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Background. Inflammation within areas of interstitial fibrosis and tubular atrophy (IF/TA) is associated with kidney allograft
failure. The aim of this study was to reveal new diagnostic markers of IF/TA based on bioinformatics analysis. Methods. Raw
data of IF/TA samples after kidney transplantation and control samples after kidney transplantation were extracted from the
Gene Expression Omnibus (GEO) database (GSE76882 and GSE120495 datasets), and genes that were differentially expressed
between the two groups (DEGs) were screened. Gene Set Enrichment Analysis (GSEA), ESTIMATE and single sample GSEA
(ssGSEA), least absolute shrinkage and selection operator (LASSO) regression analysis, and competing endogenous RNA
(ceRNA) network were used to analyze the data. Results. The results of GSEA revealed that multiple immune-related pathways
were enriched in the IF/TA group, and subsequent immune landscape analysis also showed that the IF/TA group had higher
immune and stromal scores and up to 15 types of immune cells occupied them, such as B cells, cytotoxic cells, and T cells.
LASSO regression analysis selected 6 (including ANGPTL3, APOH, LTF, FCGR2B, HLA-DQA2, and EGF) out of 14 DE-IRGs
as diagnostic genes to construct a diagnostic model. Then, receiver operating characteristic (ROC) curve analysis showed the
powerful diagnostic value of the model, and the area under the curve (AUC) of a single diagnostic gene was greater than 0.75.
The results of ingenuity pathway analysis (IPA) also indicated that DEGs were involved in the immune system and kidney
disease-related pathways. Finally, we found multiple miRNAs that could regulate diagnostic genes from the ceRNA network.
Conclusion. This study identified 6 IF/TA-related genes, which might be used as a new diagnosis model in the clinical practice.

1. Introduction

Kidney transplantation is the primary treatment for patients
with end-stage renal disease [1]. Compared with the dialysis
therapy, it can significantly improve the life quality of
patients. However, due to the shortage of organ donors, only
a limited percentage of patients could receive kidney trans-
plant [2]. In the past few decades, there have been spectacu-
lar improvements in the short-term survival of kidney grafts
owing to the evolution of immunosuppressive and surgical
techniques. Nevertheless, these advances have made a mod-
est contribution to its long-term survival rate, which reflects

the need to improve and maintain the long-term function of
allografts [3].

Interstitial fibrosis and tubular atrophy (IF/TA), a non-
specific lesion induced by various immune and nonimmune
injuries to the graft, largely limits the longevity of graft sur-
vival and function [4]. The clinical symptoms of IF/TA are
not obvious, and this persistent dysfunction may cause irre-
versible damage to the allograft. The detection rate of IF/TA
is as high as 40% in the biopsy at 3-6 months and increases
to 65% at 2 years after kidney transplantation [5]. Moreover,
it has also been reported that the onset of IF/TA is found
within 6 months after transplantation, indicating that earlier
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warning methods were required for prolonging graft func-
tion [6]. Recent discovery of some biomarkers, which can
be loosely grouped into those that mark tubule cell injury
(e.g., kidney injury molecule 1 and monocyte chemoattrac-
tant protein 1) and those that mark tubule cell dysfunction
(e.g., α1-microglobulin and uromodulin), can provide addi-
tional information on risk of chronic kidney disease progres-
sion, and these biomarkers provide new opportunities to
monitor response to therapeutics used to treat chronic kid-
ney disease patients, while at present, the clinically wide
accepted diagnosis of IF/TA mainly depends on the biopsy
results of the transplanted kidney. Herein, more accurate,
noninvasive, and repeatable models for IF/TA diagnosis by
biomarker panels are still needed.

In this study, we observed that immune-related path-
ways were significantly enriched in the IF/TA group through
Gene Set Enrichment Analysis (GSEA) and used public
databases to screen for immune-related differentially
expressed genes related to IF/TA. Using the least absolute
shrinkage and selection operator (LASSO) regression analy-
sis and receiver operating characteristic (ROC) analysis, we
obtained a highly accurate 6 gene diagnostic models
(ANGPTL3, APOH, LTF, FCGR2B, HLA-DQA2, and EGF)
with an area under the curve (AUC) of 0.821. Also, our
study suggested that these diagnostic genes might regulate
several pathways such as amino acid metabolism, inducing
immune responses, and cell activation. It could be assumed
that these biomarkers might be used for early diagnosis of
IF/TA in the future.

2. Materials and Methods

2.1. Data Source. The mRNA sequencing data of IF/TA sam-
ples after kidney transplantation were obtained from the
Gene Expression Omnibus (GEO) database, which included
GSE76882 [1] and GSE120495 [2] datasets. The GSE76882
dataset was used for the main analysis of this study, and
the GSE120495 dataset was used to validate the validity of
the diagnostic model and the expression patterns of the
diagnostic markers. The GSE76882 dataset included samples
of IF/TA with acute rejection (n = 29), IF/TA with inflam-
mation (n = 10), IF/TA without inflammation (n = 42),
biopsy-proven AR (n = 54), and normal functioning trans-
plants (normal; n = 99). Here, only the 42 samples of IF/
TA without inflammation and 99 samples of normal func-
tioning transplants in this dataset were utilized in this study.
For the GSE76882 dataset, which contains 25 renal alloge-
neic biopsies (5 with a diagnosis of acute tubular injury, 5
with T cell-mediated rejection, 5 with IF/TA, 5 with BK
virus-associated nephropathy, and 5 with a functionally sta-
ble allograft recipients), five native kidney biopsies with
interstitial nephritis are also included. The statistics of clini-
cal characteristics of each data set are shown in Table 1.
However, only the relevant sequencing data from the five
IFTA samples and the five recipients with functionally stable
allografts in this dataset were used in the validation analysis
of this study. A total of 2483 IRGs were obtained from the
ImmPort database (Supplementary Table 1). The GEO
database is freely available to the public, and this research

also strictly followed access policies and publication
guidelines; therefore, this study did not require ethics
review and approval by the ethics committee. Figure 1(a)
shows the workflow of this study.

2.2. Gene Set Enrichment Analyses. To explore the related
pathways of the IF/TA group, GSEA was executed to grabble
the enrichment terms related to the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway. The predefined
KEGG pathway gene set (c2.cp.kegg.v7.2.symbols.gmt) was
downloaded from the Molecular Signatures Database
(MSigDB) (http://www.gsea-msigdb.org/gsea/msigdb/).
Briefly, based on the R package GSEA (version 4.1.0), the
genes between the two groups were sorted by the algorithm’s
default Signal2Noise, and the enrichment analysis of the
sorted genes was subsequently performed on the predefined
gene set. P < 0:05 was considered statistically significant.

2.3. Estimation of Immune Cell Type Infiltrations. Estimation
of STromal and Immune cells in Malignant Tumor tissues
using Expression (ESTIMATE) data algorithm was applied
to show the presence of infiltrated immune cells and stromal
cells in tumor tissues, which is denoted by immune score
and stromal score, respectively [7, 8]. And the Wilcoxon test
was used to compare differences between groups. We uti-
lized ssGSEA to estimate the infiltrations of immune cell
types between control and IF/TA groups. Among them, the
immune cells used were derived from research published
by Bindea et al. [9].

2.4. Identification of DEGs in IF/TA. The DEGs were calcu-
lated using the “Limma” version 3.46.0 R package in the
GSE76882 and GSE120495 datasets. DEGs with an absolute
log2 fold change ðFCÞ > 1 and P < 0:05 were considered for
subsequent analysis. Besides, DE-IRGs were obtained by
the intersection analysis of DEGs (in GSE76882 and
GSE120495 datasets) and IRGs in the ImmPort database.

2.5. Selection of Significant Diagnostic Features and Model
Construction with the Training Set. The patients of the
GSE76882 dataset were separated into the training and

Table 1: The clinical characteristics of patients in the GSE120459
and GSE76882 datasets.

Datasets Characteristics No.

GSE120459

STA (stable) 5

ATI (acute tubular injury) 5

TCMR (T cell-mediated rejection) 5

IFTA 5

BKVN (BK-virus nephropathy) 5

ISN 5

GSE76882

ANDR (andrographolide) 40

AR (acute rejection) 54

IFTA 42

IFTA_AR 29

IFTA_i (with inflammation) 10

TX (transplants) 99
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validation sets in a ratio of 7 : 3 using the “set.seed” package
in the R. The penalized Cox regression model with LASSO
penalty was used to select the most useful diagnostic markers
among 14 DE-IRGs, and the optimal values of the penalty
parameter λ were determined by tenfold cross-validations
[10, 11]. After the feature selection, the diagnostic model was
constructed. In addition, the Pearson correlation analysis
was conducted on the expression levels of key genes.

2.6. Model Performance and Validation. The area under the
curve (AUC) from a receiver operating characteristic curve
(ROC) analysis was calculated to test the diagnostic perfor-
mance of the model in the training and validation sets. Also,
the diagnostic performance of each diagnostic gene was
tested by ROC. R package “pROC” was used for drawing
ROC curves [3].

2.7. Single-Gene GSEA. Similarly, c2.cp.kegg.v7.2.sym-
bols.gmt was downloaded from MSigDB as the target set
and single-gene GSEA was detected using GSVA (version
1.38.0) software [4]. In this study, we calculated the correla-
tions of diagnostic genes with all other genes separately and
ranked all genes according to their correlations from the
highest to the lowest, and the ranked genes were used as
the set of genes to be tested to detect the enrichment of
KEGG signaling pathway. Only gene sets with P < 0:05 were
considered as significant.

2.8. Ingenuity Pathway Analysis (IPA). To highlight the
underlying mechanisms regulating the observed changes in
gene expression profiles, Ingenuity Pathway Analysis (IPA)
(version 1-19-00, Qiagen) [5] was performed. The DEGs in
the GSE76882 dataset were first uploaded into Qiagen’s
IPA system for core and disease and function analysis. The
ingenuity knowledge base (genes only) was selected as the ref-
erence set. IPA was performed to identify the canonical and
disease and function pathways associated with the common
DEGs [12]. The results were expressed as z-score [13, 14].

2.9. Construction of ceRNA Network. To predict miRNAs
and lncRNAs that may be related to diagnostic genes, we
downloaded the transcript sequences of 6 diagnostic genes
from the National Center for Biotechnology Information
(NCBI). Meanwhile, we obtained human microRNA
sequences from the miRbase (version 22, https://www
.mirbase.org/) [6]. Then, we used miRanda tool (http://
www.microrna.org/microrna/home.do) to predict the com-
bination of diagnostic genes and microRNAs. In this case,
the combined score threshold was set to 170 (the default is
140). Next, we used the starBase (version 2.0, http://
starbase.sysu.edu.cn/starbase2/) [7] to predict the lncRNA
that may bind to the microRNA obtained above. In this
way, we had a molecular interaction network of mRNA-
microRNA-lncRNA.

2.10. Statistical Analysis. All analyses were conducted using
R software. ssGSEA and single-gene GSEA were constructed
using the R package GSVA [15]. The two-tailed paired t-test
was used for data of LTF, FVGR2B, HLA-DQA2, EGF,
ANGPTL3, and APOH expressions at mRNA level. All statis-

tical tests were two-sided and P < 0:05 were considered sta-
tistically significant.

3. Results

3.1. IF/TA Group Closely Related to Immune-Related
Pathways. To explore the underlying pathways of the IF/
TA, we conduct GSEA-KEGG comparing the control group
(n = 99) with the IF/TA group (n = 42) in 141 GSE76882
samples of the whole set. In the IF/TA group, 15 immuno-
logical characteristics including “antigen processing and pre-
sentation,” “autoimmune thyroid disease,” “B cell receptor
signaling pathway,” “cell adhesion molecules (CAMs),”
“chemokine signaling pathway,” “cytokine-cytokine receptor
interaction,” “Fc epsilon RI signaling pathway,” “Fc gamma
R-mediated phagocytosis,” “JAK-STAT signaling pathway,”
“MAPK signaling pathway,” “natural killer cell-mediated
cytotoxicity,” “NOD-like receptor signaling pathway,” “pri-
mary immunodeficiency,” “T cell receptor signaling path-
way,” and “Toll-like receptor signaling pathway” were
enriched. Not surprisingly, it was also found that “allograft
rejection” and “graft versus host disease” pathways were sig-
nificantly enriched. Also, the “pathways in cancer” was
closely related to it (Supplementary Figure 1). In the
control group, the enriched Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways were mainly focused on
the amino acid metabolism process (including valine
leucine, isoleucine, lysine, arginine, proline, and histidine).
However, there was no obvious enrichment of oncology
features (Supplementary Table 2).

3.2. Immune Landscape Analysis of IF/TA Group and
Control Group. Inspired by the above results, we turned
our attention to the immune microenvironment of IF/TA.
The immune and stromal scores were analyzed using the
Estimation of STromal and Immune cells in Malignant
Tumor tissues using Expression (ESTIMATE) data algo-
rithm. These results show that the higher immune, stromal,
and ESTIMATE scores were associated with IF/TA (vs. con-
trol, Figures 1(a)–1(c), P < 0:0001).

We employed the ssGSEA algorithm to analyze the
immune cell infiltration of each sample in the GSE76882
dataset (n = 141) based on the 24 immune cells. The abun-
dance of immune cells in ssGSEA is shown in Figures 1(d)
and 1(e). The results revealed that activated dendritic cells
(aDC), B cells, CD8 T cells, cytotoxic cells, DC, interdigitat-
ing DC (iDC), mast cells, NK CD56bright cells, NK
CD56dim cells, plasmacytoid DC (pDC), T cells, effector
memory (Tem), Gamma delta T cells (Tgd), T helper1
(Th1) cells, and Th2 cells were increased in the IF/TA group
and eosinophils, NK cells, and regulatory cells (TReg) were
depleted in number, which implied that immune-related
genes (IRGs) may play an essential role in the IF/TA
population.

3.3. Identification of IF/TA-Related DE-IRGs. A total of 164
and 1155 DEGs were identified from the GSE76882 and
GSE120495 datasets, respectively (Figures 2(a) and 2(b)).
We downloaded 2483 IRGs from the ImmPort database.
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Figure 1: Continued.
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By the intersection analysis, nine cogenes were found among
the above genes (164 DEGs from the GSE76882 dataset,
1155 DEGs identified from the GSE120495 dataset, and 2483
IRGs), which were considered as DE-IRG (Figure 2(c)).
Interestingly, the trends of these gene expressions were sim-
ilar in GSE76882 and GSE120495 datasets. Among them,
EGF, ANGPTL3, and APOH showed downregulated expres-
sion and 6 genes had upregulated expression in the IF/TA
as compared to control samples as shown in the heatmap
(Figures 2(d) and 2(e)).

3.4. Identification and Evaluation of IF/TA Diagnostic Genes.
As the diagnosis is of great importance for IF/TA patients,
we further analyzed whether DE-IRGs contributed to the
accurate diagnosis of IF/TA. The 141 samples in the
GSE76882 data set were randomly divided into a training
set and a validation set in a 7 : 3 ratio by the glmnet package
of R. Based on the LASSO regression with 10-fold cross-val-
idation, we finally determined that 6 genes (LTF, FCGR2B,
HLA-DQA2, EGF, ANGPTL3, and APOH) were enrolled in
the final diagnostic model for IF/TA (Figures 3(a) and
3(b)). As shown in ROC analysis, the AUCs of our model
reached 0.821 and 0.757 in the training set and validation
set, indicating a satisfactory accuracy of prediction
(Figures 3(c) and 3(d)). Then, we checked the ability of a
single gene to distinguish IF/TA from normal samples in
the GSE76882 dataset. The results were proved to be satis-
factory as the AUC of all diagnostic genes was greater than
0.75 (Figure 3(e)). Moreover, IF/TA and normal samples in
the GSE120495 dataset were also clearly distinguishable by
these genes (all AUC > 0:9; Figure 3(f)). Here, based on the
previous findings (Figures 2(d) and 2(e)), we further plotted
box plots designed to clearly demonstrate the expression
variations of the six diagnostic genes in the GSE76882

(Figure 3(g)) and GSE120495 (Figure 3(h)) datasets. The
results showed that LTF, FCGR2B, and HLA-DQA2 were ele-
vated in the IF/TA group of the above two datasets, while the
remaining 3 diagnostic genes (including EGF, ANGPTL3,
and APOH) were overexpressed in the control group. In
addition, the Pearson correlation analysis was conducted
on the expression levels of six key genes. The results
showed that ANGPTL3 was significantly positively corre-
lated with APOH, and genes EGF, APOH, and ANGPYL3
were negatively correlated with LTF, FCGR2B, and HLA-
DQA2. Moreover, HLA-DQA2 positively correlated with
LTF and FCGR2B, and gene EGF positively correlated with
ANGPTL3 and APOH, respectively (Figure 3(i)). Mapping
these six genes into the string database, we can observe
that there is less direct interaction between these genes
(Figure 3(j)), which suggests that these genes may carry
different information and play a role in their respective
biological pathways.

3.5. Pathway Enrichment Analysis of Diagnostic Genes. To
further explore the potential pathways of the six diagnostic
genes, we performed a single-gene GSEA-KEGG analysis in
the GSE76882 dataset.

For the highly expressed ANGPTL3 in the control group,
single-gene GSEA revealed a total of 163 KEGG pathways, of
which 97 pathways were significantly enriched in the IF/TA
samples (NES > 0, P < 0:05), and 66 pathways were enriched
in the control group (NES < 0, P < 0:05). The first 10 path-
ways are shown in Figure 4(a). Figure 4(b) shows the top
ten pathways related to the diagnostic gene APOH, which
was also highly expressed in the control group. A total of
101 related pathways were enriched in IF/TA samples, and
69 were enriched in normal samples. In addition, a total of
73 EGF-related pathways were enriched in IF/TA samples,
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Figure 1: Work flow chart and immune landscape analysis of IF/TA group and control group. (a) Work flow chart of this study, drawn with
online tool SangerBox (http://vip.sangerbox.com). (b–d) The immune and stromal scores were analyzed using the ESTIMATE algorithm (vs.
control, P < 0:0001). (e) Heatmap of immune cell infiltration. Each small square represents each immune cell gene set and its color
represents the size of the gene expression. The greater the expression, the deeper the color (red is high expression and blue is low
expression). The first line represents sample grouping, lake blue represents control sample, and pink represents IF/TA sample. Each row
represents the expression of each gene set in different samples, and each column represents the expression of all gene sets in each
sample. (f) The abundance of immune cells in ssGSEA. ∗ in the figure is a significance marker, ∗ stands for P < 0:05, ∗∗ stands for P <
0:01, ∗∗∗ stands for P < 0:001, and ∗∗∗∗ stands for P < 0:0001.
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Figure 3: Continued.
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and 81 were in normal samples (Figure 4(c)). In a compre-
hensive analysis, we found that the 3 diagnostic genes over-
expressed in the control group were significantly related to
the metabolic process of multiple amino acids (such as cys-
teine, methionine, valine, leucine, lysine, and arginine) in
the IF/TA samples. In the control group, these genes were
significantly related to the differentiation of a variety of
immune cells, especially Th1, Th2, and Th17 cells. Mean-
while, we also found that ANGPTL3, APOH, and EGF were
involved in the “allograft rejection” and “graft versus host
disease” pathways in the control group (Supplementary
Tables 3–5).

Figures 4(d)–4(f), respectively, show the top 10 signifi-
cantly enriched pathways of the 3 diagnostic genes that were
highly expressed in the IF/TA group. The results cleared that
they were all involved in the “pathways in cancer,” “Herpes
simplex virus 1 infection,” “cytokine-cytokine receptor inter-
action,” “human T cell leukemia virus 1 infection,” and “Sal-
monella infection” pathways. In the IF/TA group, on the
other hand, FCGR2B, HLA-DQA2, and LTF had participated
in a variety of immune-related pathways, such as “MAPK
signaling pathway,” “NOD-like receptor signaling pathway,”
“JAK-STAT signaling pathway,” and “PI3K-Akt signaling
pathway. These genes were related to the metabolism of
multiple amino acids in the control group.

3.6. Correlation Analysis between Diagnostic Genes and
Differentially Expressed Immune Infiltrating Cells. Inspired
by the above results, the Pearson correlation analysis
showed that the diagnostic genes with increased expression
in the IF/TA group had a significant positive correlation

with all differentially expressed immune infiltrating cells
except eosinophils, NK cells, and TReg. Conversely, com-
pared to the control group, the downregulated diagnostic
genes were significantly negatively correlated with almost
all differentially expressed immune infiltrating cells (except
eosinophils, NK cells, and TReg) (Figure 5). A clearer scat-
ter plot of the relationship between diagnostic genes and
differentially expressed immune infiltrating cells is shown
in Supplementary Figures 2–7.

3.7. IPA of the IF/TA-Related DEGs. To fully understand the
potential functions of diagnostic genes, we further per-
formed IPA on IF/TA-related DEGs in the GSE76882 data-
set. Canonical pathway analysis showed that these DEGs
were involved in the activation and inhibition of many
immune-related pathways (Figure 6(a)), such as “differential
regulation of cytokine production in intestinal epithelial cells
by IL-17A and IL-17F” (z − score = 2), “acute phase response
signaling” (z − score = 2:449), “complement system”
(z − score = 1), “role of hypercytokinemia/hyperchemokine-
mia in the pathogenesis of influenza” (z − score = 2:236),
“natural killer cell signaling” (z − score = 2:449), “LXR/RXR
activation” (z − score = −1:342), and “dendritic cell matura-
tion” (z − score = 2). We found that APOH was involved in
the regulation of “LXR/RXR activation” and “cute phase
response signaling.” HLA-DQA2 played a key role in
“MSP-RON signaling in macrophage pathway” and “sys-
temic lupus erythematosus in T cell signaling pathway.” Fur-
thermore, EGF was also related to many pathways, such as
“breast cancer regulation by Stathmin1,” “HER-2 signaling
in breast cancer,” and “CREB signaling in neurons”
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Figure 3: Identification and evaluation of IF/TA diagnostic genes. (a and b) The LASSO regression with 10-fold cross-validation of LTF,
FCGR2B, HLA-DQA2, EGF, ANGPTL3, and APOH. (c) The AUC of diagnostic model in the training set. (d) The AUC of diagnostic
model in the validation set. (e) The AUCs of all 6 diagnostic genes in the GSE76882 dataset. (f) The AUCs of all 6 diagnostic genes in
the GSE120495 dataset. (g and h) The expression patterns of 6 diagnostic genes from the GSE76882 and GSE120495 datasets. ∗ in the
figure is a significance marker, ∗ stands for P < 0:05, ∗∗ stands for P < 0:01, ∗∗∗ stands for P < 0:001, and ∗∗∗∗ stands for P < 0:0001.
(i) Correlations between six key genes. The greater the correlation, the deeper the color (red is positive correlation and blue is negative
correlation). (j) Protein interaction network of six genes.
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(Supplementary Table 62). Moreover, disease and functional
pathway analysis showed that IF/TA-related DEGs were
closely related to “cellular movement,” “immune cell
trafficking,” “inflammatory response,” and “organic injury
and abnormalities (Figure 6(b)). Interestingly, they also

played an indispensable role in “renal and urological
disease” and “renal and urological system development and
function” (Supplementary Table 7).

Additionally, we used IPA to predict the interaction net-
work of diagnostic genes (EGF and LTF (Supplementary
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Figure 4: Pathway enrichment analysis of diagnostic genes. A single-gene GSEA-KEGG analysis in the GSE76882 dataset was performed to
explore the potential pathways of the six diagnostic genes. (a) ANGPTL3, (b) APOH, (c) EGF, (d) FCGR2B, (e) HLA-DQA2, and (f) LTF.
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Figure 6: Continued.
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Figure 8A), ANGPTL3 (Supplementary Figure 8B), FCGR2B
and APOH (Supplementary Figure 8C), and HLA-DQA2
(Supplementary Figure 8D)) and other DEGs. To
comprehensively analyze the interaction of diagnostic
genes, we merged the above four independent networks
(Supplementary Figure 8E). The results showed that the
relationship between these diagnostic genes was intricated,
and they could form an interaction network through
directed or undirected interaction with other DEGs, which
was worthy of further study.

3.8. Construction of ceRNA Network for Diagnostic Genes. In
addition, to further reveal the possible role network of diag-
nostic genes, we had also reconstructed the ceRNA network.
Through prediction, we finally obtained a ceRNA network
with 310 nodes and 392 edges. The result showed that has-
let-7f-5p, hsa-miR-155-5p, has-miR-770-5p, has-miR-3164,
has-miR-1277-5p, has-miR-136-5p, hsa-miR-3145-3p, has-
miR-642a-3p, and has-miR-3918 were linked to multiple
diagnostic genes and lncRNAs and may play an important
role in IF/TA. Furthermore, we also found that hsa-miR-
548c-3p could simultaneously regulate EGF and FCGR2B

(Figure 6(c)). Unfortunately, APOH did not appear in the
ceRNA network, and it may have a unique network of rela-
tionships, which needed to be further explored.

4. Discussion

IF/TA occurs in the early stage after kidney transplantation,
gradually induces chronic fibrosis of the transplanted kidney,
and ultimately causes renal failure [4]. Although there have
been many studies on the molecular mechanism involved in
this pathophysiological process, the detection method of the
process is rare [16]. Meanwhile, a biopsy of the transplanted
kidney, a relatively reliable detection method, obviously does
not suitable for multiple tests. Therefore, there is an urgent
need for diagnostic molecule markers.

As widely accepted, the occurrence of IF/TA is closely
related to inflammation, and the inflammation in fibrosis
areas (i)-IF/TA score which derived from the BANFF score
is used to evaluate the degree of fibrosis after kidney trans-
plantation [17]. Multiple inflammation interaction and
related pathways consequently induced fibroblasts infiltra-
tion, which promotes the formation of extracellular matrix

(c)

Figure 6: IPA of the IF/TA-related DEGs and construction of ceRNA network for diagnostic genes. (a) Canonical pathway analysis. Blue
indicates that the corresponding pathway is inhibited and orange indicates activation. (b) Disease and functional pathway analysis. (c) The
ceRNA network with 310 nodes and 392 edges were reconstructed to further reveal the possible role network of diagnostic genes. (red
square, mRNA; yellow diamond, lncRNA; and blue circles, miRNA).

11Journal of Immunology Research



and irreversible fibrosis and ultimately leads to the loss of
renal function [18]. In the initial stage of the profibrotic pro-
cess, the intragraft inflammation is activated and several
proinflammatory and profibrotic cytokines and adhesion
molecules are secreted by tubular cells with the recruitment
of inflammatory infiltrate (lymphocytes, macrophages, and
neutrophils) that activate peritubular capillary endothelial
cells and facilitate the recruitment of new interstitial mono-
nuclear cells [19]. Besides, ischemia/reperfusion injury dur-
ing transplantation contributes to inflammation and
fibrosis through reactive oxygen species (ROS) production,
mitochondrial dysfunction, and activation of heparanase
that induces epithelial to mesenchymal transition [20]. Our
results of ssGSEA analysis presented that there were 24 types
of immune infiltrating cells increased in IF/TA samples
including macrophages and myofibroblasts, except eosino-
phils, NK cells, and Treg cells. Macrophages are a major
source of TGF-β1, which is significantly higher in IF/TA tissue
and induces myofibroblast differentiation and the production
of extracellularmatrix (ECM) proteins [21, 22]. Previous study
reported that insufficient degradation of ECM production-
deposition could change the balance in the direction of IF/
TA [23, 24]. This was consistent with our ssGSEA analysis,
in which macrophages did infiltrate a lot in the IF/TA group,
accompanied by the release of a variety of cytokines. Conse-
quently, these cytokines (such as MIP-1, MIP-2, and MCP-
1) can promote the transformation of mesenchymal fibro-
blasts and tubular epithelial cells into myofibroblasts [25].
Meanwhile, the inactivation of matrix protein degrading
enzymes causes the enhanced activity of protease inhibitors
and induces tubular interstitial fibrosis that occurs finally [26].

For early diagnosis and detection of IF/TA, we found
that EGF, LTF, ANGPTL3, FCGR2B, ApoH, and HLA-
DQA2 genes might be worthy of further investigation. They
were closely related to immune cells other than eosinophils,
NK cells, and Treg cells, and complete consistency in each
immune cell whatever was high or low expression. Among
them, we noticed that the expression of ANGPTL3 and
ApoH genes were both reduced in IF/TA group. ANGPTLs
are a family of secreted glycoproteins expressed in the liver
that share common domain characteristics with angiopoie-
tins [27]. ANGPTL3, as one of the ANGPTLs family, has a
proinflammatory, proangiogenic effect and a negative effect
on cholesterol efflux, implying additional proatherosclerotic
properties [28]. Genetic and clinical studies have demon-
strated that loss-of-function variants in ANGPTL3 are asso-
ciated with decreased plasma levels of triglycerides (TGs),
low-density lipoprotein cholesterol (LDL-C), and high-
density lipoprotein cholesterol (HDL-C) [29]. Moreover,
researchers report that ANGPTL3 is downregulated in IF/
TA [23]. On the other hand, ApoH is a multifunctional
plasma glycoprotein that has been associated with negative
health outcomes. ApoH regulation may contribute to
chronic inflammatory disease, diabetes type 2, and age-
related cognitive performance [30]. In our study, through
the enrichment signaling pathway analysis of diagnostic
genes, we found that ANGPTL3 and ApoH both exist in
the pathways related to fatty acid degradation, and both
low expressed in the IF/TA group with negative correlation.

Fatty acid metabolism is reported to be altered with the
downregulation of enzymes and regulators of fatty acid oxi-
dation which is mediated by the reduced activity of peroxi-
some proliferator-activated receptor-α (PPARα) and
peroxisome proliferator-activated receptor-gamma coactiva-
tor-1α (PGC1α) [31]. Consistently, in patients with hyper-
lipidemia, the expression of ANGPTL3, APOA1, TG, and
LDL is increased, while PPARα is decreased [32]. Our result
presented the same trend as ANGPTL3 and ApoH genes
were both reduced in IF/TA group, and we observed that
those genes were both related to allograft rejection and
graft-versus-host disease. Based on these, we suggested that
the two genes might have a synergistic protective effect
through PPARα regulation in the fatty acid metabolism
pathway in IF/TA group, and the combined analysis of them
might improve the diagnostic specificity. Moreover,
FCGR2B, HLA-DQA2, and LTF are involved in tumor or
organ transplantation [33–35]. It is reported that HLA-
DQA2 is a HLA class II molecule expressed in the surface
of antigen-presenting cells and involved in the recognition
of peptide antigens by CD41 T cells [36]. Our results pre-
sented that FCGR2B, HLA-DQA2, and LTF were highly
expressed in the IF/TA group and involved in related path-
ways such as APK, NOD-LIKE, SAK-STAT, and PI3K-
AKT. These classical pathways have been validated to affect
the kidney function after transplant. For instance, carbamy-
lated erythropoietin can promote long-term kidney allograft
survival through activation of PI3K/AKT signaling [37].

Nowadays, the importance of miRNA has been stressed
in the development of all kinds of diseases including kidney
transplantation. We predicted the ceRNA network based on
above 6 diagnostic genes and presented that has-let-7f-5p,
hsa-mir-155-5p, has-mir-770-5p, has-mir-3164, has-mir-
1277-5p, has-mir-136-5p, hsa-mir-3145-3p, has-mir-642a-
3p, and has-mir-3918 might be the core microRNAs.
Among them, urinary hsa-mir-155-5p has been found as a
prognostic and predictive biomarker of rejection, graft out-
come, and treatment response in kidney transplantation
[38]. hsa-mir-155-5p can also regulate the pathogenesis of
renal fibrosis via targeting SOCS1 and SOCS6 [39]. More-
over, has-mir-136-5p can improve renal fibrosis by targeting
SYK and inhibition of TGF-β1/Smad3 signaling pathway
[40]. has-mir-770-5p can cause podocyte injury via targeting
E2F3 in diabetic nephropathy [41]. However, the relation-
ship between other microRNAs and renal dysfunction needs
further investigations.

Unfortunately, the limitations of this study cannot be
ignored. We regretted that we were unable to obtain a suffi-
cient quantity of clinical samples of IF/TA within a tight
timeframe, and therefore, in vitro experimental validation
could not be carried out in the present. Certainly, we will
spare no effort to further reveal the mystery behind IF/TA
after kidney transplantation.

5. Conclusion

In summary, this study focused on bioinformatics analysis of
the DE-IRGs in IF/TA after renal transplantation. Six diag-
nostic genes (ANGPTL3, APOH, EGF, FCGR2B, HLA-
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DQA2, and LTF) were confirmed as the possible candidates
for future applications.
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