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Background. Recently, immunotherapies have been approved for advanced muscle invasive bladder cancer (MIBC) treatment, but
only a small fraction of MIBC patients could achieve a durable drug response. Our study is aimed at identifying tumor
microenvironment (TME) subtypes that have different immunotherapy response rates. Methods. The mRNA expression
profiles of MIBC samples from seven discovery datasets (GSE13507, GSE31684, GSE32548, GSE32894, GSE48075, GSE48276,
and GSE69795) were analyzed to identify TME subtypes. The identified TME subtypes were then validated by an independent
dataset (TCGA-MIBC). The subtype-related biomarkers were discovered using computational analyses and then utilized to
establish a random forest predictive model. The associations of TME subtypes with immunotherapy therapeutic responses were
investigated in a group of patients who had been treated with immunotherapy. A prognostic index model was constructed
using the subtype-related biomarkers. Two nomograms were built by the subtype-related biomarkers or the clinical parameters.
Results. Two TME subtypes, including ECM-enriched class (EC) and immune-enriched class (IC), were found. EC was
associated with greater extracellular matrix (ECM) pathways, and IC was correlated with immune pathways, respectively.
Overall survival was significantly greater for tumors classified as IC, whereas the EC subtype had a worse prognosis. A total of
nine genes (AKAP12, APOL3, CXCL13, CXCL9, GBP4, LRIG1, PEG3, PODN, and PTPRD) were selected by computational
analyses to construct the random forest model. The area under the curve (AUC) values for this model were 0.827 and 0.767 in
the testing and external validation datasets, respectively. Therapeutic response rates were greater in IC patients than in EC
patients (28 percent vs. 18 percent). Patients with a high prognostic index had a poorer prognosis than those with a low
prognostic index. The nomogram constructed from nine genes and stage achieved a C-index of 0.71. Conclusion. The present
investigation defined two distinct TME subtypes and developed models to assess immunotherapeutic treatment outcomes.

1. Introduction

Bladder cancer (BC) ranks fourth out of all types of malig-
nant tumors in the male population, causing more than
80,000 new BC cases and about 18,000 BC deaths in America
in 2020 [1]. Bladder cancer comes in two varieties: nonmus-
cular invasive (NMIBC) and muscular invasive (MIBC), and
this classification depends on whether tumor cells are con-
fined to the lamina propria or spread into the muscularis
propria. About 90% of NMIBC patients can survive more

than five years after surgical resection [2]. For MIBC
patients, radical cystectomy and chemotherapy are the stan-
dard treatments, but only 60% of them can survive for at
least five years [3]. Thus, there is urgently needed to develop
new therapeutics for MIBC patients.

Immune checkpoint blockade (ICB) has improved can-
cer therapy, particularly for MIBC [4]. While immunother-
apy is approved for the treatment of MIBC, only about
20% of MIBC patients are responsive to the treatment [5].
Multiple biomarkers have been identified to predict ICB
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response. For example, in many malignancies, tumor muta-
tion burden (TMB) has been proven to be a reliable predic-
tor of immunotherapy response [6]. In a study evaluating
pembrolizumab on lung cancer [7], the objective response
rate (ORR) was 63% (high TMB) and 0% (low TMB),
respectively (p value = 0.03). The progression-free survival
(PFS) was 14.5 versus 3.7 months, respectively (p value =
0.01). However, there are several limitations to the clinical
utility of TMB in predicting immunotherapy responses,
including the following: (1) TMB testing is costly, time-con-
suming, and labor-intensive and needs a large sequencing
capacity [8]. (2) TMB testing is not standardized for the dif-
ferent assays. (3) The definition of “high TMB” varies across
studies. (4) A meta-analysis found that there was no signifi-
cant difference between high-TMB patients and low-TMB
patients in overall survival (OS) [9]. Additionally, the tumor
microenvironment (TME), which is composed of immune
and stromal cells, may affect the prognosis and clinical effec-
tiveness of antitumor immune treatment [10]. The density of
tumor-infiltrating lymphocytes (TILs), especially CD8+ T
cells in the TME, is positively associated with the ICB
response [11]. As a result, it is critical to get a deep under-
standing of the inflammatory infiltration features in MIBC.

Other than biomarkers, it is also crucial to provide accu-
rate models to select potential ICB-sensitive patients.
Machine learning algorithms that can effectively learn from
a given database and provide accurate and reliable predic-
tions in another dataset should be considered. Moreover,
dividing patients into distinct molecular subtypes with dif-
ferent drug responses is a feasible method and is gaining
popularity [12, 13]. Thus, the identification of molecular
subtypes by TME components and the construction of a
machine learning prediction model might contribute to the
clinical application of ICB.

In the current study, seven MIBC datasets were included
and used to identify TME subtypes with distinct immune/
stromal cells and prognosis. An independent cohort was
adopted to validate the robustness of the constructed TME
subtypes. Then, using 9 genes, a random forest model was
created to predict TME subtypes. Another dataset contain-
ing ICB-treated patients was utilized to confirm the link
between TME subtypes and ICB responsiveness. A prognos-
tic index model and two nomograms were constructed to
predict the prognosis of MIBC patients.

2. Materials and Methods

2.1. Data Collection. The MIBC datasets were obtained from
TCGA and GEO platforms. The expression matrix of seven
datasets: GSE13507 (62 MIBC samples) [14], GSE31684
(78 MIBC samples) [15], GSE32548 (38 MIBC samples)
[16], GSE32894 (51 MIBC samples) [17], GSE48075 (73
MIBC samples) [18], GSE48276 (62 MIBC samples) [19],
and GSE69795 (34 MIBC samples) [20] were downloaded
and selected as the discovery dataset. For the downloaded
expression data that contains negative values, we normalized
it by the “Min–Max” normalization method. The “Min–
Max” normalization translated the highest value into 1, the
lowest value into 0, and other values into a numeric value

between 0 and 1. The raw count of RNA-seq data and corre-
spondent clinical information for 408 MIBC cases were
downloaded from TCGA and selected as the independent
validation dataset for evaluation of the constructed TME
subtype. The independent dataset for evaluating the connec-
tion between the TME subtype and ICB response rate was
the IMvigor210 trial, which included 348 BC patients treated
with PD-L1 antibody therapy [21]. The mRNA expression
and clinical data from these datasets were obtained.

2.2. Identification of TME Subtypes. The pathways of extra-
cellular matrix (ECM), CAF, and immune were chosen for
the assessment of cell amounts in the TME. The 10 ECM
pathways were downloaded from the previous study [22].
The 9 CAF pathways were summarized from previous stud-
ies [23–25]. The 16 immune pathways were retrieved from
Molecular Signatures Database [26]. Using the gene set var-
iation analysis (GSVA) R program, the mRNA expression
matrix of training datasets was converted into a matrix of
TME gene sets. Principal component analysis (PCA) was
used to detect batch effects among datasets before and after
this conversion. Subsequently, unsupervised consensus clus-
tering (CC), a common method used to find potential sub-
types among samples, was performed using the
“ConsensusClusterPlus” package [27] in the R language.
The optimal number of clusters should be the value when
the consensus matrix heatmap is clear and sharp, and the
relative change value starts to significantly fall.

2.3. Differentially Expressed Genes (DEGs). The p value and
log2(foldchange) value for each gene in each discovery data-
set (GSE13507, GSE31684, GSE32548, GSE32894,
GSE48075, GSE48276, and GSE69795) were obtained. To
identify robust DEGs, we utilized robust rank aggregation
(RRA) [28]. This approach computed significance scores
for all genes by combining the p values and log2(foldchange)
values from seven discovery datasets. The robust DEGs were
chosen based on the threshold of p value < 0.05 and ∣log 2ð
foldchangeÞ ∣ >0:5. The pathway enrichment analysis of the
robust DEGs was conducted by files of “c5.bp.v6.2.sym-
bols.gmt,” “c2.cp.reactome.v6.2.symbols.gmt,” and
“c2.cp.kegg.v6.2.symbols.gmt” with a significance threshold
of p value < 0.05.

2.4. Construction of a Classifier for TME Subtype Prediction.
To select genes for model construction, univariate Cox anal-
ysis and random forest are adopted. Firstly, the univariate
Cox analysis was utilized to discover the genes associated
with prognosis. Then, the random forest (RF) model, a
machine learning method to select optimal biomarker com-
binations, was applied to identify subtype-related genes that
had higher importance values. The retained genes were
thought to be subtype-related genes. The following steps
were taken to build and evaluate the classifier based on the
9 genes: (1) 60% of the MIBC samples from the seven discov-
ery datasets were used for model training, while the remain-
ing 40% of samples were used for model validation. And this
separation was conducted randomly. (2) In the training data-
set, the model was trained by 5-fold cross-validation; (3) in
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Figure 1: Continued.
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the testing dataset (TCGA-MIBC), the prediction accuracy of
the model was calculated; (4) the constructed random forest
classifier was used to test the association of TME subtype
with ICB response in the IMvigor210 study.

2.5. Develop and Validate a Prognostic Index Model. The
GEO datasets (GSE13507, GSE31684, GSE32548,
GSE32894, GSE48075, GSE48276, and GSE69795) and
TCGA-MIBC transcriptional data and patient information
were pooled and then randomly split into training (60 per-
cent) and testing datasets (40 percent). On the basis of the
mRNA expression levels of nine subtype-related genes, a
predictive prognostic index model was created using Cox
regression analysis. In the training dataset, the model for-
mula was as follows: prognostic index = ðβ1 ×mRNA1
expressionÞ +⋯+ðβn ×mRNAn expressionÞ. By dividing
the samples from both the training and testing datasets into
high-index and low-index groups based on their median
prognostic index values, the survival curves of groups were
plotted using the R program survminer. The timeROC pack-
age was used to assess the prognostic index model’s predic-
tive ability.

2.6. Construction of Predictive Nomograms. The nomogram
is commonly used to estimate the outcome of people with
cancer. We developed predictive nomogram models for
measuring overall survival (OS) in MIBC patients using the
R package rms. The first nomogram was constructed using
a combination of GEO datasets and TCGA-MIBC datasets.
The second nomogram was constructed from TCGA-
MIBC dataset. This is mainly because only samples from

the TCGA-MIBC dataset have clinical parameters such as
pathological stages. Nomograms were evaluated using the
C-index, a measure of predictive power.

3. Results

3.1. Removing the Batch Effects among Discovery Datasets. A
total of 398 samples from seven MIBC discovery datasets
with available clinical information were selected and down-
loaded in this study. Using the GSVA R program, the mRNA
expression matrix of training datasets was converted into a
matrix of TME gene sets. Before the conversion, there was
an obvious batch effect since samples from distinct datasets
were isolated from samples from other datasets
(Figure 1(a)). According to the PCA plot, the batch effect
was successfully eliminated after the conversion
(Figure 1(b)).

3.2. Identification of the TME Subtypes. To obtain the accu-
rate TME subtypes among 398 MIBC samples from the dis-
covery dataset, consensus clustering was conducted on the
matrix of TME gene sets. The tracking plot and delta area
determined the clustering number parameter, which ranged
from 2 to 6. When k = 2, the consensus matrix heatmap
showed clean and crisp borders, indicating that the samples
were clustered stably and robustly (Figure 1(c)). In the delta
area plot, k = 2 was selected because its value started to sig-
nificantly fall (Figure 1(d)). The tracking plot showed that
most samples were consistently divided into two subtypes
(Figure 1(e)). Thus, k = 2 was eventually chosen as the opti-
mal number of clusters after comprehensive consideration.
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Figure 1: Consensus clustering for MIBC discovery datasets (GSE13507, GSE31684, GSE32548, GSE32894, GSE48075, GSE48276, and
GSE69795). (a) PCA of the mRNA expression matrix of 7 discovery datasets. (b) PCA of the TME gene set matrix of 7 discovery
datasets. (c) Consensus matrix heatmap of two subtypes. (d) Relative change area values for optimal subtype numbers: 2 to 6. The
optimal subtype number in this plot should be the one at which the value starts to drop. (e) The sample distributions from different
subtype numbers. The samples in each subtype were illustrated by distinct colors within every row. (f) Subtype-specific survival curves
for five-year OS in individuals with MIBC. The log-rank test was used to determine the p value among the TME subtypes.
Abbreviations: OS: overall survival; MIBC: muscle invasive bladder cancer; PCA: principal component analysis; TME: tumor
microenvironment.
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A significant prognostic difference was observed between
subtype 1 and subtype 2 (p value = 0.029, Figure 1(f)). The
consensus clustering was conducted in 408 MIBC samples
from TCGA-MIBC by the same parameters. The results
from TCGA-MIBC also indicated that 2 was the optimal

number of clusters (Supplementary Figure 1A-1C). A
significant prognostic difference was observed between
subtype 1 and subtype 2 (p value = 0.027, Supplementary
Figure 1D). Overall, there are two distinct TME subtypes
among MIBC samples.

3.3. The Relationship between Subtypes and Clinical
Characteristics. ECM and CAF pathways were found to be
more prevalent in subtype 1 compared to subtype 2, whereas
immune pathways were more prevalent in subtype 2
(Figure 2). Similarly, TCGA-MIBC data indicated that sub-
type 1 had larger quantities of ECM and CAF pathways,
while subtype 2 had greater concentrations of immune path-
ways (Supplementary Figure 2). Thus, subtype 1 was named
ECM-enriched class (EC), and subtype 2 was named
immune-enriched class (IC). These results demonstrate
that these two TME subtypes are robust and reliable. The
relationship between subtypes and clinical characteristics
was calculated. And EC was found to be more common in
older and advanced-stage patients (Table 1).

3.4. Robust DEGs between Two TME Subtypes. To acquire
the robust DEGs in our investigation, two steps were used.
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Figure 2: The scores of TME pathways in 2 subtypes from the discovery datasets (GSE13507, GSE31684, GSE32548, GSE32894, GSE48075,
GSE48276, and GSE69795). Abbreviation: TME: tumor microenvironment.

Table 1: Clinical characteristics of TME subtypes from TCGA-
MIBC dataset. Abbreviations: TME: tumor microenvironment;
MIBC: muscle invasive bladder cancer.

Characteristics
Subtype 1 (EC) Subtype 2 (IC)

p value
n = 176 n = 200

Gender 0.881

Female 48 (27.3%) 57 (28.5%)

Male 128 (72.7%) 143 (71.5%)

Age (years) 0.006

20-50 19 (10.8%) 25 (12.5%)

50-70 67 (38.1%) 105 (52.5%)

70-90 90 (51.1%) 70 (35.0%)

Stage <0.001
Stages I-II 40 (22.7%) 87 (43.5%)

Stages III-IV 136 (77.3%) 113 (56.5%)
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To begin, log2(foldchange) and p values for each gene in
each dataset were calculated. Second, the RRA approach
was used to identify a total of 1265 robust DEGs, with 355
increased and 910 deceased genes in subtype 2. The heatmap
was used to visualize the combined log2(foldchange) values
of selected robust DEGs (Figure 3(a)).

Numerous immune-associated and cell cycle-related bio-
logical processes (BPs) were linked to IC, while cell and tis-
sue development processes were found in subtype 1
(Supplementary Table 1). KEGG and REACTCOME were
also used to find pathways that were enriched in each
TME subtype. Extracellular matrix organization-related
pathways were significantly enriched for subtype 1, and
immune-associated and cell cycle-related pathways were
enriched for IC (Supplementary Table 2, 3).

3.5. Machine Learning Model for Predicting TME Subtypes.
Survival analysis yielded 120 significant prognosis-related
genes, 105 for the positive negative genes (coefficients > 0),
and 15 for the positive prognosis genes (coefficients < 0).
To create a clinically useful classifier, top informative
subtype-associated genes must be chosen. Random forest
algorithm was adopted to select the most importance genes.
Therefore, the top 9 genes (AKAP12, APOL3, CXCL13,
CXCL9, GBP4, LRIG1, PEG3, PODN, and PTPRD) with
the highest importance values were selected for classification

purposes (Figure 3(b)). The samples from discovery dataset
were divided into training dataset (60%) and testing dataset
(40%). Then, a 9-gene model was trained by random forest
in the training dataset. Additionally, the 9-gene classifier
was applied to the testing dataset in order to validate subtype
prediction ability (Figure 3(c)), and we observed the AUC of
0.827 in testing dataset. Besides, prediction results from
independent dataset (TCGA-MIBC) suggested that the 9-
gene classifier can achieve the AUC 0f 0.767 (Figure 3(d)).
The process for constructing and validating the constructed
prediction model was plotted in Supplementary Figure 3.

3.6. Distinct Sensitivity of the TME Subtype to
Immunotherapy. Nine-gene classifier and the expression
profiles of a published dataset (IMvigor210 cohort) contain-
ing 348 cancer patients treated with an immune checkpoint
inhibitor (PDL1 antibody) were used. The response rate to
immune checkpoint inhibitor therapy was higher in IC than
in EC patients (28% vs. 18%) (Figure 3(e)). A significant dif-
ference was observed between two TME subtypes, indicating
that patients within IC had a better prognosis for immune
checkpoint inhibitor therapy (Figure 3(f)).

3.7. Construction of Prognosis Model by 9 Genes. The
patients from the discovery datasets (GSE13507,
GSE31684, GSE32548, GSE32894, GSE48075, GSE48276,
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Figure 3: Identification of biomarkers and construction of prediction model. A heatmap depicts the log2(fold change) values of robust
DEGs. A row represents a single gene, while a column represents a single dataset. Genes that are upregulated are highlighted in red,
whereas those that are downregulated are highlighted in blue. The creation and assessment of a random forest classifier for the
prediction of TME subtypes. (a) The 9 genes with the highest importance value were selected for classifier construction in the training
dataset. (b) Validation of classifier in the testing dataset. (c) Validation of classifier in the independent validation dataset (TCGA-MIBC).
(d) Correlation between TME subtype and therapeutic success rate IMvigor210. (e) Correlation between TME subtype and survival
outcome in IMvigor210. DEGs: differentially expressed genes; RRA: robust rank aggregation.
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and GSE69795) were classified into high and low groups
based on the median value of gene expression. Kaplan–
Meier plots showed that AKAP12, APOL3, CXCL9,
CXCL13, GBP4, and LRIG1 were protective genes
(Figure 4). Besides, PEG3, PODN, and PTPRD were found
to be risky genes. Similarly, based on the survival data from
TCGA-MIBC dataset, APOL3 and CXCL13 were found to
be protective genes (Supplementary Figure 4).

We trained and validated the prognostic model using the
seven GEO cohorts and TCGA-MIBC cohort. Firstly, the
samples from these eight cohorts were combined into one
dataset. The pooled dataset was then separated into training
(60 percent) and testing datasets (40 percent) using a ran-
domization technique. The relative coefficients for 9
subtype-related genes were calculated by the multivariate
Cox regression model. The prediction model requires the
relative coefficient and mRNA expression levels for nine
subtype-related genes, as follows: prognostic index = ð−0:24
Þ ∗AKAP12 + ð−0:22Þ ∗APOL3 + ð−0:41Þ ∗ CXCL13 + ð−

0:04Þ ∗ CXCL9 + ð−0:10Þ ∗GBP4 + ð−0:12Þ ∗ LRIG1 + ð−
0:15Þ ∗ PEG3 + ð0:30Þ ∗ PODN + ð0:28Þ ∗ PTPRD. Then,
for every observation in the training data, we computed
and ordered the index. Thus, participants in the training
data set were grouped into two categories: those at low index
(n = 196) and those at high index (n = 195), with the median
prognostic index serving as the cut-off value. Figure 5(a)
shows the survival overview and the gene expression pro-
files. A heat map was created to depict the gene expression
patterns of individuals in two index groups (Figure 5(b)).
The Kaplan–Meier curves were used to evaluate the survival
of high- and low-index groups, and those in the low-index
group had a much greater overall survival rate than patients
in the high-index group (Figure 5(c), p value < 0.001).

3.8. Validation of the Prognosis Model. To confirm our find-
ings in the training set, we evaluated the 9-gene signature’s
predictive ability in the testing dataset. A prognostic index
was produced for each MIBC patient in the testing dataset

p-value = 0.0310.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5

Time in years

Su
rv

iv
al

 p
ro

ba
bi

lit
y

PEG3 (low)
PEG3 (high)

(g)

p-value = 0.0280.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5

Time in years

Su
rv

iv
al

 p
ro

ba
bi

lit
y

PODN (low)
PODN (high)

(h)

p-value = 0.0150.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5

Time in years

Su
rv

iv
al

 p
ro

ba
bi

lit
y

PTPRD (low)
PTPRD (high)

(i)

Figure 4: Five-year Kaplan–Meier (K-M) curves for overall survival of MIBC patients in the discovery datasets. The p values were calculated
by the log-rank test.
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Figure 5: Analysis of prognosis signatures in the training and testing datasets. (a) Distribution of prognostic index and surviving condition
in the low and high prognostic index groups from the training dataset. (b) Expression values of genes between two groups in the training
dataset. Red color represents high expression value, and green color represents low expression value. (c) Survival curves of the high- and
low-index groups in the training dataset. (d) Distribution of prognostic index and surviving condition in the low and high prognostic
index groups from the testing dataset. (e) Expression values of genes between two groups in the testing dataset. Red color represents
high expression value, and green color represents low expression value. (f) Survival curves of the high- and low-index groups in the
testing dataset.
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Figure 6: Continued.
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using the same manner as in the training dataset. Figure 5(d)
displays the distribution of prognostic index and a summary
of survival in the testing cohort. Additionally, patients in the
testing dataset were classified into high-index (n = 196) and
low-index (n = 196) groups based on the median cut-off
value. A heatmap was created to depict the gene expression
patterns of individuals in two index groups (Figure 5(e)).
The survival curve suggested that the low-index group had
a better OS compared to the high-index group (Figure 5(f),
p value < 0.001).

3.9. Development of Nomograms. Typically, nomograms are
used to quantify an individual’s risk. The first nomogram
was created to estimate the prognosis of one-, three-, and
five-year in patients with MIBC by using the nine genes
(Figure 6(a)). The C-index of this nomogram was 0.61, and
the calibration curve suggested that actual and expected sur-
vival were quite strongly correlated in three-year prognosis
prediction (Figure 6(b)). The second nomogram was
designed to assess the prognosis of one-, three- and five-
year by 9 gene signatures and clinical parameters
(Figure 6(c)). And the nomogram suggested that PTPRD
plays a more important role than stage in the model. The
C-index was 0.71, and the calibration curve of three-year
also indicated good prognostic prediction efficacy
(Figure 6(d)).

4. Discussion

Antibodies that inhibit the interaction of PD1/PDL1 have
been authorized for the treatment of a variety of cancers,
including metastatic bladder cancer. Due to the fact that
the PD1/PDL1 pathway suppresses immune cell responses,
inhibiting the PD-1/PD-L1 pathway enables immune cells
to attack tumors [29]. However, only a small number
(20%) of MIBC patients are responsive to immunotherapy

[5], which limits the clinical use and makes it important to
select the potential responders. Since multiple studies have
discovered that TME has a deep association with ICB
response [30, 31], providing a prediction model based on
TME to identify ICB responsive patients could have clinical
and academic significance. To confirm the robustness of
TME subtypes and their connection with ICB response,
independent datasets were examined. Our results suggest
that there are two TME subtypes with different immuno-
therapy response rates, and we provided an accurate model
for the TME subtype prediction.

The TME that surrounds tumor cells is composed of
immune cells, stromal cells, and ECM molecules. TME has
significant effects on tumorigenesis and development [32],
therapeutic resistance, and clinical outcome. Unlike other
studies that only include the immune cells from TME [33,
34], the current study also used the other TME components
such as CAF and ECM for subtype construction. In this
study, two TME subtypes were found among these seven
discovery datasets. EC had higher levels of ECM-related
and CAF-related gene sets, and IC had higher levels of
immune-related gene sets, respectively. The results suggest
that CAF and ECM have a negative association with
immune cells, especially T cells. CAFs could directly express
PDL1 to induce the exhaustion of T cells [35] and indirectly
inhibit T cell function through ECM remodeling that could
act as a barrier to block the access of immune cells to cancer
cells [36]. Thus, ECM and CAF inhibition might contribute
to activating the immune cell and increasing the ICB
response.

In this study, we systematically explored the biomarkers
related to TME subtypes. A total of 9 genes (AKAP12,
APOL3, CXCL13, CXCL9, GBP4, LRIG1, PEG3, PODN,
and PTPRD) were selected by DEG analysis, univariate
Cox analysis, and importance value calculation in the
machine learning model. Results suggest that AKAP12,
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Figure 6: The nomograms. (a) The nomogram constructed by genes in the combination dataset of GEO datasets and TCGA-MIBC cohorts.
(b) Calibration lines for 3-year survival prediction in the combination dataset of GEO datasets and TCGA-MIBC cohorts. (c) The
nomogram constructed by genes and clinical parameters in TCGA-MIBC cohort. Stages I-II and stages III-IV were represented by “1”
and “2,” respectively. (d) Calibration lines for 3-year survival prediction in TCGA-MIBC cohort. Abbreviation: OS: overall survival.
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APOL3, CXCL13, CXCL9, GBP4, and LRIG1 may act as
tumor suppressors. On the other hand, PEG3, PODN, and
PTPRD may play oncogenic roles. Studies have discovered
that AKAP12 acts as an oncogenesis suppressor, for exam-
ple, AKAP12 deficiency is linked to enhanced metastatic
potential in human tumors such as bladder cancer [37].
CXCL9 and CXCL13 are two chemokines that recruit vari-
ous immune cells. CXCL9 could contribute to the inhibition
of angiogenesis and tumor progression by recruitment of T
lymphocytes [38, 39]. CXCL13 has dualistic impacts. For
example, it can either promote tumor development via
PI3K/AKT signaling or improve antitumor immunity by
enhancing immune cell invasion [40]. Upregulation of
LRIG1 suppresses cell growth and induces cell apoptosis of
bladder cancer by inhibiting MAPK and AKT signaling [41].

There are some strengths. Firstly, more than seven
MIBC datasets from GEO were used as discovery datasets
for the identification of TME subtypes. In the independent
dataset (TCGA-MIBC), we discovered the TME subtypes
with the same expression pattern and clinical prognosis.
This ensures the robustness of the constructed TME sub-
types. Secondly, a 9-gene machine learning model was pro-
vided in our study. The prediction performance of the
model was tested on an independent dataset (TCGA-MIBC).
Besides, the association of TME subtypes with ICB response
was directly validated by an independent cohort of ICB-
treated bladder cancer patients. However, the limitations of
this study require mention. Firstly, the identified TME sub-
types should be verified by the original study. In the future,
we will collect bladder cancer samples with available mRNA
expression and clinical data. Then, we will predict the TME
subtype for each sample and compare the prognosis differ-
ence between two TME subtypes. Secondly, the expression
pattern of 9 genes needs to be validated experimentally.
Besides, the mechanisms of impact from CAF or ECM mol-
ecules on immune cells such as CD8 T cells should be
explored further.

5. Conclusion

We identified two TME subtypes among MIBC patients, one
of them was associated with high levels of immune cells, and
the other had more CAF and ECM molecules. A 9-gene ran-
dom forest model that could predict the TME subtypes was
constructed and validated, and this model could serve as a
reference for clinical use of ICB.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding authors upon request.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Authors’ Contributions

ZW and XL contributed equally to this work and are co-first
authors for this article. ZW, XL, and DD designed and con-
ceived this project. ZW, XL, XW, JL, and LW analyzed the
data. ZW, XL, WW, and XD revised the manuscript for
important intellectual content. All authors read and
approved the final manuscript. Zhifeng Wang and Xiqing
Li contributed equally to this work.

Acknowledgments

The project was supported by Application of the Fourth
Generation Da Vinci Robot (Xi) and Mixed Reality Technol-
ogy in Nephron Sparing Surgery for Complex Hilar Tumor
(Science and Technology Research of Henan Provincial
Health and Health Commission SBGJ202102020).

Supplementary Materials

Supplementary Figure 1: evaluation of constructed TME
subtypes in the independent dataset (TCGA-MIBC). (a)
Consensus matrix heatmap of two subtypes. (b) Relative
change area values for optimal subtype numbers: 2 to 6.
The optimal subtype number in this plot should be the one
at which the value starts to drop. (c) The sample distribu-
tions from different subtype numbers. The samples in each
subtype were illustrated by distinct colors within every
row. (d) Subtype-specific survival curves for five-year OS
in individuals with MIBC. The log-rank test was used to
determine the p value among the TME subtypes. Abbrevia-
tions: TCGA: The Cancer Genome Atlas; OS: overall sur-
vival; MIBC: muscle invasive bladder cancer.
Supplementary Figure 2: the scores of TME gene sets in 2
TME subtypes from the independent validation dataset
(TCGA-MIBC). Abbreviations: TME: tumor microenviron-
ment; TCGA: The Cancer Genome Atlas; OS: overall sur-
vival; MIBC: muscle invasive bladder cancer.
Supplementary Figure 3: the process for constructing and
validating the constructed prediction model. Supplementary
Figure 4: five-year Kaplan–Meier (K-M) curves for overall
survival of MIBC patients in TCGA-MIBC dataset. The p
values were calculated by the log-rank test. Supplementary
Table 1: the enriched biological process (BP) by gene set
enrichment analysis. NES: normalized enrichment score.
Supplementary Table 2: the enriched Kyoto Encyclopedia
of Genes and Genomes (KEGG) items from gene set enrich-
ment analysis. NES: normalized enrichment score. Supple-
mentary Table 3: the enriched Reactome gene sets by gene
set enrichment analysis (GSEA). NES: normalized enrich-
ment score. (Supplementary Materials)

References

[1] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics,
2020,” CA: a Cancer Journal for Clinicians, vol. 70, no. 1,
pp. 7–30, 2020.

[2] Y. Yamada, M. Kato, T. Arai et al., “Aberrantly expressed
PLOD1 promotes cancer aggressiveness in bladder cancer: a

13Journal of Immunology Research

https://downloads.hindawi.com/journals/jir/2022/6737241.f1.zip


potential prognostic marker and therapeutic target,”Molecular
Oncology, vol. 13, no. 9, pp. 1898–1912, 2019.

[3] R. Chou, S. S. Selph, D. I. Buckley et al., “Treatment of muscle-
invasive bladder cancer: a systematic review,” Cancer, vol. 122,
no. 6, pp. 842–851, 2016.

[4] Z. Tian, L. Meng, X. Long et al., “Identification and validation
of an immune-related gene-based prognostic index for bladder
cancer,” American Journal of Translational Research, vol. 12,
no. 9, pp. 5188–5204, 2020.

[5] P. Sharma, M. Retz, A. Siefker-Radtke et al., “Nivolumab in
metastatic urothelial carcinoma after platinum therapy
(CheckMate 275): a multicentre, single-arm, phase 2 trial,”
The Lancet Oncology, vol. 18, no. 3, pp. 312–322, 2017.

[6] K. R. Spencer, J. Wang, A. W. Silk, S. Ganesan, H. L. Kaufman,
and J. M. Mehnert, “Biomarkers for immunotherapy: current
developments and challenges,” American Society of Clinical
Oncology Educational Book, vol. 35, pp. e493–e503, 2016.

[7] N. A. Rizvi, M. D. Hellmann, A. Snyder et al., “Cancer immu-
nology. Mutational landscape determines sensitivity to PD-1
blockade in non-small cell lung cancer,” Science, vol. 348,
no. 6230, pp. 124–128, 2015.

[8] L. E. Hendriks, E. Rouleau, and B. Besse, “Clinical utility of
tumor mutational burden in patients with non-small cell lung
cancer treated with immunotherapy,” Translational Lung
Cancer Research, vol. 7, no. 6, pp. 647–660, 2018.

[9] L. Wan, Z. Wang, J. Xue, H. Yang, and Y. Zhu, “Tumor muta-
tion burden predicts response and survival to immune check-
point inhibitors: a meta-analysis,” Translational Cancer
Research, vol. 9, no. 9, pp. 5437–5449, 2020.

[10] D. Liu, X. Yang, and X. Wu, “Tumor immune microenviron-
ment characterization identifies prognosis and
immunotherapy-related gene signatures in melanoma,” Fron-
tiers in Immunology, vol. 12, article 663495, 2021.

[11] J. J. Havel, D. Chowell, and T. A. Chan, “The evolving land-
scape of biomarkers for checkpoint inhibitor immunother-
apy,”Nature Reviews. Cancer, vol. 19, no. 3, pp. 133–150, 2019.

[12] Z. Chen, M. Wang, R. L. De Wilde et al., “A machine learning
model to predict the triple negative breast cancer immune sub-
type,” Frontiers in Immunology, vol. 12, article 749459, 2021.

[13] Z. Wang, Z. Chen, H. Zhao et al., “ISPRF: a machine learning
model to predict the immune subtype of kidney cancer sam-
ples by four genes,” Translational Andrology and Urology,
vol. 10, no. 10, pp. 3773–3786, 2021.

[14] W. J. Kim, E. J. Kim, S. K. Kim et al., “Predictive value of
progression-related gene classifier in primary non-muscle
invasive bladder cancer,” Molecular Cancer, vol. 9, no. 1, p. 3,
2010.

[15] M. Riester, L. Werner, J. Bellmunt et al., “Integrative analysis
of 1q23.3 copy-number gain in metastatic urothelial carci-
noma,” Clinical Cancer Research, vol. 20, no. 7, pp. 1873–
1883, 2014.

[16] D. Lindgren, G. Sjödahl, M. Lauss et al., “Integrated genomic
and gene expression profiling identifies two major genomic
circuits in urothelial carcinoma,” PLoS One, vol. 7, no. 6,
p. e38863, 2012.

[17] G. Sjödahl, M. Lauss, K. Lövgren et al., “Amolecular taxonomy
for urothelial carcinoma,” Clinical Cancer Research, vol. 18,
no. 12, pp. 3377–3386, 2012.

[18] C. C. Guo, J. Bondaruk, H. Yao et al., “Assessment of luminal
and basal phenotypes in bladder cancer,” Scientific Reports,
vol. 10, no. 1, p. 9743, 2020.

[19] W. Choi, S. Porten, S. Kim et al., “Identification of distinct
basal and luminal subtypes of muscle-invasive bladder cancer
with different sensitivities to frontline chemotherapy,” Cancer
Cell, vol. 25, no. 2, pp. 152–165, 2014.

[20] D. J. McConkey, W. Choi, Y. Shen et al., “A prognostic gene
expression signature in the molecular classification of
chemotherapy-naive urothelial cancer is predictive of clinical
outcomes from neoadjuvant chemotherapy: a phase 2 trial of
dose-dense methotrexate, vinblastine, doxorubicin, and cis-
platin with bevacizumab in urothelial cancer,” European Urol-
ogy, vol. 69, no. 5, pp. 855–862, 2016.

[21] A. V. Balar, M. D. Galsky, J. E. Rosenberg et al., “Atezolizumab
as first-line treatment in cisplatin-ineligible patients with
locally advanced and metastatic urothelial carcinoma: a sin-
gle-arm, multicentre, phase 2 trial,” Lancet, vol. 389,
no. 10064, pp. 67–76, 2017.

[22] A. Naba, K. R. Clauser, H. Ding, C. A. Whittaker, S. A. Carr,
and R. O. Hynes, “The extracellular matrix: tools and insights
for the "omics" era,” Matrix Biology, vol. 49, pp. 10–24, 2016.

[23] T. Liu, C. Han, S. Wang et al., “Cancer-associated fibroblasts:
an emerging target of anti-cancer immunotherapy,” Journal
of Hematology & Oncology, vol. 12, no. 1, p. 86, 2019.

[24] F. Wu, J. Yang, J. Liu et al., “Signaling pathways in cancer-
associated fibroblasts and targeted therapy for cancer,” Signal
Transduction and Targeted Therapy, vol. 6, no. 1, p. 218, 2021.

[25] M. Nurmik, P. Ullmann, F. Rodriguez, S. Haan, and
E. Letellier, “In search of definitions: cancer-associated fibro-
blasts and their markers,” International Journal of Cancer,
vol. 146, no. 4, pp. 895–905, 2020.

[26] A. Liberzon, A. Subramanian, R. Pinchback,
H. Thorvaldsdottir, P. Tamayo, and J. P. Mesirov, “Molecular
signatures database (MSigDB) 3.0,” Bioinformatics, vol. 27,
no. 12, pp. 1739-1740, 2011.

[27] M. D. Wilkerson and D. N. Hayes, “ConsensusClusterPlus: a
class discovery tool with confidence assessments and item
tracking,” Bioinformatics, vol. 26, no. 12, pp. 1572-1573, 2010.

[28] R. Kolde, S. Laur, P. Adler, and J. Vilo, “Robust rank aggrega-
tion for gene list integration and meta-analysis,” Bioinformat-
ics, vol. 28, no. 4, pp. 573–580, 2012.

[29] J. H. Lee, S. S. Yoo, M. J. Hong et al., “Impact of immune
checkpoint gene CD155 Ala67Thr and CD226 Gly307Ser
polymorphisms on small cell lung cancer clinical outcome,”
Scientific Reports, vol. 11, no. 1, p. 1794, 2021.

[30] T. Gruber, M. Kremenovic, H. Sadozai et al., “IL-32gamma
potentiates tumor immunity in melanoma. JCI,” Insight,
vol. 5, no. 18, p. doi:10.1172/jci.insight.138772, 2020.

[31] J. Chen, H. W. Sun, Y. Y. Yang et al., “Reprogramming immu-
nosuppressive myeloid cells by activated T cells promotes the
response to anti-PD-1 therapy in colorectal cancer,” Signal
Transduction and Targeted Therapy, vol. 6, no. 1, p. 4, 2021.

[32] B. Arneth, “Tumor microenvironment,” Medicina (Kaunas),
vol. 56, no. 1, p. 15, 2019.

[33] M. Huang, L. Liu, J. Zhu et al., “Identification of immune-
related subtypes and characterization of tumor microenviron-
ment infiltration in bladder cancer,” Frontiers in Cell and
Development Biology, vol. 9, article 723817, 2021.

[34] C. Tang, J. Ma, X. Liu, and Z. Liu, “Identification of four
immune subtypes in bladder cancer based on immune gene
sets,” Frontiers in Oncology, vol. 10, article 544610, 2020.

[35] M. R. Nazareth, L. Broderick, M. R. Simpson-Abelson, R. J.
Kelleher, S. J. Yokota, and R. B. Bankert, “Characterization of

14 Journal of Immunology Research



human lung tumor-associated fibroblasts and their ability to
modulate the activation of tumor-associated T cells,” Journal
of Immunology, vol. 178, no. 9, pp. 5552–5562, 2007.

[36] J. A. Joyce and D. T. Fearon, “T cell exclusion, immune privi-
lege, and the tumor microenvironment,” Science, vol. 348,
no. 6230, pp. 74–80, 2015.

[37] I. H. Gelman, “Suppression of tumor and metastasis progres-
sion through the scaffolding functions of SSeCKS/Gravin/
AKAP12,” Cancer Metastasis Reviews, vol. 31, no. 3-4,
pp. 493–500, 2012.

[38] L. Kistner, D. Doll, A. Holtorf, U. Nitsche, and K. P. Janssen,
“Interferon-inducible CXC-chemokines are crucial immune
modulators and survival predictors in colorectal cancer,”
Oncotarget, vol. 8, no. 52, pp. 89998–90012, 2017.

[39] A. Nazari, Z. Ahmadi, G. Hassanshahi et al., “Effective treat-
ments for bladder cancer affecting CXCL9/CXCL10/
CXCL11/CXCR3 Axis: a review,” Oman Medical Journal,
vol. 35, no. 2, article e103, 2020.

[40] A. J. Rubio, T. Porter, and X. Zhong, “Duality of B cell-
CXCL13 axis in tumor immunology,” Frontiers in Immunol-
ogy, vol. 11, article 521110, 2020.

[41] L. Chang, R. Shi, T. Yang et al., “Restoration of LRIG1 sup-
presses bladder cancer cell growth by directly targeting EGFR
activity,” Journal of Experimental & Clinical Cancer Research,
vol. 32, no. 1, p. 101, 2013.

15Journal of Immunology Research


	Classification of Muscle Invasive Bladder Cancer to Predict Prognosis of Patients Treated with Immunotherapy
	1. Introduction
	2. Materials and Methods
	2.1. Data Collection
	2.2. Identification of TME Subtypes
	2.3. Differentially Expressed Genes (DEGs)
	2.4. Construction of a Classifier for TME Subtype Prediction
	2.5. Develop and Validate a Prognostic Index Model
	2.6. Construction of Predictive Nomograms

	3. Results
	3.1. Removing the Batch Effects among Discovery Datasets
	3.2. Identification of the TME Subtypes
	3.3. The Relationship between Subtypes and Clinical Characteristics
	3.4. Robust DEGs between Two TME Subtypes
	3.5. Machine Learning Model for Predicting TME Subtypes
	3.6. Distinct Sensitivity of the TME Subtype to Immunotherapy
	3.7. Construction of Prognosis Model by 9 Genes
	3.8. Validation of the Prognosis Model
	3.9. Development of Nomograms

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

