.15. Colony Formation Assay. 800 transfected cells were
seeded onto 6-well plates and cultured at 37°C for 7 days.
The cells were then treated first with 4% paraformaldehyde
for 25 minutes, followed by 0.1% crystal violet for 15 minutes.
Finally count the number of colonies with the help of a scan-
ner. The experiment was done in 3 independent replicates.

2.16. Cell Migration and Invasion Assays. 600μL DMEM of
10% fetal bovine serum was added into the lower lumen of
Transwell. 200μL DMEM containing 5 × 104 cells was inoc-
ulated into the upper lumen of Transwell. They were then
cultured at 37°C for 24 h before removing the cells on the
upper surfaces of the filter using cotton swabs. Cells that
migrate to the lower surface of the chamber were then fixed
with 4% paraformaldehyde for 20min and stained with 0.1%
crystal violet for 15min, and finally, the chambers were
moved to the microscope for recording. The experiment
was done in 3 independent replicates.

2.17. Apoptosis Assay. Annexin V-APC/PI apoptosis detec-
tion kit was used for apoptosis analysis (BestBio, Shanghai,
China) and flow cytometry. OS cells that had been trans-

fected for 24h were cultured in serum-free media for
24 h and 1 × 105 cells stained using Annexin V/APC and
PI for 10min in the dark. The percentage of apoptotic
cells was then detected using CytExpert and analyzed
using FlowJo.

2.18. Animal Experiments. Nude mice (male, 4 weeks old)
were used as in vivo tumor models. 100μL of cells transfected
with NC or the overexpression of EVI2B (OE-EVI2B) vector
were then injected subcutaneously into nude mice at 1 × 107
143B cells/mL. After 50 days, all mice were euthanized via
CO2 inhalation. Mouse experiments were approved by the
animal experiment ethics committee of Zhujiang Hospital.

2.19. Statistical Analysis. The experimental results were com-
pared between the two groups by two independent sample t
-test. Data were presented as mean ± SD. The difference in
survival between the low- and high-TMEscore groups was
assessed using the long-rank test. Statistical analyses were per-
formed in R version 4.1.1 (https://www.r-project.org/) or SPSS
version 25.0. p < 0:05 indicated statistical significance.
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Figure 2: Immune signaling pathways associated with survival in OS patients.
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Figure 3: Continued.
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3. Results

3.1. Immune-Related Signaling Pathways Are Markedly
Activated in OS Patients. The flow chart of this study is
shown in Figure 1. To elucidate the biological behavior among
these different biological molecular patterns, we performed
GSVA analysis of hallmark gene sets in OS patients and identi-
fied 5 significant immune-related pathways (KEGG_Antigen_
Processing_And_Presentation, KEGG_B_Cell_Receptor_Sig-
naling_Pathway, KEGG_FC_Gamma_R_Mediated_Phagocy-
tosis, KEGG_Leukocyte_Transendothelial_Migration, KEGG_
Natural_Killer_Cell_Mediated_Cytotoxicity, and KEGG_T_
Cell_Receptor_Signaling_Pathway) related to overall survival
of OS patients (Figure 2). We found that immune-related sig-

naling pathways can affect the survival of OS patients, so we car-
ried out a series of studies to explore the relationship between
immunity and OS patients.

3.2. Two Different TME Exist in OS. Considering the
important immune role played in OS patients, we applied
the ESTIMATE algorithm to assess TME and are aware
of understanding the potential relationships between
prognostic-related TME; finding a high immune score
group was more likely to achieve a better prognosis than
the low immune score group (Figure 3(a)). Since immuno-
cyte are the components of TME, we began to consider
whether there was a potential connection between TME
infiltrate immune cells and the TME.
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Figure 3: Elucidation of the immune cell infiltration landscape in OS. (a) ESTIMATE was used to evaluate survival in OS patients belonging
to the high- and low-TME subgroups. (b) TSNE confirmed the rationality of ssGSEA grouping. (c) Based on the ssGSEA results, OS patients
were divided into the immunity_ H and immunity_ L groups. (d) Landscape of the immune characteristics and TME in TCGA-OS cohort.
(e) Correlation analysis between the ESTIMATE algorithm method and ssGSEA grouping.
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8 Journal of Immunology Research



0.00

0

Number at risk

1 2 3 4 5 6 7 8

p = 0.038

9
Time (years)

10 11 12 13 14 15 16

Time (years)

IC
I s

co
re

0.25

0.50

0.75

Su
rv

iv
al

 p
ro

ba
bi

lit
y

1.00

TMEscore

Low
High

GSE21257
Low
High

+

+

17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
31 28 24 14 9 8 7 7 5 5 4 4 3 3 3 3 1 1 1 1 1
22 21 21 16 15 12 12 9 6 5 4 3 3 3 3 3 1 1 1 0 0

(d)

TCGA+GSE21257
High
Low

+

+

0.00

0

Number at risk

1 2 3 4 5 6 7 8

p < 0.01

9
Time (years)

10 11 12 13 14 15 16

Time (years)

IC
I s

co
re

0.25

0.50

0.75

Su
rv

iv
al

 p
ro

ba
bi

lit
y

1.00

TMEscore

Low
High

17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
81 72 52 33 27 20 15 12 10 7 6 4 3 3 3 3 1 1 1 1 1
58 55 48 42 39 28 22 17 12 10 7 5 4 4 4 4 2 1 1 0 0

(e)

Figure 5: Continued.

9Journal of Immunology Research



Next, we used the ssGSEA algorithm to quantify tumor
immune cell infiltration and its impact on OS patients.
Using unsupervised hierarchical clustering, the OS samples
were divided into the high (n = 18) and low immune cell
infiltration groups (n = 70) based on the level of immune
infiltration (Figures 3(b) and 3(c)). Data from both methods
were relatively consistent, indicating dense reciprocal con-
nections between immunocyte and TME. The group with
more immune cell infiltration had higher immune microen-
vironment score (Figures 3(d) and 3(e)).

3.3. Identification of Immune Genes Associated with Memory
CD4+ T Cells. Two algorithms (ESTIMATE and ssGSEA)
for evaluating tumor immune environment all divided
TCGA-OS into high- and low-expression groups. Firstly,
we find the difference genes (DEGs) between high- and
low-expression groups of each algorithm. Then we find the
common genes between the two algorithms. Finally, we
focused on these intersection DEGs in subsequent analysis
(Figure 4(a)).

We also used CIBERSORT to validate the above groups
and found that the high immune cell infiltration group had
higher levels of immune cells. Notably, CD4 T cells, memory
activated (CD4+ TMA) significantly correlated with progno-
sis (Figure 4(c)). We also observed significant differences
between CD4+ TMA levels in the high and low immune
score groups (Figure 4(b)).

Following this, Spearman correlation analysis was used
to identify genes closely related to DEGs and CD4+ TMA
infiltration, and it is considered that more attention should
be paid (Figure 4(d)).

3.4. Identification of Immune Genes Associated with OS
Subtype-Specific Immunity. The prognosis of OS patients is
the most important issue for clinicians and patients; catering
to the clinical need is the starting point of the research. To
identify genes that may affect survival of OS patients, we
employed univariate Cox regression analysis and identified
109 genes that were associated with patient outcomes
(Figure 4(d)).

Venn diagram analysis revealed the number of prognos-
tic genes and their intersection with strong CD4+ TMA-
correlated gene modules. These genes were further input
into LASSO analysis. After LASSO analysis, C3AR1, EVI2B,
FCGR2B, LILRA6, LPAR5, ITGAM, and WDR66 were
selected for subsequent analysis (Figures 4(e)–4(g)). Analysis
of gene function implicated these genes in immune cell infil-
tration and the clinical characteristics of OS patients
(Figures 4(h) and 4(i)). C3AR1, EVI2B, FCGR2B, LILRA6,
LPAR5, and ITGAM were significantly positively correlated
with antitumor CD8+ T cells.

3.5. Development of the TME Scoring System for OS. To iden-
tify the underlying biological characteristics, based on 7-
gene expression profiles, we used the PCA algorithm to
recluster the 7 genes into genomic subtypes (gene clusters
A and B, Figure 5(a)). TME cluster A contains EVI2B and
LILRA6, and TME cluster B contains C3AR1, FCGR2B,
ITGAM, LPAR5, and WDR66. We then computed the
TMEscore of each OS sample using the algorithm that
“TMEscore A obtained from TME cluster A” was sub-
tracted from “TMEscore B obtained from TME cluster
B” (Figure 5(b)). The OS samples were divided into high
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Figure 5: Construction and validation of TMEscore for predicting clinical outcome. (a) Heatmap of consensus matrix (consensus matrix
K = 2). Unsupervised clustering based on 7 genes divided the samples into two categories. (b) Alluvial representation of the relationship
between TME subtypes, TMEscore subgroups, and clinical outcomes. (c) KM analysis of high- and low-TMEscore subgroups in TCGA
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TMEscore and low TMEscore using the survival package
and an optimal cutoff of 0.6643204 (Figure 5(c)).

Evaluation of the survival rate of the two immune subtypes
revealed that high-TMEscore patients had the best prognosis.
To validate the robustness of the criteria for TME grouping,
we performed the same statistical analyses in another OS
cohorts (GSE21257, Figures 5(d) and 5(e)) and observed that
TMEscore retained prognostic significance.

Next, we used GSVA enrichment analysis to examine
biological processes and KEGG pathways associated with
the TMEscore. This analysis revealed that both OS cohorts
(TCGA and GSE21257) were enriched for various biological
processes related to immune and inflammatory responses,
folic acid metabolism, and apoptosis. In addition, differences

were found between immune subtypes. Various signaling
pathways, including JAK/STAT, TOLL LIKE RECEPTOR,
and NOD LIKE RECEPTOR signaling were also enriched
in the high-TMEscore group (Figure 5(f)).

Next, we used ssGSEA to identify immune cells and
immune-related pathways in the subtype of immune. This
analysis showed that in the high score subtype of TMEscore,
nearly all immune cells and immune-related pathways were
upregulated (Figures 6(b) and 6(c)). Multiple deconvolution
approaches (TIMER, CIBERSORT, CIBERSORT-ABS,
QUANTISEQ, XCELL, EPIC, and MCPCOUNTER (20-24))
were used to estimate the abundance of immune cell infiltra-
tion in the OS cohorts (TCGA and GSE21257, Figure 6(a)).
To examine the heterogeneity of immune responses in
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Figure 6: Immune-related characteristics of the TMEscore. (a) Heatmap of immune responses based on TIMER, CIBERSORT,
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different subtypes, we analyzed correlation between TMEscore
and immune cell infiltration and observed that TMEscore level
positively correlated with macrophage, monocyte, myeloid
dendritic cells, and B cells but negatively correlated with mac-
rophage M0 (Figures 6(d)–6(o)).

3.6. Predictive Value of TMEscore as a Biomarker for
Therapeutic Effect. To obtain further proof that TMEscore
is an effective predictor of immunotherapy success, we used
TIDE to predict the response of tumor immune exclusion.
We found that the lower the score of TMEscore, themore prone
to immune exclusion. This analysis revealed the biomarker
potential for TMEscore in immunotherapy (Figure 7(a)).

Using TMEscore as a predictor of immunotherapy, we
observed differential expression of various immune check-
points in the high- vs low-TMEscore subgroups, with
most immune checkpoint- and immune activity-related
genes, including CD48, HAVCR2, LAIR1, LGALS9,
PDCD1LG2, and TNFRSF9 being significantly upregu-
lated in the high-TMEscore subtype of all OS cohorts
(Figures 7(b) and 7(c)).

Next, we used pRRophetic to predict the IC50 of chemo-
therapies targeting MAPK signaling (axitinib, AZD6244,
CI.1040, and RDEA119), JNK signaling (JNK inhibitor
VIII), sarcoendoplasmic reticulum calcium ATPase pump
(thapsigargin), and HSP90 (AUY922). This analysis revealed
that except for axitinib and thapsigargin, these drugs were
significantly more effective in high-TMEscore patients than
in low-TMEscore patients. Similar observations were made
upon validation analysis on dataset GSE21257. IC50 analysis
showed that the low-TMEscore subgroup was less sensitive

to cisplatin, while the high-TMEscore subgroup was more
likely to benefit clinically (Figure 8).

3.7. Experimental Verification. EVI2B, a characteristic gene of
the TMEscore, is associated with prognostic outcomes for OS
patients in TCGA and GSE21257 cohorts and verified in the
Zhujiang cohort (Figures 9(a)–9(c)). CD4, as a landmark mol-
ecule to determine the expression of CD4+ TMA in vivo, was
detected by RT-PCR in 36 OS samples from Zhujiang Hospi-
tal. We also found that that high expression of CD4 was
remarkably associated with good prognosis of OS, and the
higher the expression level of CD4, the better the prognosis
(Figure 9(d)). We also examined the expression relationship
between CD4 and EVI2B in the Zhujiang cohort and found
a positive correlation between EVI2B and CD4 (Figure 9(e)).
This suggests that with the high expression of EVI2B, there
is more infiltration of CD4+ TMA. To further investigate the
effects of EVI2B on OS cells, we performed in vitro and
in vivo. Transwell assays revealed that OS cell migration and
invasion were markedly suppressed in the OE-EVI2B group
(Figure 9(f)). After the OE-EVI2B in 143B and MNNG cell
lines, OS cell proliferations were significantly suppressed
(Figure 9(g)), while flow cytometry showed that OE-EVI2B
cell apoptosis levels were increased (Figure 9(h)). The overex-
pression experiment of EVI2B in nude mice also proved that
high expression of EVI2B could antagonize the proliferation
of OS (Figure 9(i)). Our laboratory data show that high expres-
sion of EVI2B is positively associated with increased CD4
+TMA cell infiltration. Meanwhile, EVI2B and CD4+ TMA
cells can also affect the pathogenesis of OS. On the one hand,
the high expression of EVI2B can inhibit the malignant
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behavior of tumor proliferation and invasion. On the other
hand, high expression of CD4+ TMA cells and EVI2B also
improves the prognosis of patients with OS. These results
confirm our previous relationship between EVI2B and
CD4+ TMA cells and the effect of EVI2B as a component
of TMEscore on OS. This proves that TMEscore can be
used as a clinical indicator to guide the diagnosis and treat-
ment of clinical patients.

4. Discussion

The TME plays essential roles in OS cell proliferation and
progression [32]. The abundance of tumor-infiltrating lym-
phocytes in OS can predict patient responses to neoadjuvant
chemotherapies and is correlated with OS prognosis [33].
However, there are studies that have reported opposing
findings with regard to the effects of tumor-infiltrating
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Figure 8: TMEscore is a prognostic biomarker and can predict the effect of chemotherapy drugs. (a–h) Results of drug sensitivity analysis in
TCGA cohort. (i–p) Results of drug sensitivity analysis in the GEO cohort.
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lymphocytes on neoadjuvant chemotherapy responses or
prognosis [34]. This opposing finding could be because
tumor-infiltrating lymphocytes are heterogeneous popula-
tions [35, 36]. The TME heterogeneity affects various
responses to clinical therapy; therefore, the TME is a poten-
tial biomarker for predicting clinical treatment effects and
for screening tumor patients that can benefit from treat-
ment, thereby informing clinical treatment.

We investigated the association between the KEGG
pathway and survival outcomes and found that many
immune-related pathways are associated with survival out-
comes. Therefore, we evaluated the TME of OS. Two algo-

rithms (ESTIMATE and ssGSEA) for evaluating TME
further found that TME is closely related to tumor immune
cell infiltration and patient survival in OS. This greatly
attracted our exploration interest. Elevated lymphocyte infil-
tration levels, especially CD4+ T cells and CD8+ T cells, are
associated with good prognostic outcomes after immuno-
therapy. In further analysis of the results, we found that high
CD4+ TMA levels are associated with better survival out-
comes. By comparing high- and low-TME groups, we found
that CD4+ TMA was differentially expressed. Most of the
cell types mentioned above have been reported in previous
studies and play different roles in the development of tumor,
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Figure 9: The role of EVI2B in OS. (a–c) Associations between EVI2B levels and survival outcomes in TCGA-OS, GSE21257, and Zhujiang
cohorts. (d) KM survival curves for CD4 in the Zhujiang cohort. (e) Correlation between the expression of EVI2B and CD4 in the Zhujiang
cohort. (f) The Transwell assay showed that EVI2B overexpression markedly suppressed osteosarcoma cell invasion and migration. (g) The
plate colony formation assay was performed to investigate the effects of EVI2B on cell proliferation. (h) Effects of EVI2B on apoptosis were
evaluated by flow cytometry. (i) Images of the subcutaneous tumor.

22 Journal of Immunology Research



such as immune evasion (myeloid-derived suppressor cells
and Tregs) as well as regulation of tumor growth and inva-
sion (CD8+ T cells and macrophages) in the TME. However,
a limited number of studies on OS have investigated the
roles of CD4+ TMA in oncogenesis.

We screened for potential signature genes by overlapping
CD4+ TMA-related genes and DEGs and used LASSO analy-
sis to identify key IRGs. Based on expression levels of C3AR1,
EVI2B, FCGR2B, LILRA6, LPAR5, ITGAM, and WDR66,
PCA analysis was performed on each sample to obtain TME-
score for every sample. To investigate the roles of TMEscore in
OS patients, we used KM survival to establish differences in
survival outcomes between high- and low-TMEscore groups.
Comparable findings were obtained in the test set
(GSE21257), implying that the TMEscore can be used to
screen patients with poor prognostic outcomes.

Necchi et al. reported that elevated lymphocyte infiltra-
tion levels in cancer are associated with strong antitumor
immune responses [37]. We found that in both experimental
and validation groups, the TMEscore is associated with sev-
eral antitumor cells, including macrophages, monocytes, and
CD8+ T cells. To investigate differences between immune
subtypes, we evaluated pathway activation and expressions
of immune-related pathways among different groups and
found that antitumor-related immune pathways were acti-
vated in the high-TMEscore subgroup. In conclusion, we
postulate that the TMEscore, as a new biomarker, can pre-
dict prognostic outcomes based on the TME.

Then, we investigated the ability of the TMEscore to dis-
tinguish patient heterogeneity in order to personalize
treatment.

Using TIDE’s immune exclusion score, we found that the
low-TMEscore subgroup had a greater chance of evading the
immune system, implying worse clinical outcomes. By
expanding TMEscore-related immune checkpoints, we were
surprised to find that immune checkpoints were highly
expressed in the high-TMEscore groups, suggesting that tar-
geted immunotherapy can be used for personalized treatment.

Based on TMEscore grouping, various drugs that were
effective in other tumor were not effective in OS, which
was attributed to different drug sensitivities, implying that
different drug interventions can be applied for personalized
treatment.

To verify our findings, we investigated the effects of
genes contained in the TMEscore, such as EVI2B, on OS.
EVI2B regulates granulocyte function and differentiation
by controlling cell cycle processes [38]. Many studies have
shown that it can be used as part of the regulation of TME
[39–41]. Experimentally, we found that EVI2B inhibits
tumorigenesis and tumor development. In vivo analysis
demonstrated that high expression of EVI2B can affect the
growth of OS cells.

The above findings prove that the evaluated genes are
associated with activities of immune cells, and they have
the potential to influence the TME. However, the TME con-
trols various biological processes. Therefore, it is important
to evaluate the significance of multiple genes in the TME,
to fully establish TME heterogeneity. This approach, which
incorporates the major factors affecting the TME, can

directly reflect differences in survival outcomes of OS
patients and heterogeneities of responses to chemotherapy
and immunotherapy.

5. Conclusions

In our study, we first demonstrated the important relation-
ship between TME and OS patients, and then, we included
the factors of TME and survival prognosis of OS as much
as possible, obtained seven genes, and constructed TME-
score based on this. The OS subtype constructed by TME-
score can better distinguish the heterogeneity of OS and
provide targeted therapy. In the experimental group
(TCGA), we proved that TMEscore is a new biomarker,
which can more accurately evaluate the prognosis of patients
and clinical drug treatment, including immunotherapy. All
the above results were confirmed in the validation group
(GSE21257) and supported by laboratory data.
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