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Breast cancer (BC) is the most commonly diagnosed cancer and second leading cause of cancer-related death in women
worldwide. Ferroptosis, an iron-dependent newly discovered mode of cell death, can be induced by lenaltinib and plays an
important role in the biological behaviors of BC. Therefore, the prognostic value of ferroptosis-related genes (FRGs) in BC
warrants further investigation. FRG expression profiles and clinical data were downloaded from The Cancer Genome Atlas
(TCGA) database and Gene Expression Omnibus (GEO). Immune-related pathways were found in the functional analysis.
Significant differences in enrichment scores for immune cells were observed. Some patients from TCGA-BRCA were included
as the training cohort. A six-gene prediction signature was constructed with the least absolute shrinkage and selection operator
Cox regression. This model was validated in the rest of the TCGA-BRCA and GEO cohort. The expressions of the six FRGs
were verified with real-time quantitative polymerase chain reaction and immunohistochemistry in the Human Protein Atlas.
Relapse or metastasis was more likely in the high-risk group. Risk score was an independent predictor of disease-free survival.
Collectively, the ferroptosis-related risk model established in this study may serve as an effective tool to predict the prognosis
in BC.

1. Introduction

Breast cancer (BC) ranks first in terms of incidence among
newly diagnosed malignancies and is the main leading cause
of tumor-related death worldwide in women [1]. BC is a
highly heterogeneous disease and could be divided into four
subtypes, namely, luminal A, luminal B, Her-2 overexpres-
sion, and triple negative, which account for 50%, 14.1%,
12.7%, and 23.2% of all BC cases, respectively [2]. Currently,
surgery, radiotherapy, chemotherapy, endocrinotherapy,
targeted therapy, and even immunotherapy have been
applied for the treatment of BC, with favorable outcomes
in the last decades. However, the prognosis in BC is still poor
especially in triple-negative or advanced BC with 5-year sur-

vival rates ranging from 23.4% to 57% [3]. Previous studies
established several multigene signature models to predict
the prognosis of BC. The prediction value of the 21-gene
assay, which includes 16 tumor-associated genes and five
reference genes, was first validated in the National Surgical
Adjuvant Breast and Bowel Project (NSABP) B14 trial [4].
This study showed 10-year distant recurrence rates of
6.8%, 14.3%, and 30.5% in low-, medium-, and high-risk
groups, respectively. Then, a 21-gene assay was recom-
mended by the National Comprehensive Cancer Network
to predict the risk of distant recurrence in patients with
node-negative, estrogen receptor-positive BC who had been
treated with tamoxifen [5]. Later, studies of Sparano further
validated the production value, expanded the applicable
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population, and provided guidance for BC treatment [6, 7].
PAM50 signature is another multigene model that could
provide risk stratification and predict prognosis in BC [8].
Its prognostic value has been validated for patients with
BC in a large independent cohort with a 15-year follow-up.

Ferroptosis, first proposed in 2012, is an iron-dependent
programmed cell death caused by the accumulation of lipid-
based reactive oxygen species (ROS) [9, 10]. Ferroptosis is
influenced by the metabolism and expression of specific
genes, making ferroptosis-related genes (FRGs) an effective
biomarker for predicting prognosis in various malignancies,
including hepatocellular [11], colon [12], ovarian [13],
esophageal [14], and renal carcinoma [15]. Previous studies
showed that ferroptosis plays an important role in BC. Some
genes such as ACSL4, PUFAs, and TP53 promote the prog-
ress of ferroptosis. GPX4 is known to regulate ferroptosis
negatively and lead to drug resistance in BC [16–18]. Ma
et al. found that the death of BC cells induced by siramesine
and lapatinib had a close association with increased Lip-ROS
and FeCl3 productions, which imply that the potential treat-
ment target related with ferroptosis must be investigated
[19]. Another study demonstrated that holo-lactoferrin con-
tributes to the progression of ferroptosis by promoting the
expression of Lip-ROS in BC cells when combined with
explosion of a 4Gy electron beam, which suggests that fer-
roptosis further enhances the radiosensitivity of BC cells
during radiation [20]. Besides growth suppression and pro-
motion of radiosensitivity, ferroptosis plays a vital role in
the metastasis of BC. A previous study demonstrated that
BC cell death induced by neratinib could be reversed by
administration of liproxstatin 1, a ferroptosis inhibitor
rather than an apoptosis inhibitor [21]. It showed that lenal-
tinib significantly inhibited liver, lung, and brain metastases
in Her-2 overexpression BC model nude mice.

In the present study, we first downloaded the mRNA
expression profiles and corresponding clinical data of BC
patients from public databases to examine the relationships
between FRGs and BC recurrence or metastasis. Then, we
established a prognostic multigene signature with the least
absolute shrinkage and selection operator (LASSO) Cox
regression in some patients in the TCGA-BRCA cohort
and validated it in the rest of TCGA and GEO cohort. The
expressions of six FRGs were verified with real-time quanti-
tative polymerase chain reaction (qRT-PCR) and immuno-
histochemistry. Finally, risk prediction nomography and
functional enrichment analysis were performed to examine
the underlying mechanisms.

2. Materials and Methods

2.1. Data Collection. The RNA sequencing (RNA-seq) data-
set and corresponding clinical information of BC were
obtained from The Cancer Genome Atlas (TCGA; https://
tcga-data.nci.nih.gov/tcga/). The expression profile of
GSE21653, the validation cohort consisting of 248 BC cases,
was selected from the Gene Expression Omnibus database
(GEO; https://www.ncbi.nlm.nih.gov/geo/). Sixty FRGs were
retrieved from previous studies [22–25].

2.2. BC Subclass Identification. Consensus clustering analysis
was performed using FRGs. First, ferroptosis-related candi-
date genes significantly associated with overall survival
(OS) in the TCGA-BRCA database were identified using
Cox regression analysis. Then, genes with significant prog-
nostic values (p < 0:05) were selected for sample clustering.
Clustering methods were performed, and the best cluster
number was chosen as the coexistence correlation coefficient
K value with the “ConsensusClusterPlus” R package.

2.3. Differential Expression and Functional Enrichment
Analyses. The “limma” R package was used to identify the
differentially expressed genes (DEGs) between the different
clusters with a false discovery rate ðFDRÞ < 0:05 and logFC
> jmean ðabs ðlogFCÞÞ + 2 ∗ SD ðabs ðlogFCÞÞj in TCGA
cohort. The “clusterProfiler” R package was used to conduct
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses based on the DEGs. The “ESTI-
MATE” R package was used to calculate the StromalScore,
ImmuneScore, and ESTIMATEScore between the BC sub-
classes. The infiltrating score of 10 immune cells was evalu-
ated with the “MCPcounter” R package. The infiltrating
scores of 28 immune cells were calculated with single-
sample gene set enrichment analysis (ssGSEA) with the
“gsva” R package [26].

2.4. Identification and Validation of the Prognostic
Ferroptosis-Related Gene Signature. Ferroptosis-related
genes that showed significance (p < 0:05) in both the
Kaplan–Meier and Cox analyses were selected as potential
prognostic genes. These genes were enrolled in a disease-
free survival-based LASSO Cox regression model in the
training cohort. The LASSO analysis was performed by
applying the “glmnet” R package study to screen for the best
penalty parameter lambda [27–29]. Risk score was calculated
on the basis of the normalized gene expression level and
regression coefficient of the corresponding gene as follows:
risk score = sum ðgene expression level × corresponding
coefficientÞ. Then, the patients were grouped into high- and
low-risk groups according to their median risk scores. The
concordance index (C index) for assessing the predictive
accuracy of the six-gene model was obtained using the “risk-
setROC” R package. The survival difference between the two
groups was measured using the Kaplan–Meier analysis. Cox
and receiver-operating characteristic (ROC) analyses were
also conducted for further assessment of the gene signature
prognostic ability. Moreover, to verify the stability of the
model obtained, the same formula and statistical methods
were performed in TCGA test dataset and GEO cohort.

2.5. Expression Validation of the Prognostic Ferroptosis-
Related Gene. Prognostic FRGs were validated with
Kaplan–Meier survival curve in the GSE21653 cohort. Pro-
tein immunohistochemistry in normal human and tumor
tissues was validated in the Human Protein Atlas (http://
www.proteinatlas.org). To verify the expression profiles of
prognostic FRGs in BC and normal tissues, we conducted
the experimental validation using specimens from 10 BC
patients who received esophagectomy between July 2020
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and January 2021 in the Affiliated Hospital of Jiangnan Uni-
versity. Ten normal esophageal mucosal tissues were used as
controls. The study was approved by the internal review
board of the Affiliated Hospital of Jiangnan University. In
terms of qRT-PCR, total RNA from normal breast samples
(n = 10) and BC samples (n = 10) was isolated using the TRI-
zol reagent (Invitrogen, Carlsbad, CA, USA) in accordance
with the manufacturer’s instructions. Complementary
DNA was synthesized from 1μg of total RNA using the Pri-
meScript RT reagent kit with a genomic DNA eraser
(Takara). qRT-PCR was performed using SYBR Select Mas-
ter Mix (Life Technologies, Austin, TX, USA) in a 7300
qRT-PCR system (Applied Biosystems, Foster City, CA,
USA) using the following settings: 95°C for 2min, followed
by 40 cycles of 94°C for 20 s, 58°C for 20 s, and 72°C for
20 s. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was used as the internal normalized reference to genes. The
fold change was determined using the equation 2 − ΔΔCt
ðΔΔCt = ðΔCt of genes of interestÞ − ðΔCt of GAPDHÞÞ. The
primer sequences used are as follows: CARS1: F: 5′-CCAT
GCAGACTCCACCTTTAC-3′, R: 5′-GCAATACCACGT
CACCTTTTTC-3′; CHAC1: F: 5′-GAACCCTGGTTACCT
GGGC-3′, R: 5′-CGCAGCAAGTATTCAAGGTTGT-3′;
FANCD2: F: 5′-AAAACGGGAGAGAGTCAGAATCA-3′,
R: 5′-ACGCTCACAAGACAAAAGGCA-3′; AIFM2: F: 5′-
AGACAGGGTTCGCCAAAAAGA-3′, R: 5′-CAGGTCTA
TCCCCACTACTAGC-3′; G6PD: F: 5′-CGAGGCCGTCA
CCAAGAAC-3′, R: 5′-GTAGTGGTCGATGCGGTAGA-3′;
and HMOX1: F: 5′-AAGACTGCGTTCCTGCTCAAC-3′,
R: 5′-AAAGCCCTACAGCAACTGTCG-3′.

2.6. Nomogram Development and Evaluation of Predictive
Performance. To improve the predictive accuracy of the risk
score model and provide a quantitative method for clinicians
to predict the DFS of patients with BC, independent prog-
nostic factors were identified on the basis of the patient’s
clinical information and risk score by performing a multi-
variate Cox regression analysis. Next, a nomogram was con-
structed using the survival rate and “RMS” R package, and a
correction curve was drawn to evaluate the consistency
between the actual and predicted recurrence rates. The pre-
dictive performance of the nomogram was assessed by dis-
crimination and calibration. Moreover, the concordance (C
) index ranged from 0.5 to 1.0. Values between 0.5 and 1.0
represent random opportunities and excellent ability to pre-
dict survival using this model.

2.7. Analysis of Biological Properties and Pathways Related to
the Gene Signatures. KEGG pathway analyses were per-
formed to annotate the biological characteristics of the
ferroptosis-related gene signatures used to construct the risk
models. TCGA expression profile was selected for ssGSEA
using the “GSVA” R package to calculate the scores of each
sample in different functions and to obtain the ssGSEA
scores of each sample corresponding to each function. Fur-
thermore, we calculated the correlation between these func-
tions and risk scores and chose the KEGG pathway with a
Pearson correlation coefficient > 0:4 and p value < 0.05.

2.8. Statistical Analysis. The Student t-test was applied to iden-
tify the differentially expressed FRGs between tumor and nor-
mal tissues and evaluate the differences in ImmuneScore,
StromalScore, and ESTIMATEScore between the risk groups.
The chi-square or Fisher exact test was used to compare the
characteristics between the two groups. The difference in the
ssGSEA score of immune cells or pathways between the risk
groups was evaluated with the Mann–Whitney test, with p
values adjusted with the Benjamini-Hochberg method. The
OS or DFS between the groups was compared using the
Kaplan–Meier analysis with the log-rank test. The indepen-
dent predictors of DFS were identified using univariate and
multivariate Cox regression analyses. All statistical analyses
were performed with the R Version 3.6.3 or GraphPad Prism
Version 8.0 software. All p values were two-tailed, and p values
< 0.05 were considered statistically significant.

3. Results

The detailed workflow of this study is shown in Figure 1. A
total of 696 BC patients from the TCGA-BRCA cohort and
248 BC patients from the GSE21653 cohort were finally
recruited. Of TCGA samples, 60% were randomly selected
as the training set (420 BC samples), and the remaining
40% were allocated as the internal validation set (276 BC
samples). The detailed corresponding clinical information
of the three datasets is summarized in Table 1.

3.1. Classification of BC Based on FRGs. Four FRGs, namely,
TFRC, FANCD2, CHAC1, and CARS1, were selected on the
basis of the significant prognostic value with OS (p < 0:05)
and subjected to consensus clustering analysis (Figure 2(a)).
The “ConsensusClusterPlus” R package was used to divide
the BC samples from the TCGA-BRCA into 2 different clus-
ters. A comprehensive correlation coefficient was used to
determine the optimal k value. Thereafter, the optimal total
cluster number was set to k = 2 (with the two subclasses desig-
nated as clusters 1 and 2; Figures 2(b) and 2(c)). The OS rate
was compared between the 2 clusters, and a significant differ-
ence was found (p = 0:005; Figure 2(d)) in TCGA cohort. The
relationships between the four FRGs and clinical features were
analyzed in TCGA cohort (Figure 2(e)).

3.2. Differential Expression between Clusters and Functional
Enrichment Analysis. By using the “limma” R package with
a FDR < 0:05 and logFC > 1:2, 485 mRNAs were identified
as DEGs between clusters 1 and 2, including 305 upregulated
and 180 downregulated genes. The volcano plot shows the
fold change and statistical significance of the mRNA expres-
sion between the two clusters in Figure S1A. The heat map
depicts the relative expression level of the top 100
upregulated and downregulated genes in Figure S1B.

The GO functional analysis of the potential target genes
revealed 565 categories associated with biological processes,
68 cell component-associated categories, and 107 functional
GO molecular function-associated categories forming the
top 8 categories, respectively (Figures S2A–S2C). The
KEGG functional analysis revealed 23 categories, and the
top 8 categories are shown in Figure S2D.
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StromalScore, ImmuneScore, and ESTIMATEScore were
calculated using the “ESTIMATE” R package. The results
showed that StromalScore was significantly higher in cluster
1 (p < 0:01), and ImmuneScore was higher in cluster 2
(p < 0:01), while no significant difference was observed in
terms of ESTIMATEScore between the two clusters
(Figure 3(a)). Ten immune cell scores were evaluated using
the “MCPcounter” R package, and the results showed that
the immune cell scores of T cells, CD8 T cells, cytotoxic lym-
phocytes, B lineage, NK cells, monocytic lineage, and mye-
loid dendritic cells were higher in cluster 2 than in cluster
1 (Figure 3(b)). The results of the ssGSEA demonstrated that
only the eosinophil and mast cell immune scores were signif-
icantly higher in cluster 1 (p < 0:05). The immune scores of
activated B cells, activated CD4 T cells, activated CD8 T
cells, effector memory CD8 T cells, gamma delta T cells,
immature B cells, memory B cells, regulatory T cells, T follic-
ular helper cells, type 1 T helper cells, type 17 T helper cells,
type 2 T helper cells, activated dendritic cells, macrophage,
MDSC, monocyte, natural killer T cells, and neutrophils
are higher in cluster 2 (p < 0:05; Figure 3(c)). A comparison
of three immune score methods between molecular subtypes
is shown in Figure 3(d) with a heat map.

3.3. Identification of the Prognostic Ferroptosis-Related Gene
Signature. The Kaplan–Meier and univariate Cox analyses
were conducted over the TCGA-BRCA training cohort for
DFS, and 656 potential prognostic genes were identified.

The potential prognostic genes and 60 FRGs were inter-
sected to obtain a list containing six ferroptosis-related
potential prognostic genes, including CARS1, CHAC1,
FANCD2, AIFM2, G6PD, and HMOX1 (Figure S3). The
six ferroptosis-related potential prognostic genes were then
subjected to a DFS-based LASSO Cox regression model
(Figure S4A). When six genes were gathered, the regression
model reached its optimal ability (Figure S4B).

3.4. Relationships between the Expression of 6 FRGs and
Important Clinical Characteristics. High expression of CARS1
has significant positive association with molecular subtype
(p < 0:05) (Table S1). High expression of CHAC1 has close
relationship with T stage, PR, ER, Her-2, menopause status,
and molecular subtype (p < 0:05) (Table S2). High
expression of FANCD2 has significant association with T, N
stage, pathologic stage, PR, ER status, molecular subtype,
and tumor location (p < 0:05) (Table S3). High expression of
AIFM2 has significant association with T stage (p < 0:05)
(Table S4). High expression of G6PD has close association
with pathologic stage, Her-2 status, and molecular subtype
(p < 0:05) (Table S5). High expression of HMOX1 has
significant relationship with menopause status and
molecular subtype (p < 0:05) (Table S6).

3.5. Construction Genes Weighted by Their Coefficients to
Create a Ferroptosis-Related Prognosis Model in TCGA
Cohort. By linearly combining the six FRGs weighted by
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Figure 1: Flowchart of the data collection and analysis.
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their coefficients from the multivariate Cox analysis, a haz-
ard model was constructed using the following formula:

Risk score = ECARS1 × 0:35ð Þ + ECHAC1 × 0:019ð Þ
+ EFANCD2 × 0:32ð Þ + EAIFM2 × −0:25ð Þ
+ EG6PD × 0:076ð Þ + EHMOX1 × 0:18ð Þ:

ð1Þ

ECARS1 is the expression value of the gene CARS1. The rest
are similar to the gene CARS1.

The risk score of each sample was calculated using the
above-mentioned method. The patients in TCGA training
cohort were divided into high- (n = 212) and low-risk groups
(n = 208) according to the optimal cutoff value determined

using the “survminer” R package. Detailed risk scores, sur-
vival information, and ferroptosis-related gene expressions
are presented in Figure 4(a). The ROC analysis is shown in
Figure 4(b), and the ROC curves reach 0.708, 0.626, and
0.685 at 1 year, 3 years, and 5 years, respectively. As shown
in the Kaplan–Meier curves in Figure 4(c), the high-risk
group had a higher probability of recurrence than the low-
risk group (p < 0:001).

3.6. Validation of the Six-Ferroptosis-Gene Signatures Using
the Test Dataset. The robustness of the model was examined
in the test dataset from TCGA test cohort (n = 276), includ-
ing 121 samples in the high-risk group and 155 samples in
the low-risk group, using the same risk formula. The detailed

Table 1: Clinical characteristics of the BC patients used in this study.

Characteristic TCGA [n = 696] (total) TCGA [n = 420]
(training set)

TCGA [n = 276]
(internal validation set)

GSE21653 [n = 248]
(external validation set)

Age (years)

≤65 498 306 192 186

>65 198 114 84 62

Tumor stage

T1-T2 589 358 231 178

T3-T4 107 62 45 63

Lymph node metastasis

Yes 355 209 146 116

No 366 209 127 130

Unknown 5 2 3

TNM stage

I-II 524 326 198 NA

III-IV 172 94 78 NA

Distant metastasis

Yes 9 6 3 NA

No 598 362 236 NA

Unknown 89 52 37 NA

Estrogen receptor status

Negative 159 325 212 107

Positive 537 95 64 139

Progesterone receptor status

Negative 232 278 186 122

Positive 464 142 90 124

Her-2 overexpression

Negative 539 319 220 NA

Positive 157 101 56 NA

Triple negative

Yes 112 70 42 72

No 584 350 234 176

OS status

Survival 619 374 245 NA

Censored 77 46 31 NA

DFS status

Disease-free 603 361 242 169

Disease 93 59 34 79
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Figure 2: Identification of breast cancer subclasses using consensus clustering in the ferroptosis set. (a) Univariate Cox regression analysis.
Forest plot of four significant ferroptosis-related genes associated with the overall survival in breast cancer in the TCGA-BRCA cohort. (b)
Clustering using four ferroptosis-related genes. The patients were divided into clusters 1 and 2. (c) Empirical cumulative distribution
function plot displaying consensus distributions for each k. (d) Survival analysis of the patients in clusters 1 and 2 in TCGA cohort. (e)
The heat map shows the association of the clusters and clinical pathological features based on the four ferroptosis-related genes.
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risk scores, survival information, and ferroptosis-related
gene expressions are also displayed (Figure 4(d)). The areas
under the curve of the time-dependent ROC in 1 year, 3
years, and 5 years were 0.821, 0.678, and 0.657, respectively
(Figure 4(e)). The patients in the high-risk group had a
higher risk of recurrence than those in the low-risk group,
consistent with the former results (Figure 4(f)).

To further test the robustness of the constructed model,
the patients (n = 248) from the GEO21653 cohort were cat-
egorized into high- (113 samples) and low-risk groups (135
samples) according to the same risk formula as described
earlier. Detailed risk scores, survival information, and
ferroptosis-related gene expressions are presented in
Figure 4(g). The ROC analysis is shown in Figure 4(h), and
the ROC curves reached 0.766 at 1 year, 0.630 at 3 years,
and 0.616 at 5 years. As demonstrated in the Kaplan–Meier
curves in Figure 4(i), the high-risk group had a higher prob-
ability of recurrence than the low-risk group (p = 0:014).

3.7. Correlation of the Prognostic Risk Score with Pathological
Features. Significant differences in risk score were found
between the patients with TNM stage (p = 0:025), triple-
negative status (p < 0:0001), estrogen receptor (ER) status
(p < 0:0001), progesterone receptor (PR) status (p < 0:0001),
Her-2 status (p = 0:005), metastasis status at diagnosis
(p = 0:0052), and cluster group (p < 0:0001; Figures 5(a)–
5(g)).

3.8. Survival Analysis Using Prognostic Risk Scores and
Correlations with Pathological Features. The Kaplan–Meier
analysis revealed that the DFS outcome in the high-risk
group was worse than that in the low-risk group with posi-
tive lymph node metastasis (p = 0:0012), negative lymph
node metastasis (p = 0:034), and distant metastasis at diag-
nosis (p < 0:001); T3–T4 tumor stage (p = 0:036); T1–T2
tumor stage (p < 0:0001); positive Her-2 status (p < 0:0001);
positive ER status (p < 0:001); positive PR status (p < 0:001);
triple-negative BC (TNBC; p = 0:0095); I-II TNM stage
(p < 0:001); III–IV TNM stage (p = 0:02); cluster 1 (p =
0:0014); cluster 2 (p < 0:0001); age at diagnosis > 65 years
(p = 0:0019); and age at diagnosis ≤ 65 years (p = 0:0031;
Figures S5A– S5O).

3.9. Expression Validation of the Prognostic Ferroptosis-
Related Gene. The Kaplan–Meier survival curve of 6 prog-
nostic FRGs in the GSE21653 cohort for validation showed
the same trend with training cohort (Figure S6).

The AIFM2 protein expression was downregulated and
the CARS1, CHAC1, FANCD2, G6PD, and HMOX1 protein
expressions were upregulated in BC tissues as compared
with normal tissues in the Human Protein Atlas (Figure 6).

To further verify the accuracy of the six-gene prognostic
signature, we detected the expression levels of CARS1,
CHAC1, FANCD2, AIFM2, G6PD, and HMOX1 in BRCA
and adjacent tissues by using RT-PCR. Ten pairs of samples
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were used in the analysis. The experimental results revealed
that the expression levels of CARS1, CHAC1, FANCD2,
G6PD, and HMOX1 in the BRCA-positive patients were sig-
nificantly upregulated, whereas those of AIFM2 were down-
regulated (Figures 6(a)–6(e)).

3.10. Univariate and Multivariate Cox Analyses of Prognostic
Risk Scores and Individualized Prognostic Prediction Models.
Univariate and multivariate Cox regression analyses were
performed on datasets combined with TCGA-BRCA and
GSE21653. The univariate Cox regression analysis revealed
that the risk scores, age at diagnosis, PR status, ER status,
Her-2 status, tumor stage, TNBC, lymph node metastasis,
and cluster were associated with the DFS rate of the BC
patients (p < 0:05; Figure 7(a)). The multivariate Cox regres-
sion analysis revealed that the risk scores, age at diagnosis,
TNM stage, and tumor stage were the independent risk fac-
tors for predicting the DFS rate of the BC patients (p < 0:001;
Figure 7(b)).

By using the synthesis of the six-ferroptosis-related-gene
signature, a nomogram was generated on the basis of age,
TNM stage, tumor stage, and risk score to predict the prob-
ability of 1-, 3-, and 5-year DFS rates. Several factors were
scored on the basis of the proportion of the contribution to
the recurrence risk as shown in Figure 7(c). The calibration
curve results show that the predicted survival rate is closely
related to the actual recurrence rate (Figure 7(d)). Further-
more, a decision curve analysis was used to compare the
clinical usefulness of nomography with that of age, TNM
stage, and tumor stage based on the threshold probability.
Figure 7(e) shows that the nomogram is an excellent predic-

tive evaluation model and superior to risk score, age, TNM
stage, or tumor stage level alone.

3.11. Gene Set Enrichment Analysis. Seven KEGG pathway
signals with Pearson correlation coefficients > 0:4 and p
values < 0.05 were selected, including DNA replication, mis-
match repair, homologous recombination, cell cycle, oocyte
meiosis, ubiquitin-mediated proteolysis, and progesterone-
mediated oocyte maturation. The Pearson correlation coeffi-
cient between the risk scores and the KEGG pathway signals
is shown in Figure 7(f). Figure 7(g) shows the change in the
ssGSEA score of the KEGG pathway in each sample with
increased risk score.

4. Discussion

In our study, 60 FRGs were extracted from previous studies
[22–25]. We discovered that these FRGs could dichotomize
BC patients into high- and low-risk groups for discrimina-
tion of OS. The functional analyses of DEGs between the
two subgroups also revealed significant differences in
immune-related pathways, including the chemokine and
IL-17 signaling pathways, which warrants further investiga-
tion of the potential association between immunity and fer-
roptosis in BC. Therefore, ESTIMATE was used to quantify
immune cell infiltration and the stromal component
between the low- and high-risk groups. We observed that
the high-risk group had higher ImmuneScores, lower Stro-
malScores, and similar ESTIMATEScores, which suggest
that the high-risk group had higher levels of immune cell
infiltration in the tumor microenvironment. Further explo-
ration revealed that the numbers of activated dendritic cells
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Figure 4: Construction of the prognostic prediction model and model validation. (a, d, g) Risk score (top), disease-free survival (middle) of
the patients, and expression profiles of the six ferroptosis-related genes (bottom) in TCGA training, TCGA internal validation, and
GSE21653 external validation sets. (b, e, h) The areas under the curve of the time-dependent ROC curves show and verified the
prognostic performance of the risk scores in TCGA training, TCGA internal validation, and GSE21653 external validation sets. (c, f, i)
Kaplan–Meier curves for disease-free survival in the high- and low-risk groups in TCGA training, TCGA internal validation, and
GSE21653 external validation sets.
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(aDCs), macrophage, type 1 T helper cells (Th1), activated
CD8 T+ cells, regulatory T (Treg) cells, and neutrophils were
remarkably higher in the high-risk group on the basis of the
enrichment scores of ssGSEA in the TCGA-BRCA cohort,
whereas the numbers of eosinophils and mast cells were sig-
nificantly higher in the low-risk group. These differences
may imply the sophisticated relationships between ferropto-
sis and immunity.

Previous studies demonstrated that higher amounts of
Treg cells, macrophages, and neutrophils usually tend to be
associated with poorer prognosis in some solid tumors
[30–33], which is consistent with our study. We observed
that only eosinophils and mast cells had higher proportions
in the low-risk BC patients. Mast cells, important natural
immune guard with high functional plasticity, are associated
with prolonged patient survival and inhibition of cancer
progression [34]. Mast cells could regulate inhibitory
immune response to stimulate tumor immune activity and
maintain the balance of the tumor microenvironment simi-

lar to the function of programmed cell death 1 (PD-1) and
programmed cell death ligand 1 (PD-L1) [35]. Thus, mast
cells may be another potential treatment target to enhance
the immune response to various stimuli, including signals
and components from the tumor microbiota. Eosinophils,
an antitumor immune system independent of T cells, could
kill cancer cells directly or suppress the growth of tumor
by secreting TNF-α and IL-18 [36]. A study of Hollande
et al. also found that the increased IL-33 expression level
in hepatocellular carcinoma tissue contributes to the differ-
entiation and proliferation of eosinophils and promotes the
expression of chemokine CCL11 in cancer cells, inducing
the recruitment of eosinophils into tumors and subsequent
inhibition of tumor growth [37]. In several clinical studies,
increased peripheral-blood eosinophils were associated with
better prognosis in patients who received CTLA-4 immuno-
therapy [36, 38]. We may consider that the combination of T
cell- and eosinophil-targeted immunotherapy may open a
new avenue for anticancer treatment strategy in solid
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Figure 6: Expression levels of CARS1, CHAC1, FANCD2, AIFM2, G6PD, and HMOX1 in breast cancer and normal breast tissues validated
in the Human Protein Atlas. The bar graph shows the cases with different expression levels of the six genes in breast cancer tissues. Light
blue indicates low expression level; dark blue, low expression level; and shade between the two colors, medium expression level. The
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tumors. On the basis of this study, the underlying interac-
tion mechanism between ferroptosis and mast cells or eosin-
ophils should be investigated further.

Long survival times have been achieved in BC, as the
improvement of the comprehensive treatment of local recur-
rence or distant metastasis has become the main challenge
for clinicians. Previous study has built a ferroptosis score
model and showed a good predictive value for OS in BS
patients [39]. In this study, a novel prognostic model for
DFS combined with 6 FRGs was also established with the
TCGA-BRCA training cohort and revealed a good predictive
value of recurrence in internal and external validation
cohorts. These 6 genes could be roughly divided into three
categories, including (anti) oxidant metabolism (CARS1,
CHAC1, and HMOX1), energy metabolism (AIFM2 and
G6PD), and DNA damage repair (FANCD2). Limited stud-
ies about CARS1 (cysteinyl-tRNA synthetase) have been
reported so far. A previous study revealed that the knock-
down of CARS1 could activate serine biosynthesis and trans-
sulfuration and inhibit ferroptosis by prohibiting the
induction of lipid-based ROS [40]. CARS1 was also recruited
into a multigene signature to predict the prognosis in esoph-
ageal adenocarcinoma and hepatocellular carcinoma [11,
14]. CHAC1 (ChaC glutathione-specific gamma-glutamyl
cyclotransferase 1) degradation of glutathione contributes
to ferroptosis induced by cystine starvation in TNBC cells
via the GCN2-eIF2α-ATF4 pathway [41]. Previous studies
demonstrated that HMOX1 (heme oxygenase-1), a well-
known antioxidant enzyme, could promote the ferroptosis
of tumor cells in breast and renal cancers by involving in
iron supplement and lipid peroxidation [42, 43]. HMOX1
plays important anticancer, anti-inflammatory, antiapopto-
tic, antiproliferative, and antioxidant roles [44]. The under-
lying interaction mechanism between HMOX1 and

ferroptosis warrants investigation. G6PD (glucose-6-phos-
phate dehydrogenase) and AIFM2 (apoptosis-inducing fac-
tor mitochondrial-associated 2) are ferroptosis regulators
related to energy metabolism. G6PD was reported to inhibit
erastin-induced ferroptosis when knocked down in non-
small-cell lung cancer cells by reducing ROS directly under
the pentose phosphate pathway [45]. Other studies also
found that high G6PD expression level was significantly
associated with poor prognosis in bladder and colorectal
cancers [46, 47]. AIFM2, also known as FSP1 (ferroptosis
suppressor protein 1), is considered the key regulator of apo-
ptosis, and overexpression of AIFM2 induces apoptosis and
reduces cell sensitivity to ferroptosis [24, 25]. Several stud-
ies have shown that AIFM2 translocation could promote
the apoptosis of breast, gastric, and liver cancer cells in a
caspase-independent manner [48, 49]. ASAP1 (ArfGAP
with SH3 domain, ankyrin repeat, and PH domain 1) over-
expression could promote the progression of triple-negative
BC by regulating AIFM2 in apoptosis-related signaling
pathway [50]. FANCD2 (fanconi anemia complementation
group D2), like BRCA2, may play an important role in
the recombination DNA repair pathways [51]. Wang et al.
reported that inhibition of FANCD2 could induce DNA
damage and suppress lung cancer progression [52]. A risk
model for predicting therapeutic responses obtained better
predictive efficiency when combined with FANCD2 expres-
sion and tumor mutation burden in lung cancer [53]. In
summary, five of the genes (CARS1, CHAC1, FANCD2,
G6PD, and HMOX1) in the prognostic model have been
reported to contribute to ferroptosis and to be upregulated
in BC tumor tissue, in contrast to AIFM2. Whether these
genes play a role in the prognosis of BC patients by
influencing ferroptosis remains to be elucidated owing to
the limited associated reports on these genes. The KEGG
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Figure 7: Results of the univariate and multivariate Cox regression analyses regarding disease-free survival in TCGA cohort (a, b). A
nomogram of the breast cancer cohort (training set) was used to predict the disease-free survival (c). Calibration maps were used to
predict 1-, 3-, and 5-year survival times (d). A decision curve analysis was used to compare the clinical usefulness of nomography with
that of age, TNM stage, and tumor stage based on the threshold probability (e). A gene set enrichment analysis was performed. (f) The
heat map shows the correlation between the risk scores and the top 7 KEGG pathways and the relationships among the KEGG pathways
(correlation coefficient > 0:4 and p < 0:05). (g) Clustering of 7 KEGG pathways and the heat map show the risk score of each case in the
top 7 KEGG pathways. The horizontal axis represents the breast cancer samples, and the risk score increases from left to right.
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enrichment analysis in our study showed two main poten-
tial pathways, including DNA replication and mismatch
repair. Further basic experiment validations are needed.

Several limitations exist in this study. First, cluster iden-
tification and prognostic model establishment and validation
were conducted with retrospective data from a public data-
base. Therefore, real-world data should be collected and
used to verify the clinical usefulness of our prediction model.
The limited meaningful clinical characteristics provided in
public databases might have reduced the efficiency of our
prediction model, although we tried to minimize the risk
by performing multivariate Cox regression analyses. Second,
only 60 FRGs were recruited in this study. The possibilities
that other genes in the signature may be more strongly
related to other pathways in BC and that more ferroptosis
regulators have been identified owing to the rapid emer-
gence of new studies on ferroptosis are undeniable. Third,
the correlations between risk and biological function in BC
warrant experimental investigation. The six ferroptosis-
related gene markers identified in this study may be poten-
tial prognostic biomarkers that provide new insight into
the research and treatment of BC.

In summary, in this study, we found that the FRGs could
be used to classify BC patients according to different clinical
and molecular features. A novel prognostic model with the
six FRGs was established and showed a good predictive value
of recurrence in the derivation and validation BC cohorts.
However, the applicability of this model still needs valida-
tion in clinical research with large size examples. What is
more, the potential mechanisms between FRGs and biologi-
cal function in BC remain rarely known and need further
exploration.
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