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N6-methyladenosine (m6A) is the most common epigenetic modification existing in eukaryocyte transcripts. However, genes
related to m6A modification in oral squamous cell carcinoma (OSCC) are still unclear. Here, methylated RNA
immunoprecipitation sequencing (MeRIP-Seq) was performed to map the m6A landscape in OSCC and corresponding
controls. The m6A peaks are always distributed in the junction of the 3′-untranslated regions (3′-UTRs) and the coding
sequences (CDS) of mRNAs, as well as the entire genome of long noncoding RNA (lncRNA). Furthermore, enrichment
analysis showed that differentially methylated genes were significantly enriched in NF-kappa B signaling pathway, Hedgehog
signaling pathway, etc. In summary, our findings reveal the landscape of m6A modification on mRNAs and lncRNAs in OSCC,
which may provide key clues for the precision-targeted therapy of OSCC.

1. Introduction

Similar to histones and DNAs, messenger RNAs (mRNAs)
and noncoding RNAs (ncRNAs) can be likewise chemically
modified. In fact, all biological macromolecules are modified
in an extremely specific and efficient way to achieve the func-
tions for which they are designed. In addition, RNA methyla-
tion and demethylation afflict primary microRNAs (pri-
miRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs),
and enhancer RNA (eRNAs) (1, 2). Nowadays, RNA modifi-
cations and their functions are increasingly becoming familiar
and understood due to the dramatic development of high-
throughput sequencing technologies. Meanwhile, these RNAs
can function as competing endogenous RNAs (ceRNAs) or
natural miRNA sponges to form long noncoding RNA-
(lncRNA-) miRNA-mRNA ceRNA networks and competi-
tively bind to miRNAs for communication and coregulation.
Therefore, they exert enormous impacts on gene regulatory
networks and human diseases (3).

With deeper investigations of RNA modifications, it has
been discovered that there are over 150 dissimilar methods,
including N6-methyladenosine (m6A), 5‐methylcytosine
(m5C) in RNA, N1‐methyladenosine (m1A), 7‐methylguano-

sine (m7G), pseudouridine, and uridylation (U-tail) (4–6). Cur-
rent research has reported m6A as the most common and
conserved epigenetic modification. With the participation of
m6A methyltransferases (writers), demethylases (erasers), and
binding proteins (readers), m6A is engaged in cell proliferation,
differentiation, invasion, migration, metabolism, apoptosis,
and pyroptosis to control cell functions, including embryonic
development (7, 8), spermatogenesis (9), and tumor growth
or inhibition (10, 11), by manipulating diverse biological pro-
cesses, such as RNA stability, splicing, exportation, localization,
translation, export, and pri-miRNA processing.

As reported, m6AVar, a comprehensive database, involves
various m6A-associated changes that have an unrecognized
possibility to affect the m6A modification. M6AVar can be
regarded as an extremely critical auxiliary and research
recourse to reveal the interactions of m6A-associated macro-
molecules with conditions and disorders. In this database,
methylated RNA immunoprecipitation with next generation
sequencing (MeRIP-Seq) is applied to find m6A-associated
mutations and fill them in (12).

In the meantime, MeRIP-Seq has been employed in several
studies to investigate the mechanisms underpinning m6A in
different diseases. Liu et al. used MeRIP-Seq and MeRIP-PCR
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to find that METTL3 could promote OSCC proliferation and
metastasis through the m6A modification in the 3′ UTR of
BMI1 mRNA (13). Zhang et al. observed a consensus RRACH
motif approach in both preferential distributions of m6A peaks
near the stop codon and m6A methylome on zebrafish using
MeRIP-Seq and m6A individual-nucleotide-resolution cross-
linking and immunoprecipitation with sequencing. The down-
regulation of m6A is related to the halt of hematopoietic stem/
progenitor cell (HSPC) emergence (7). Moreover, our prelimi-
nary study found that methyltransferase-like protein 3
(METTL3) increased the stability of c-Myc by establishing
m6Amodification on the 3′ untranslated regions (3′UTRs; near
the stop codon) of c-Myc to influence oral squamous cell carci-
noma (OSCC) cell invasion, migration, and proliferation,
which revealed the relationship with the negative prognosis
and tumorigenesis of OSCC patients (14).

However, the function of m6A modification in OSCC still
lacks comprehensive studies and adequate understanding. In
this context, our research is aimed at thoroughly investigating
the effects of m6Amodification on OSCC throughMeRIP-Seq
and analyzing the differences between the normal function
and tumor tissues. Human aortic endothelial cells (HAEC)
(15) were used as control to compare with human tongue
phosphorous carcinoma cells (SCC25). Afterward, directions
for further research and the application of m6A were found
in the area of microarrays, probes, and screening.

2. Results

2.1. M6A-Specific Peak Sequence Motif Analysis. A motif is
described as a specific base sequence that has a high affinity
for certain proteins in the apparent data analysis. In addition,
a sequence motif is an extensive nucleotide or amino acid
sequence pattern in genetics. M6A-specific motif implies a spe-
cific base sequence RNA that is modified by m6A. A series of

IUPAC codes were yielded after the sequence of cell culture,
library preparation, and MeRIP-Seq (Figures 1(a) and 1(b)).
The name of the motif was derived from the IUPAC codes
for nucleotides which had different letters to represent 15 prob-
able assemblies. Although the position weight matrix was not
completely synonymous, the name itself was an expression of
the motif as the motif was generated from the sites that were
discovered to match the letters given in the name. For the top
5000 peaks, the base sequences were extracted by widening
100bp from the upstream and downstream directions, respec-
tively, and then, the MEME software was utilized to predict the
motif of these base sequences. Comparisons between the two
groups (HAEC IP vs. HAEC input and SCC25 IP vs. SCC25
input) indicated that the nucleotide acid sequence GGAC was
a frequently appearing motif. In the peaks identified by m6A-
Seq data with good quality, “GGAC” predominantly arose at
the top of the motif results (Figure 2).

2.2. Analysis of Differences between the Two Groups. In order
to study the differences in m6A sites between the two groups,
we processed the peaks between groups as follows: (A) the
peaks in the group (the common region and the intersection
part were obtained) were integrated into a whole peak file;
(B) the peaks between the groups (the union region and
the union part was used) were merged into one peak file;
(C) the signal value of each sample was counted in the peak
interval merged between the groups; (D) as per the signal
value of the two groups (SCC25 vs. HAEC), their respective
IP samples were compared with the corresponding input
samples to obtain the E-score value (enrichment score)
and calculate the differences in the E-score value between
the two groups. The difference peaks were determined with
the criteria of the mean E-score value of the two groups
greater than 6 and the multiple log2 values of the E-score dif-
ference greater than 1 (or less than -1).
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Figure 1: MeRIP-Sep and peak calling analysis. (a) As shown in the flowchart, each group comprised two types of sample RNAs, that is,
immunoprecipitation (IP) samples and input control samples, which were fragmented into ~100 nucleotides and immunoprecipitated
with m6A-specific antibodies. (b) Following the library construction, high-throughput sequencing, and bioinformatics analysis, the
location of m6A in the whole transcriptome could be provided. Peak calling referred to the use of certain statistical methods to detect the
area (called peak) where the reads were remarkably enriched in RNA, as a candidate for m6A modification sites. After the peak was
obtained, peak sequence motif and peak annotation analyses were performed in the peak to further explore the direction of interest.
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By exhibiting the involved upregulated and downregu-
lated transcripts, the volcano plot revealed the distinct
expression of transcripts in the MeRIP-Seq analysis. The
abscissa represented the mean E-scores of the two groups,
while the ordinate indicated the multiple log2 values of the
E-score difference in the two groups (Figure 3).

2.3. Peak Frequency Distribution in the Transcript Area.
Theoretically, the m6A peak of mRNAs should be enriched
near the 3′UTR. A more intuitive understanding of the data
characteristics can be obtained based on the distribution of
peaks in the transcript area. The R software package Guitar
was applied to calculate the frequency of peaks falling on
each locus in mRNA and lncRNA transcript regions for each
sample, followed by the plotting of a frequency distribution
map. The abscissa stood for the 5′UTR, coding sequences
(CDS), the 3′UTR of mRNA transcripts, and the entire
interval of lncRNAs, whereas the ordinate marked the fre-
quency of peaks falling on these regions.

The Integrative Genomics Viewer (IGV) tool was applied
to discover the m6A sites. The m6A peak distribution on
mRNAs was compatible with the theory. From peak frequency

distribution, it was noted that the m6A peaks were always dec-
orated in the head of 3′UTRs and the tail of CDS of target
functional mRNAs. While the distribution on lncRNAs sug-
gested that the m6A modification on lncRNAs showed no
obvious peak and could appear in various parts of lncRNAs
(Figure 4(a)). These regions controlled biological activities by
methylation or demethylation. Such decoration was found in
EGFR, FOXM1, MYC, and TRIM11 of mRNAs and
LINC00163, LINC00958, MIR210HG, and PICSAR of
lncRNAs (Figure 4(b)).

2.4. Peak Distribution in the Functional Area. The R software
package ChIPseeker was adopted to retrieve the genes covered
by each peak and annotate the functional areas covered by it,
also called peak annotation analysis, followed by the calcula-
tion of the peak distribution in the functional area covered.
Following that, the same R software package was utilized to
plot the statistical results into a histogram where all samples
were compared together and plot each sample as a pie chart
for separate viewing. In the histogram, the ordinate indicated
the sample, and the abscissa stood for the ratio of peaks in each
functional area. The pie charts displayed the exact percentage
of peaks in each functional area. As reflected in the volcano
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Figure 2: M6A-specific peak sequence motif analysis. In genetics, a sequence motif is a widespread nucleotide or amino acid sequence
pattern. In the apparent data analysis, a specific base sequence with a high affinity to certain proteins was generally defined as a motif.
M6A-specific motif meant a specific base sequence RNA which was modified by m6A. The name of the motif was created using the
IUPAC codes for nucleotides which had dissimilar letters to express the 15 probable assemblies. The name itself was an expression of the
motif although the position weight matrix was not diametrically synonymous as it was produced from the sites that were found to match
the letters given in the name. The E-value was the enrichment P value multiplied by the number of candidate motifs tested. The
enrichment P value was calculated using Fisher’s exact test for the enrichment of the motif in the positive sequences. The counts used in
Fisher’s exact test were made after the erasing of the sites that matched the previously found motifs. Unerased E-value was the E-value
of the motif calculated without erasing the sites of the previously found motifs.
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plot, the proportions of different functional areas in upregu-
lated and downregulated transcripts were similar to their cor-
responding transcripts (Figure 5).

2.5. Gene Ontology (GO) Enrichment Analysis. GO is an
international standardized gene function classification sys-
tem. It was created mainly to resolve the confusion in the
definition of the same gene in different databases and the
confusion in the functional definition of the same gene in
different species. GO standard vocabularies consist of three
aspects: biological process (BP), molecular function (MF),
and cellular component (CC) (16).

We first downloaded GO annotations from NCBI (http://
www.ncbi.nlm.nih.gov/), UniProt (http://www.uniprot.org/),
and the Gene Ontology (https://www.geneontology.org/).
GO annotations were performed for all neighboring genes of
each peak to collect, and GO function items were classified
into MF, BP, and CC levels. Significant GO items were identi-
fied using Fisher’s exact test to find the gene functions that
might be orchestrated or mediated by transcription factors.
The false discovery rate (FDR) was applied to correct the P
values (Figures 6(a) and 6(b)).

Among the downregulated genes, the major BP included
“regulation of transcription, DNA-templated,” “smoothened
signaling pathway involved in dorsal/ventral neural tube pat-
terning,” and “cellular response to growth factor stimulus;”

the major MF were “nucleic acid binding,” “DNA binding,”
and “sequence-specific DNA binding;” while “nucleus,” “intra-
cellular,” and “primary cilium” were selected as the key CC.
Among the upregulated genes, the major BPs are “regulation
of transcription, DNA-templated,” “negative regulation of cell
growth,” and “fucosylation;” the major MFs are “nucleic acid
binding,” “sequence-specific DNA binding,” and “metal ion
binding;” as well as the major CCs are “intracellular,” “plastid,”
and “nucleus.”

2.6. Pathway Enrichment Analysis. The pathway enrichment
analysis was conducted to investigate the metabolic path-
ways that were obviously enriched in the peak-neighboring
genes based on the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database. All of the peak-neighboring
genes were assigned to different metabolic pathways (17).

The results of KEGG enrichment analysis were screened
using Fisher’s exact test with FDR adjusted P value
(Figures 7(a) and 7(b)). KEGG results of downregulated
genes showed that “NF-kappa B signaling pathway,”
“Hedgehog signaling pathway,” and “Hippo signaling path-
way” were significantly enriched. Among the upregulated
genes, “Hedgehog signaling pathway,” “Inositol phosphate
metabolism,” and “TGF-beta signaling pathway” were sig-
nificantly enriched for signaling pathways except for general
cancer processes.
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Figure 3: Functional area peak distribution. By exhibiting the involved upregulated and downregulated transcripts, the volcano plot
demonstrated the distinct expression of transcripts in the MeRIP-Seq analysis. The abscissa represented the mean E-scores of the two
groups, and the ordinate marked the multiple log2 values of E-scores in the two groups.
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3. Discussion

At present, OSCC remains one of the most frequent malig-
nant cancers worldwide, which can rapidly invade the palate,
tongue, alveolar ridge, buccal mucosa, and the floor of the
mouth. The five-year survival rate of OSCC continues to
be low compared to some types of malignancies and is also
lower than the expectation of patients. There existed approx-
imately 350,000 new cases and about 170,000 deaths for
OSCC in 2018, with the majority of the international OSCC
cases in Asia (18, 19). To date, despite the tremendous and
innovative advances in the pathophysiology of OSCC (such
as oncogenic mechanisms and internal and external envi-
ronmental influences) and the treatment of different stages
(such as surgery, chemotherapy, and radiotherapy), much
remains unknown about the exact mechanisms underpin-
ning the occurrence and progression of OSCC. Therefore,
it is extremely requisite for the effective detection, therapy,

and prognosis monitoring of OSCC to further explore and
elucidate molecular mechanisms and develop OSCC-
related biomarkers.

The novel regulatory mechanism between ncRNAs and
mRNAs, the ceRNA hypothesis presumed by Salmena
et al. in 2011, means that the competitive binding of shared
miRNAs facilitates the cross-talk between ncRNAs and
mRNAs (20–22). In the noncoding region, lncRNAs, as clas-
sical ncRNAs, can sponge miRNAs to diminish the expres-
sion of miRNAs in downstream intergenic interactions.
Accumulating evidence suggests that the lncRNA-miRNA-
mRNA ceRNA network assumes a critical role in numerous
human cancers (23, 24). In breast cancer (BC), seven
lncRNAs associated with BC patients’ OS were identified
by establishing the lncRNA-miRNA-mRNA ceRNA net-
work (25). Laryngeal cancer (LC) has recently been unra-
veled to be affected by eight kinds of lncRNAs that can
dramatically influence overall survival (26).
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Figure 4: Peak frequency distribution in the transcript area. (a) In theory, the m6A peak of mRNAs should be enriched near the 3′UTR.
According to the distribution of peaks in the transcript area, the data characteristics can be understood more intuitively. The R software
package Guitar was utilized to calculate the frequency of peaks falling on each site in the mRNA and lncRNA transcript regions for each
sample, after which, the frequency distribution map was drawn. The abscissa stood for the 5′UTR, CDS, and 3′UTR regions on the
mRNA transcript and the entire interval of lncRNA, and the ordinate indicated the frequency of peak falling on these regions. (b) The
m6A sites were analyzed by the Integrative Genomics Viewer (IGV) tool.
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M6A, as a high-impact RNA modification, holds an
immense effect on mRNAs and lncRNAs. Based on the peak
frequency distribution, we identified a role of M6A in some
genes related to cancer (Figure 4), which also provide a ref-
erence for the study of OSCC mechanisms. PICSAR was
upregulated in carcinoma tissues and cells, and PICSAR
mediated the anticancer potential of miR-125b by downreg-
ulating YAP1 (27). It has also been reported that alterations
of m6A levels of MYC and EGFR are involved in the regula-
tion of cancer pathogenesis and progression (28, 29). Our
previous research already confirmed that the overexpression
of METTL3, a m6A key enzyme, could accelerate cell prolif-
eration, migration, and invasion in vivo and in vitro (14).
lncRNA SNHG20 was upregulated in OSCC, and its knock-
down inhibited OSCC cell proliferation and tumor growth
(30). The enrichment analysis also provided some perspec-
tives for the study of the molecular mechanism of OSCC.
It has been reported that METTL3 deletion enhances the
activation of NF-κB and STAT3 indirectly, leading to tumor
growth and metastasis (31, 32). It has been reported that in
OSCC lncRNAs (e.g., ORAOV1) or circRNAs (e.g., circ_
0001461) can enhance OSCC invasion and metastasis by tar-
geting NF-κB (33, 34). Besides, activation of hedgehog sig-
naling is associated closely with multidrug resistance
(MDR) in OSCC (35, 36). However, further studies are still
needed to elucidate the mechanism of mRNAs and lncRNAs
in m6A modification and the related pathophysiological
mechanism of their action in OSCC.

In this research, the epigenetic modification of tran-
scriptome was detected and analyzed in two different groups
(HAEC and SCC25) by MeRIP-Seq, followed by the m6A-
specific peak sequence motif analysis, which uncovered that
“GGAC” predominantly arose in the top of the motif results
(Figure 2). Additionally, IGV was applied to validate the dif-
ferent enrichment of m6A in peak-neighboring genes. The
results illustrated that both mRNAs and lncRNAs exhibited
the discrepancy of m6A (Figure 4). In addition, cancer-
related biological processes such as regulation of transcrip-
tion, miRNAs in cancer, NF-kappa B signaling pathway,
and Hedgehog signaling pathway showed significant enrich-
ment (Figures 6 and 7). In conclusion, we can conclude that
mRNAs and lncRNAs orchestrated by m6A modification
may be involved in the lncRNA-miRNA-mRNA ceRNA
hypothesis, thus afflicting the pathological mechanism of
OSCC. In further studies, we will work on evaluating the
biological function and clinical value of m6A in OSCC.

4. Conclusion

In summary, a series of m6A modifications in mRNAs and
lncRNAs were detected by high-throughput sequencing
(MeRIP-Seq) in SCC25 and HAEC, which preliminarily
explored some key clues of molecular mechanistic investiga-
tions in OSCC-related pathways with significant potential
values. These clues can direct further research on the specific
mechanisms of mRNAs and lncRNAs and their m6A in OSCC.
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Figure 6: Continued.
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Figure 6: Gene Ontology (GO) enrichment analysis. (a) GO enrichment analysis aimed to obtain significantly enriched GO entries to show
gene functions that might be regulated by transcription factors. Each peak-neighboring gene was annotated with GO to harvest all of its GO
function entries, and all peak-neighboring genes were assigned to different levels of MF (molecular function), BP (biological process), and
CC (cellular component). In the GO functional classification, Fisher’s exact test was adopted to calculate the significance level of gene
enrichment in each GO classification to screen out the GO classifications that were significantly enriched in the peak-neighboring genes.
The top 15 items of GO items that were significantly enriched in the peak-neighboring genes were selected as a histogram, and the
significance threshold was P value < 0.05. The horizontal axis histogram was taken as an example to display the GO enrichment analysis
of all peak-neighboring genes. On the leftmost was BP, in the middle was MF, and on the rightmost was CC. The horizontal axis of each
graph was -log10 (P value), and the vertical axis was the name of the GO items. (b) The results of the GO enrichment analysis of peak-
neighboring genes were presented in a bubble chart format, with the top 20 GO entries that were significantly enriched in peak-
neighboring genes displayed. In the figure, the ordinate indicated the GO entry, and the abscissa marked the rich factor. The size of the
dot in the figure indicated the number of peak-neighboring genes enriched on the GO entry, and the color illustrated the significance P
value of the GO entry. The smaller the P value, the smaller the enrichment and the more significant the set. The degree of the GO
enrichment was measured using the rich factor, P value, and the number of genes enriched in this GO entry. Among them, the rich
factor referred to the ratio of the number of peak-neighboring genes enriched in the GO entry to the number of all genes annotated to
the GO entry. The greater the rich factor, the greater the enrichment.
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Figure 7: Continued.
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Figure 7: Pathway enrichment analysis. (a) The pathway enrichment analysis was performed to find metabolic pathways that were
significantly enriched in peak-neighboring genes based on the KEGG database, thereby investigating metabolic pathways that might be
orchestrated by transcription factors and that might be mediated by transcription factors at different developmental stages and cell states.
The pathway enrichment analysis can directly reflect the effect of genes on phenotypes and maximize the relationship between
significantly enriched metabolic pathways and phenotypes. The selected peak-neighboring genes were annotated based on the KEGG
database to obtain all of the metabolic pathways in which peak-neighboring genes were involved. All of the peak-neighboring genes were
assigned to different metabolic pathways. Fisher’s exact test was used to calculate the significance of gene enrichment in each pathway. In
order to screen out the metabolic pathways that were significantly enriched in peak-neighboring genes, the top 15 entries were chosen in
the pathway enrich analysis where peak-neighboring genes were significantly enriched as the horizontal axis histogram. The horizontal
axis in the histogram was employed to show -log10 (P value), and the vertical axis was the pathway name. Meanwhile, the top 25 entries
were selected in the pathway enrich analysis in which peak-neighboring genes were significantly enriched as a vertical axis histogram. In
the histogram, the horizontal axis showed the pathway name, and the vertical axis represented enrichment. In all charts, red represented
significant items, and blue marked nonsignificant items. (b) The results of the pathway enrichment analysis of peak-neighboring genes
were presented in a bubble chart. The top 20 pathway entries were selected, in which peak-neighboring genes were significantly enriched
for displaying. The ordinate in the figure stood for the pathway entry, and the abscissa indicated the rich factor. The size of the dot in
the figure indicated the number of peak-neighbor genes enriched on the pathway entry, and the color represented the significance P
value of the pathway entry. The smaller the P value, the more significant the set. The pathway enrichment degree was measured using
the rich factor, P value, and the number of genes enriched in this pathway entry. Among them, the rich factor referred to the ratio of the
number of peak-neighbor genes enriched in the pathway entry to the number of all genes annotated to the pathway entry. The greater
the rich factor, the greater the degree of enrichment.
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5. Materials and Methods

5.1. Cell Culture. SCC25 was provided by American Type Cul-
ture Collection (Manassas, VA, USA), and human aortic endo-
thelial cells (HAECs) were purchased from Human Aortic
Endothelial Cells at the Institute of Biochemistry and Cell Biol-
ogy of the Chinese Academy of Sciences (Shanghai, China).
Cells were cultured in Dulbecco’s modified Eagle’s medium
(Gibco, Carlsbad, CA, USA) encompassing 100U/mL penicil-
lin, 100mg/mL streptomycin, and 10% fetal bovine serum.

5.2. Methylated RNA Immunoprecipitation Sequencing
(MeRIP-Seq).MeRIP-Seq service was obtained from Shanghai
Jiayin Biotechnology Co., Ltd. (Shanghai, China). MeRIP-Seq
was invented to detect and analyze the epigenetic modification
of transcriptomes in cells. Each group consisted of two kinds
of sample RNAs that were IP samples and input control sam-
ples, which were fragmented to ~100 nucleotides. Thereafter,
the RNA fragments were immunoprecipitated using 30μL
protein Amagnetic beads (10002D; Thermo Fisher Scientific),
30μL protein G magnetic beads (10004D; Thermo Fisher Sci-
entific), and affinity-purified anti-m6A polyclonal antibodies
(ABE572, Millipore, Darmstadt, Germany). After substantial
rinsing, the m6A fragments were boosted. Next, RNA frag-
ments were washed using RNeasy Mini Kit (74106; QIAGEN,
Hilden, Germany), centrifuged in an RNeasy MiniElute spin
column (QIAGEN), and eluted using ultrapure H2O to har-
vest RNA with m6A enrichment. Then, the RNA-seq libraries
are prepared. Clustered libraries were loaded onto a reagent
cartridge and forwarded for sequencing runs on the Illumina
NovaSeq 6000 platform.

5.3. Bioinformatic Analysis. Pattern enrichment analysis of
the identified m6A peaks was performed with HOMER.
The metagenic m6A distribution was characterized using
the MetaPlotR in R. Differentially methylated sites
(P < 0:05) were identified using diffReps with fold change ≥
2. Genes of interest were visualized in the IGV (Integrative
Genomics Viewer) software. Enrichment analysis of differ-
entially methylated protein-coding genes was performed
using GO (http://www.geneontology.org) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
(http://www.genome.jp/kegg) (Figure 1).
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