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The recent application of targeted immunotherapy has greatly improved the clinical outcomes of patients with lung
adenocarcinoma (LUAD), but drug resistance continues to emerge, and to evaluate and to improve patient prognosis are
arduous. The diagnostic and prognostic value of N6-methyladenosine (M6A) in LUAD has attracted increasing attention. We
systematically studied correlations among important M6A methylation regulators, tumor mutational burden (TMB), and
immune infiltration in clinical and sequencing data from the LUAD cohort of the cancer genome map (TCGA). The molecular
subtype clusters 1 and 2 were identified by the consensus clustering of 16 M6A regulatory factors. Clinical prognosis, M6A
regulatory factor expression, TMB, pathway enrichment, and immune cell infiltration significantly differed between clusters 1
and 2. Compared with other clinical traits, a prognostic risk score system constructed using the M6A regulatory factors
HNRNPA2B1 and HNRNPC can serve as an independent prognostic method for LUAD, with higher predictive sensitivity and
specificity. Risk scores were significantly higher for cluster 2 than 1, which was consistent with the trend towards a better
prognosis in cluster 1. Overall, our findings revealed an important role of M6A methylation regulators in LUAD, and our risk
scoring system involving these regulators might help to screen groups at high risk for LUAD and provide important theoretical
bioinformatic support for evaluating the prognosis of such patients.

1. Introduction

Adenocarcinoma is the most prevalent histological subtype
of primary lung cancer, and it is usually diagnosed at an
advanced stage involving metastatic tumors [1]. Lung ade-
nocarcinoma (LUAD) is one of the most aggressive and rap-
idly fatal tumor types, with an overall survival rate < 5 years.
Understanding LUAD pathogenesis and treatment has
recently advanced, and this is particularly important for
the development of new cancer treatment strategies [2–4].

N6-methyladenosine is the most common chemical
modification of messenger RNA (mRNA), and it is heritable
and reversible. The biological functions of M6A are mediated
through methylation by M6A methyltransferase (writer),
demethylation by M6A demethylase (eraser), and recogni-
tion by M6A binding protein (reader), which affect mRNA
splicing, conversion, and stability. Reversible M6A methyla-
tion alters the expression of genes without changing their
nucleotide sequences and participates in a series of biological
processes [5, 6]. Abnormal M6A methylation is closely
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associated with stem cell differentiation, immune responses,
embryonic development, and microRNA editing [7].
Although RNA modification is not generally considered as
a driving factor for cancer, accumulating evidence shows
that M6A regulatory factors are closely associated with car-
cinogenic or malignant tumor suppressor functions, includ-
ing proliferation, tumorigenesis, invasion, metastasis, and
immune system escape [8, 9]. The m6A modification
involves many aspects of LUAD; thus, it can serve as a bio-
marker for the prognosis of LUAD and participate in for-
mation of the tumor microenvironment [10]. For example,
methyltransferase like 3 (METTL3) promotes the growth,
survival, and invasion of human lung cancer cells [11]. A
decrease in YT521-B homology (YTH) domain-containing
protein 2 (YTHDC2) is associated with poor clinical out-
comes of LUAD [12]. The m6A modification is associated
with clinical results and clinicopathological characteristics,
and it can serve as an independent prognostic factor of
LUAD, which has helped the development of more effective
personalized treatment strategies [13].

The TMB is the latest independent predictor of the out-
comes of treatment with immune checkpoint inhibitors
across multiple tumor types and it has potential as a prognos-
tic indicator for multiple tumor types [14, 15]. For example,
hypermutant breast cancer is more likely to benefit from pro-
grammed cell death protein-1 (PD-1) inhibitors [16]. Tumor
infiltrating cells are part of a complex microenvironment that
promotes and/or regulates tumor development and growth.
Depending on the cell type and its functional interaction,
immune cells might play key roles in inhibiting tumors or
supporting tumor growth [17]. The TMB is a negative pre-
dictive biomarker of overall survival (OS) in patients with
advanced LUAD with EGFR mutations [18], B cell immune
infiltration impacts the survival of patients with LUAD, and
immune cell infiltration scores have significance for predict-
ing the OS of patients with LUAD [19, 20]. Therefore, the
TMB and immune cell infiltration are potential options for
the treatment and prognosis of LUAD.

Here, we explored the role of N6-methylanisole (m6A)
methylation-related mechanisms in the prevention and
progression of LUAD and investigated the effects of m6A
methylation on the biological function of LUAD. We charac-
terized relationships between m6A and the TMB as well as
tumor immune cell infiltration. We explored new methods
of diagnosis, prognosis, and treatment of LUAD from the
perspective of epigenetic modification to promote tumor
progression.

2. Materials and Methods

2.1. Data Acquisition. The transcriptome, mutation, and
clinical data of LUAD analyzed herein were obtained from
The Cancer Genome Atlas (TCGA) database (https://
cancergenome.nih.gov/) [21]. A transcriptional group con-
tained 594 related samples comprising 59 normal and 535
LUAD samples. Combined with the clinical data, 490 LUAD
samples were used for the grouping of training and verifica-
tion sets and to construct a risk scoring system. We also
selected 560 LUAD samples from TCGA mutation data to

analyze target gene mutations and the TMB. Ethical
approval was not required because the TCGA database is
in the public domain.

2.2. Extraction and Analysis of M6A RNA Methylation
Regulator. We extracted transcriptome expression data of
16 M6A RNA methylation regulatory factors from 594
LUAD samples and analyzed differences between normal
and LUAD using R-packet EDGER. We categorized data
from patients with LUAD into two subtypes using Con-
sensusClusterPlus software and then combined them with
clinical information to evaluate M6A gene expression
among LUAD subtypes and further clarify the biological
characteristics of M6A regulatory factors in LUAD. Differ-
ences in pathway enrichment between the two clusters
were further assessed using Gene Set Enrichment Analysis
(GSEA) [22].

2.3. Characteristics of TMB and Immune Cell Infiltration
among LUAD Subtypes. We counted the numbers of muta-
tions including those that cause amino acid changes in

Table 1: The specific baseline clinicopathological characteristics of
490 LUAD samples.

490 LUAD samples

Age

<60 years 136

≥60 years 354

Stage

I 261

II 117

III 79

IV 25

Unknown 8

Pathologic T stage

T1-2 424

T3-4 63

Unknown 3

Pathologic N stage

N0-1 409

N2-3 70

Unknown 11

Pathologic M stage

M0 322

M1 24

Unknown 144

Survival time

≤1 years 127

1 years <
≤3 years

273

3 years <
≤5 years

52

>5 years 38
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Figure 1: The heat map (a) and violin diagram (b) of differential expression of M6A-related genes in normal samples and lung
adenocarcinoma samples. The color from green to red shows a trend from low expression to high expression. Red represents high
expression, and blue represents low expression. P < 0:05 as the statistical cutoff value.
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related genes and then calculated the number of tumor
mutations per Mb in each sample to generate corresponding
TMB values. The LUAD samples were grouped according to
16 factors that regulate M6A RNA methylation to further
compare differences in TMB levels between mutant and wild
groups.

Based on the characterization of 22 tumor-infiltrating
lymphocyte subsets, we evaluated the relative abundance of
immune cells in the LUAD subtypes using the deconvolu-
tion algorithm CIBERSORT. Thereafter, relative contents
of immune cells in the subtypes were visualized using the
corrplot package, and correlations between immune cells
were analyzed.

2.4. Construction of Risk Scoring System. We randomly
assigned 490 samples from patients with LUAD to training
(n = 245) and validation (n = 245) cohorts (proportion: 1 : 1)
(Table 1). The M6A RNA methylation regulators related to
the prognosis of LUAD were screened using the univariate
Cox regression analyses, and then, anM6A-related LUAD risk
score systemwas constructed using lasso andmultivariate Cox
regression.

Risk score equations were generated using the coeffi-
cients obtained using the multivariate Cox regression as

Risk score = 〠
N

i=1
Expi × βi, ð1Þ

where β represents the coefficient of M6A-related genes in
the system and Exp represents the value of gene expression.
Risk scores for each patient in the training and verification
cohorts were calculated, and then, the patients were assigned
to high- and low-risk groups using the median risk score as
the cutoff. Survival rates were compared between the groups
using the Kaplan-Meier curves.

2.5. Independent Predictive Analysis of Risk Scoring System.
We further assessed whether the prognostic performance

of the risk scoring system is independent of other clinical
parameters. We obtained clinical data (including age, sex,
stage, TNM stage, survival duration, and survival status)
about the patients with LUAD and explored related inde-
pendent prognoses using the univariate and multivariate
Cox regression analyses. Statistical significance was set at
P < 0:05.

3. Results

3.1. Extraction and Difference Analysis of M6A RNA
Methylation Regulator. Based on the transcriptome data
associated with LUAD in TCGA, we extracted the tran-
scriptome data of 16 M6A RNA methylation regulatory
factors and analyzed their expression in normal persons
and in patients with LUAD using the edger software pack-
age. The expression of encoders (Vir like M6A methyl-
transferase associated (KIAA1429), METTL3, putative
RNA-binding proteins (RBM)15, and 15B) and readers
(leucine-rich PPR motif-containing protein (LRPPRC), het-
erogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC),
YTH domain family, members 1, 2, and 3 (YTHDF1,
YTHDF2, and YTHDF3), and heterogeneous nuclear ribo-
nucleoproteins A2/B1 (HNRNPA2B1)) was significantly
higher in LUAD, than in normal tissues. Expression of the
eliminator, fat mass, and obesity-associated protein (also
known as alpha-ketoglutarate-dependent dioxygenase; FTO)
and the encoders methyl transferase like 14 (METTL14) and
Wilms tumor 1 associated protein (WTAP) were significantly
lower in LUAD, than in normal tissues (P < 0:05). The
expression of readers (YTH domain-containing protein 1
(YTHDC1)) and fragile X mental retardation protein
(FMR1) and the eliminator, AlkB Homolog 5 (ALKBH5), an
RNA demethylase, did not significantly differ between normal
and LUAD tissues (P > 0:05) (Figure 1). These results sug-
gested that M6A RNA methylation regulators play important
roles in the occurrence and progression of LUAD.

Table 2: Expression levels and differences of 16 M6A methylation regulators in cluster 1 and cluster 2.

Gene Cluster 1 Cluster 2 logFC P value

YTHDF3 14.609 16.37808 0.164909 0.028612

YTHDF2 24.32579 26.02792 0.097573 0.009162

METTL14 3.200071 3.614964 0.175878 0.001386

WTAP 13.45123 14.93013 0.150489 0.001057

RBM15B 11.3379 12.6848 0.161946 0.000137

YTHDF1 25.2132 28.97565 0.200662 6.88E-08

LRPPRC 15.84726 19.52537 0.301116 1.92E-08

METTL3 6.090176 7.911402 0.377449 3.07E-09

KIAA1429 6.607734 8.094922 0.292862 6.48E-10

HNRNPC 52.3006 60.40718 0.207892 4.98E-10

FMR1 6.356802 8.812112 0.471187 9.89E-13

YTHDC1 10.51121 12.72354 0.275572 8.52E-13

RBM15 2.821307 4.000656 0.503873 4.75E-20

HNRNPA2B1 79.92151 127.5456 0.674358 3.28E-72
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3.2. Cluster Type of M6A RNA Methylation Regulation
Factors Significantly Correlated with Survival of Patients
with LUAD. The results of 16 M6A methylation regulatory
factor expression and ConsensusClusterPlus aggregation
analysis showed that K = 2 had the best cluster stability
(K = 2 – 9) (Supplement 1). We divided tissue samples from
535 patients with LUAD into subtypes called clusters 1
(N = 382) and 2 (N = 153) and analyzed differences between

them. Except for eliminators (FTO and ALKBH5), the
expression of the other M6A methylation regulators was
significantly higher in cluster 2 than 1 (Table 2). When we
combined the clinically associated traits, the two subtypes
significantly differed in terms of sex, M phase, and survival
status (Figure 2). In addition, the Kaplan-Meier curves
showed that survival was significantly longer in cluster 1
compared with cluster 2 (Figure 3(a)).
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Figure 2: The heat map of clinically associated traits of two clusters. The two clusters significantly differed in terms of sex, M phase, and
survival status.
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Figure 3: (a) Kaplan-Meier curves of overall survival (OS) for patients with LUAD in two clusters (cluster 1/2). (b) The TMB levels in
cluster 1/2 subtypes in TCGA cohort. (c) The risk score in cluster 1/2 subtypes in TCGA cohort.
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Figure 5: Continued.

7Journal of Immunology Research



T cells follicular helper

T cells gamma delta

Macrophages M0

B cells memory

B cells naive

Plasma cells

NK cells resting

Macrophages M1

T cells CD8

T cells CD4 memory activated

NK cells activated

Mast cells resting

T cells CD4 memory resting

Dendritic cells resting

Dendritic cells activated

Monocytes

Macrophages M2

Eosinophils

Mast cells activated

Neutrophils

T cells regulatory (Tregs)

T 
ce

lls
 fo

lli
cu

la
r h

elp
er

T 
ce

lls
 g

am
m

a d
elt

a

M
ac

ro
ph

ag
es

 M
0

B 
ce

lls
 m

em
or

y

B 
ce

lls
 n

ai
ve

Pl
as

m
a c

el
ls

N
K 

ce
lls

 re
sti

ng

M
ac

ro
ph

ag
es

 M
1

T 
ce

lls
 C

D
8

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

N
K 

ce
lls

 ac
tiv

at
ed

M
as

t c
el

ls 
re

sti
ng

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng

D
en

dr
iti

c c
el

ls 
re

sti
ng

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed

M
on

oc
yt

es

M
ac

ro
ph

ag
es

 M
2

Eo
sin

op
hi

ls

M
as

t c
el

ls 
ac

tiv
at

ed

N
eu

tro
ph

ils

T 
ce

lls
 re

gu
lat

or
y 

(T
re

gs
)

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

(c)

Figure 5: Continued.

8 Journal of Immunology Research



3.3. Characteristic Differences in TMB and Immune Cell
Infiltration among Cluster Typing. The median numbers of
mutations in clusters 1 and 2 TMB were 2.92 (0.02–34.84)
and 5.18 (0.21–33.05)/Mb, respectively. And there was sig-
nificant difference in TMB between the two subtypes
(Figure 3(b)).

In addition, according to the analysis of LUAD sample
data based on 16 M6A methylation regulatory factors, we
found that TMB levels significantly differed between the
mutant and wild groups. The TMB was higher in the mutant,
than the wild group, especially in terms of the regulatory
factors KIAA1429 and FMR1 (Figure 4). The abundance of

immune cells evaluated using the CIBERSOFT algorithm
also differed between clusters 1 and 2, showing that cluster
1 closely correlated with neutrophils, macrophages M2,
monocytes, resting dendritic cells, and resting mast cells,
whereas cluster 2 was more correlated with M0 and M1 mac-
rophages, follicular helper T cells, resting NK cells, and CD4
memory-activated T cells (Figure 5).

We analyzed gene enrichment using GSEA to clarify
potential regulatory mechanisms that might lead to the dif-
ferences between the two subgroups. Cluster 1 was mainly
enriched in arachidonic acid metabolism and the metabo-
lism of drugs and xenobiotics by cytochrome P450, whereas
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Figure 5: Evaluation of immune cell abundance in different clusters of LUAD samples by CIBERSOFT algorithm. (a) Cluster 1. (b) Cluster
2. Different colors represent different immune cell infiltration. (c) Correlation analysis of immune cell abundance in cluster 1. (d)
Correlation analysis of immune cell abundance in cluster 2.
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cluster 2 was mainly enriched in cell cycle, as well as MTOR
and p53 signaling pathway pathways (Supplement 2), which
are closely associated with tumors.

3.4. Construction of Risk Scoring System for M6A RNA
Methylation Regulator. The univariate Cox regression analysis
of the TCGA training cohorts (n = 245) showed that
HNRNPA2B1 and HNRNPC significantly correlated with
patient prognosis (P < 0:05; Table 3). Based on the univar-
iate Cox regression results, we created a multivariate model
and analyzed the minimum absolute contraction and selec-
tion operator (lasso) and multivariate Cox regression. We
determined that the regulatory factors HNRNPA2B1 and
HNRNPC could be used to construct a risk score system
for LUAD. The risk score of each sample was determined
based on the coefficient analysis of the two adjustment fac-
tors as

0:0075 × HNRNPA2B1 expressionð Þ
+ 0:01424 × HNRNPC expressionð Þ: ð2Þ

Samples from patients were assigned to high- and low-risk
groups based on the median risk score. The OS was signifi-
cantly longer for the low-risk group, than the high-risk group
(Figures 6(a)–6(c)). Heat maps showed that more
HNRNPA2B1 and HNRNPC tended to be expressed in the
high-risk group (Figure 7). We evaluated the predictive accu-
racy of the risk scoring system by comparing the areas under
receiver operator characteristics (ROC) curves (AUC)
between the two groups. In the TCGA training cohort, the
AUC of the risk score system for predicting 1-year survival
was 0.728, and that of the verification set was 0.623. The
AUC showed that two M6A regulator factors had good dis-
criminant effects on the short-term prognosis of patients with
LUAD (Figures 6(d)–6(f)).

3.5. Risk Scoring System as an Independent Prognostic Factor.
The clinical factors associated with LUAD in TCGA were
compared between the high- and low-risk groups using heat
maps. Stages M and T and fustat all correlated with risk
scores, with significant differences between the groups
(P < 0:05) (Figure 8). The univariate Cox regression showed
that risk score and T and N stages were closely associated
with OS in patients with LUAD. The multivariate Cox
regression showed that the risk score could serve as an inde-
pendent prognostic factor with which to evaluate patient
survival (Figure 9). Thus, the risk scoring system can evalu-
ate the prognosis of patients with LUAD through univariate
or multivariate Cox regression analysis. We examined the
relationship between risk scores and clustering subtypes
and found significantly higher risk scores for cluster 2 than
1 (P < 0:001; Figure 3(c)). These results coincided with the
finding that OS was longer for cluster 1 than 2 and thus fur-
ther verified the reliability of typing.

4. Discussion

The M6A methylation modification plays an important reg-
ulatory role in mRNA metabolism, splicing, translocation,
stability, and translation. The regulatory expression and
genetic changes of m6A modulators are associated with
tumorigenesis, cancer cell proliferation, tumor microenvi-
ronment, and cancer prognosis. The modification of M6A
methylation can regulate the functions of key downstream
genes. Single nucleotide polymorphisms might affect gene
expression and biological activity, leading to abnormal
downstream m6A-RNA regulation, and subsequently pro-
mote tumor initiation and development [23]. In LUAD,
M6A regulatory factors participate in the activation of signal-
ing pathways in high-risk patients, such as cell circulation,
DNA replication, RNA degradation, RNA polymerase,
nucleotide excision repair, and basal transcription factors

Table 3: Univariate Cox regression analysis of the TCGA training cohorts.

ID HR HR.95L HR.95H P value

METTL14 1.003652 0.762947 1.320298 0.979213

WTAP 1.001162 0.942224 1.063786 0.97008

METTL3 1.003207 0.933483 1.07814 0.93057

ALKBH5 0.998704 0.972253 1.025876 0.924585

YTHDF2 1.005917 0.970619 1.042499 0.746151

YTHDF1 1.003796 0.98692 1.020959 0.661423

FMR1 0.977839 0.891574 1.07245 0.634364

FTO 0.944817 0.807647 1.105284 0.47818

YTHDC1 1.036435 0.949883 1.130874 0.421197

YTHDF3 1.016342 0.977513 1.056713 0.414722

RBM15B 1.041751 0.972685 1.115721 0.242534

KIAA1429 1.055824 0.985611 1.131038 0.121826

LRPPRC 1.02272 0.995493 1.050691 0.102706

RBM15 1.116559 0.993123 1.255338 0.065108

HNRNPA2B1 1.008036 1.000001 1.016136 0.049973

HNRNPC 1.013535 1.002257 1.02494 0.018526
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Figure 6: Continued.
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[24]. Therefore, further study of m6A modulators is needed
to clarify potential relationship between m6A methylation
and the development and prognosis of LUAD.

We previously evaluated the expression of 16 M6A
regulatory-related genes in women with LUAD and the rela-
tionship between changes on these genes and clinical
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Figure 6: Kaplan-Meier for the risk scoring system based on 2 M6A-related genes (P < 0:05 as the statistical cutoff value). (a) TCGA
training cohorts. (b) TCGA validation cohorts. (c) TCGA all LUAD samples. Time-dependent ROC curves. (d) TCGA training cohorts.
(e) TCGA validation cohorts. (f) TCGA all LUAD samples.
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characteristics. We then developed a risk scoring system asso-
ciated with M6A [25]. Compared with other clinical factors,
the risk scoring system has high predictive sensitivity and
specificity. Here, we further characterized the potential clinical
value of m6A to LUAD by comparing differences between 16
m6A modulators between healthy individuals and patients
with LUAD and confirmed the roles of the 16 m6A in the
occurrence and development of LUAD. Based on the 16
m6A modulators, we further divided 535 patients with LUAD
into two subtypes and found that prognosis, sex, M staging,
survival status, TMB, immune cell infiltration, and pathways
differed between them. We then constructed scoring system

comprising HNRNPA2B1 and HNRNPC based on the 16
m6A modulators. This scoring system can serve as an inde-
pendent prognostic factor for LUAD.

Based on the clinical research value of m6A in the occur-
rence and development of LUAD, we clustered m6A modu-
lators to characterize the effects of differential m6A
methylation modifications on LUAD subtypes. The expres-
sion of m6A methylation regulators was lower and OS was
significantly longer in cluster 1 than 2. Consistent with previ-
ous studies, the abundant expression of m6A modulators
might lead to a poor prognosis for patients with LUAD
[24]. In addition, sex, M stage, and the survival status of
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Figure 8: Heat map and clinicopathological features of high- and low-risk groups.
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clusters 1 and 2 significantly differed, indicating that sex
influences the expression of m6A modulators and that their
differential expression can lead to M stage of LUAD. There-
fore, using m6A as a clinical marker in patients with LUAD
can help clinicians to more comprehensively understand
patient status and thus accurately predict, type, and treat
LUAD.

Analysis of GSEA enrichment deeply characterized the
differences in molecular pathway mechanisms between clus-
ters 1 and 2. Cluster 2 was mainly enriched in the cell cycle,
as well as the MTOR, and P53 signaling and other pathways
that are closely associated with tumors [26–28]. This might
have been involved in the worse prognosis of patients in
cluster 2. Compared with cluster 1, which was mainly
enriched in metabolism and other pathways, the overactive
tumor pathway in cluster 2 was associated with disease pro-
gression and predicted survival. We also identified signifi-
cant differences in the TMB between the m6A subgroups.
As a predictive biomarker for the therapeutic efficacy of

immune checkpoint inhibitors for various cancer types,
TMB is associated with longer OS [29]. The effects on
TMB caused by altered m6A modulators might differ among
cancer types. The survival and prognosis of subgroups of
LUAD patients were related, and the TMB was significantly
higher for the mutant, than the wild-type group divided
according to the m6A regulators KIAA1429 and FMR1.
Immune cell infiltration mediates the immune microenvi-
ronment of tumors and is associated tumor occurrence, pro-
gression, treatment, and prognosis [30]. Studies of immune
cell infiltration in LUAD subtypes revealed differences in
the abundance of immune cells between clusters 1 and 2,
which might be associated with the difference in survival,
and the deeper associated mechanisms require further char-
acterization. Taking m6A modulators as the starting point,
exploring the mechanism of intervention in LUAD TMB
and immune cell infiltration, which indirectly affects the sur-
vival and prognosis of patients, could serve as a potential
research model.
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Figure 9: Univariate and multivariate Cox regression of risk score and clinical traits. (a) Univariate Cox regression. (b) Multivariate Cox
regression.
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The mA regulator signatures KIAA1429, METL3, and
IGF2BP1 have been identified as independent prognostic
models that can stratify patients, evaluate prognosis, and
personalize treatment for lung cancer [31]. Peripheral blood
leukocyte m6A can represent a potential noninvasive bio-
marker for NSCLC screening, monitoring, and diagnosis
[32]. Here, we assigned data from 499 patients into training
and validation cohorts. Based on 16 m6A modulators, we
constructed a LUAD risk scoring system consisting of
HNRNPA2B1 and HNRNPC. Previous studies have shown
that HNRNP is involved in cancer-related pathways, includ-
ing protein secretion, mitochondrial spindle, G2/M check-
point, DNA repair, IL6/JAK/STAT3 signaling, and other
pathways. Among them, the range of HNRNPA2B1 copy
numbers is wide among various cancer types, and this is
associated with the poor survival rate of LUAD [33]. The
expression of HNRNPC is abundant in LUAD tissues; it is
significantly associated with age, sex, smoking history, race,
lymph node metastasis, TNM stages, and low OS rates
[34]. Both HNRNPA2B1 and HNRNPC might be cancer-
promoting factors and potential prognostic biomarkers for
LUAD. Consistent with previous findings, the present study
found a trend towards more abundant HNRNPA2B1 and
HNRNPC expression in the high-risk group. Moreover, the
prognostic risk scoring system discriminated the short-
term prognosis of patients with LUAD in the training and
verification cohorts.

Clinical prognosis is presently predicted based on clini-
cal and pathological characteristics, including stage, M, T,
and fustat. Our risk scoring system comprises HNRNPA2B1
and HNRNPC, and the univariate or multivariate Cox
regression analysis can assess the prognosis of patients with
LUAD. The risk scoring system correlated with stage, M, T,
and fustat in the training and verification cohorts, indicating
that the system can specifically and sensitively predict the
short-term prognosis of patients with LUAD. The risk scor-
ing system revealed longer OS in cluster 1 than 2, which fur-
ther verified the clinical effectiveness of the prognostic
scoring system. The prognostic risk scoring system can
reduce sequencing costs, thus rendering the application of
targeted sequencing based on specific genes more cost-
effective and routine. However, the current study has some
limitations. The quality of samples in the TCGA database
was high, but the sample number was quite low. Therefore,
our scoring system requires further validation using large-
scale clinical data and various regression models to further
improve its predictive accuracy.

5. Conclusion

In summary, m6A regulatory factors are involved in the
molecular mechanism of the occurrence and development
of LUAD, and they significantly impact M phase, TMB,
immune cell infiltration, molecular pathway network, and
survival prognosis. Based on 16 m6A regulatory factors,
our risk scoring system consisting of HNRNPA2B1 and
HNRNPC has specificity and sensitivity for judging the
short-term prognosis of patients with LUAD. Our scoring
system can further improve the accuracy of prognostic risk

assessment by combining it with clinical evaluation criteria.
It also has auxiliary significance for improving the level of
diagnosis and quality of treatment for patients with LUAD.
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