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Patients with rheumatoid arthritis (RA) have an increased risk of infections; therefore, immunization against vaccine-preventable
diseases is important. Methotrexate (MTX) impairs the antibody response to pneumococcal conjugate vaccine (PCV) in patients
with arthritis, and the underlying mechanism is largely unknown. Here, we investigate the potential role of the innate immune
system in the faltering antibody response following PCV vaccination in RA patients treated with MTX. Phenotypes of
circulating granulocytes and monocytes were analyzed in 11 RA patients treated with MTX, 13 RA patients without disease-
modifying antirheumatic drug treatment (0DMARD), and 13 healthy controls (HC). Peripheral blood samples were collected
before and 7 days after vaccination. In addition, the MTX group was sampled before initiating treatment. Frequencies of
granulocyte and monocyte subsets were determined using flow cytometry. Serotype-specific IgG were quantified using a
multiplex bead assay, pre- and 4-6 weeks after vaccination. At baseline, no differences in granulocyte and monocyte
frequencies were observed between the groups. Within the MTX group, the frequency of basophils increased during treatment
and was higher compared to the HC and 0DMARD groups at the prevaccination time point. MTX patients were categorized
into responders and nonresponders according to the antibody response. Before initiation of MTX, there were no differences in
granulocyte and monocyte frequencies between the two subgroups. However, following 6-12 weeks of MTX treatment, both
the frequency and concentration of monocytes were lower in PCV nonresponders compared to responders, and the difference
in monocyte frequency remained after vaccination. In conclusion, the suppressive effect of MTX on monocyte concentration
and frequency could act as a biomarker to identify nonresponders to PCV vaccination.

1. Introduction

Rheumatoid arthritis (RA) is an autoimmune disease char-
acterized by chronic inflammation of the synovium and ero-
sions in peripheral joints [1]. Several types of immune cells
including B cells, T cells, and macrophages have been sug-
gested to contribute to the inflammation in RA. B cells acti-

vate T cells and secrete autoantibodies, such as rheumatoid
factor (RF) and anticitrullinated protein antibodies (ACPA),
and proinflammatory cytokines. T cells promote inflamma-
tion by activating fibroblasts and macrophages which release
cytokines and chemokines [2]. The clinical presentation is
highly variable, and some individuals are negative for auto-
antibodies (seronegative RA). The disease etiology is
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complex and involves a combination of genetic susceptibility
and environmental factors [3].

Patients with RA, as well as other autoimmune dis-
eases, exhibit an increased risk of infections. The cause is
multifactorial and likely a combination of the autoimmune
nature of the disease and available pharmacological treat-
ments such as glucocorticoids and different types of
disease-modifying antirheumatic drugs (DMARDs) [4, 5].
Therefore, immunization against vaccine-preventable dis-
eases is important in RA [4].

Methotrexate (MTX), the most commonly used
DMARD and first-line treatment in RA [2], is known to
decrease the humoral response to several vaccines, including
seasonal influenza and pneumococcal vaccines in RA
patients [6–9]. Methotrexate was initially developed in the
oncology field and is a folate antagonist inhibiting DNA
and RNA synthesis. However, low-dose treatment with
MTX suppresses inflammation in RA by regulating many
proinflammatory cell lineages, via mechanisms involving
adenosine signaling, inhibition of nuclear factor-κB (NF-
κB), inhibition of dihydrofolate reductase-related trans-
methylation reactions, and generation of reactive oxygen
species via nitric oxide synthase [10].

To date, it is not known which mechanism is mainly
responsible for the decreased antibody response to vaccina-
tion in MTX-treated RA patients. B cell-activating factor
(BAFF) promotes B cell activation and differentiation for
antibody production. Park et al. have demonstrated that
high levels of BAFF negatively impact the response to sea-
sonal influenza vaccine in MTX-treated RA patients [11].

To explore the decreased antibody response to 13-
valent pneumococcal conjugate vaccine (PCV13) in
MTX-treated RA patients, our group has previously inves-
tigated phenotypic changes of circulating B and T cells.
Methotrexate treatment reduced the frequency and con-
centration of Th17 cells and attenuated the activation of
plasmablasts and switched memory B cells following
PCV vaccination [12].

The innate and adaptive immune systems act in concert
to provide an effective immune response to an immuniza-
tion [13]. Cells of the innate immune system—monocytes,
macrophages, and granulocytes—are crucial links to the
adaptive immune response via antigen presentation, phago-
cytosis, and cytokine production.

Monocytes are precursors of tissue macrophages and
monocyte-derived dendritic cells and expand during inflam-
mation. They have pattern recognition receptors, which
enables them to react to pathogens and produce cytokines.
Moreover, monocytes have additional functions, including
antigen presentation. Depending on the condition, mono-
cytes can act either proinflammatory via presentation of
antigens to T cells and induction of specific T cell subsets
or anti-inflammatory via promotion of regulatory T cells
and suppression of T cell proliferation. In contrast, some
reports suggest that monocytes are poor antigen presenters,
only transporting antigen to the lymph nodes [14].

Monocytes can be subdivided into three subsets based on
their expression of the lipopolysaccharide (LPS) receptor,
CD14, and the FcγIIIR, CD16. Classical monocytes express

high levels of CD14 but no CD16, intermediate monocytes
show high levels of CD14 and low CD16, and nonclassical
monocytes express low levels of CD14 and high CD16
[15]. The intermediate and nonclassical (CD16+) monocytes
are considered inflammatory and have been shown to be
increased in RA [16, 17]. Further, increased frequency of
CD16+ monocytes in RA patients has been shown to corre-
late with active disease, defined as increased number of ten-
der and swollen joints, levels of acute-phase reactants, and
titer of rheumatoid factor [16].

Granulocytes are the most abundant leukocytes in blood
and the first line of defense against pathogen invasion. Apart
from their antimicrobial activity, granulocytes have in recent
years been shown to possess other biological functions
important in shaping adaptive immunity by interacting with
other immune cells and act as antigen-presenting cells under
certain conditions [18, 19].

We hypothesized that the innate immune system is of
importance for the faltering antibody response to PCV vac-
cination in RA patients treated with MTX. Using flow
cytometry, we monitored circulating granulocyte and mono-
cyte subsets during MTX treatment and after PCV vaccina-
tion in RA patients and controls.

2. Materials and Methods

2.1. Patients and Controls. Adult RA patients, either planned
to start methotrexate treatment (MTX group) or without
ongoing/planned disease-modifying antirheumatic drug
treatment (0DMARD group), at the Department of Rheu-
matology, Skåne University Hospital, Lund, Sweden, were
consecutively included in this study from February 2018 to
November 2019. Patients had to fulfil the American College
of Rheumatology/European League Against Rheumatism
criteria for RA [20].

Patients were not included if they had been treated with
DMARDs within 6 months, were treated with prednisolone
> 15mg/day, if they had previously received pneumococcal
vaccine, had a history of allergic reaction at previous vacci-
nation, were pregnant, or had an ongoing infection.

Healthy controls (HC) were recruited from the staff at
the Department of Rheumatology in Lund and their rela-
tives, between November 2018 and April 2019. There was
no age or gender matching between the patients and HC.

The study was approved by the regional ethical review
board in Lund, Sweden (permit number 2016/143). Prior
to inclusion, all subjects gave written informed consent.

2.2. Measurements and Clinical Parameters. At time of inclu-
sion, a rheumatologist performed a physical examination
and clinical data regarding date of RA debut, smoking
habits, radiographic changes, presence of subcutaneous nod-
ules, treatment, and previous vaccinations were collected
using a structured protocol. Disease activity score (DAS28)
[21] was used to assess disease activity in RA. Serum levels
of rheumatoid factor (RF) and anticitrullinated protein anti-
bodies (ACPA) were analyzed as routine clinical samples at
the Department of Clinical Immunology and Transfusion
Medicine, Region Skåne, Lund. C-reactive protein (CRP) in
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plasma, erythrocyte sedimentation rate (ESR), and white
blood cell (WBC) count in blood were analyzed as routine
clinical samples at the Department of Clinical Chemistry,
Region Skåne, Lund. WBC count in blood was also deter-
mined with Sysmex XN-350 (Sysmex Europe GmbH).

2.3. Vaccination. All participants received a single 0.5mL
dose of 13-valent pneumococcal conjugate vaccine
(PCV13, Prevenar13®, Pfizer) administrated as an intramus-
cular injection in the deltoid muscle. Prevenar13® includes
capsular polysaccharide of 13 serotypes of Streptococcus
pneumoniae (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 19A, 19F, 18C
and 23F) conjugated to diphtheria toxin known as
CRM197, and aluminium phosphate as adjuvant.

Patients in the 0DMARD group and HC were vaccinated
at time of inclusion. Patients in the MTX group were vacci-
nated 6-12 weeks after initiating MTX treatment, when they
had been on unaltered MTX dose for at least four weeks. At
time of vaccination, a physical examination was performed,
and data on disease activity was collected.

2.4. Pneumococcal Serotype-Specific Antibodies. Serum sam-
ples were collected from most subjects (10 HC, 8 0DMARD
and 9 MTX patients) immediately before administration of
PCV13 and 4-6 weeks later. Sera were frozen at -80°C and
later analyzed at the Department of Clinical Immunology
and Transfusion Medicine, Region Skåne, Lund. Pneumo-
coccal serotype-specific IgG concentrations were measured
for 11 capsular serotypes (1, 3, 4, 5, 6B, 7F, 9V, 18C, 19A,
19F and 23F) included in PCV13, using an in-house multi-
plex fluorescent microsphere immunoassay (MFMI, Lumi-
nex) based on the procedure described by Lal et al. [22],
with some modifications. Antibody response ratio (ARR,
i.e., the ratio of post- to prevaccination serotype-specific
IgG concentration) was calculated [7], and positive antibody
response was defined as ARR ≥ 2, in > 50% of serotypes (at
least 6 of 11 serotypes) [12]. The sum of the absolute change
(μg/mL) in pneumococcal serotype-specific IgG concentra-
tions, for the 11 capsular serotypes included in PCV13,
pre- to postvaccination, was calculated and denoted com-
posite antibody response.

2.5. Phenotypic Characterization of Granulocytes and
Monocytes. In the MTX group, peripheral blood samples
were collected at inclusion (before initiating MTX treat-
ment), at vaccination (after 6-12 weeks on MTX), and 6-12
days after vaccination (with the majority sampled 6-7 days
postvaccination). In the 0DMARD group and HC, blood
samples were collected at vaccination (i.e., at inclusion)
and 6-7 days after vaccination. Two patients in the
0DMARD group were not included in the analyses after vac-
cination due to technical problems.

Venous blood was obtained in heparin tubes (BD
Vacutainer ref 369622) and stored at room temperature
and protected from light until analyzed (within 24 h).
The expression of selected surface markers on monocytes,
lymphocytes, and granulocytes was analyzed using flow
cytometry. Briefly, red blood cells were lysed using 0.84%
ammonium chloride. The leukocytes were washed with

phosphate-buffered saline (PBS) and resuspended in PBS
with 0.5% bovine serum albumin. An antibody cocktail
of the following monoclonal fluorescent-labeled antibodies
was added to the suspension of leukocytes: CD14 PerCP
Cy5.5 (M5E2), CD16 APC-H7 (3G8), CD193 V510
(5E8), CD45 V450 (2D1), HLA-DR PE Cy7 (L243) from
BD Biosciences (San Jose, CA, USA), CD80 FITC (BB1)
from Santa Cruz Biotechnology (Dallas, Texas, USA),
Siglec-8 PE (7C9), CD66b Alexa700 (G10F5), CD11b
BV785 (ICRF44), CD62L BV650 (DREG-56), CD69 PE/
Dazzle 594 (FN50) from BioLegend (San Diego, CA,
USA), CD184 APC (12G5) from eBioscience/Thermo
Fisher Scientific (Waltham, MA, USA). Acquisition was
performed on a FACSAria Fusion flow cytometer with
the accompanying FACSDiva software (Becton Dickinson,
Franklin Lakes, NJ, USA). At least 50.000 granulocytes
were acquired based on forward and side scatter proper-
ties. Data were analyzed using Kaluza Analysis Software
version 2.1 (Beckman Coulter, Brea, CA, USA).

Analysis using this panel allowed identification of lympho-
cytes, basophils, neutrophils, eosinophils, monocytes and sub-
sets. Gating was performed in a blinded manner. Details of
the gating strategy are shown in Figure S1. Doublet cells were
excluded by plotting forward scatter height against forward
scatter area, and CD45+ single cells were divided into
monocytes, lymphocytes, and granulocytes based on
forward and side scatter properties. The basophils in the
dim CD45/low side scatter were included in the peripheral
blood mononuclear cell (PBMC) gate. PBMCs were plotted
with CD45 and CD193 and basophils were gated (dim
CD45/high CD193). Basophils were separated from
plasmacytoid dendritic cells (pDCs) and other HLA-DR+

cells by the absence of HLA-DR expression. CD14-negative
polymorphonuclear leukocytes (PMNs) were plotted with
Siglec-8 and CD193 for identification of neutrophils (Siglec-8
and CD193 negative) and eosinophils (Siglec-8 and CD193
high). Monocytes were subdivided by the expression of CD14
and CD16 into classical (CD14++CD16-), intermediate
(CD14++CD16+), and nonclassical (CD14+CD16++)
monocytes. The monocyte surface expression of CD11b,
CD62L, CD69, CD80, and HLA-DR was measured by median
fluorescence intensity (MdFI).

Absolute numbers were based on the cell population
proportion of CD45+ cells combined with the WBC count.
All values are given as percentage of CD45+ cells if not oth-
erwise specified. The main focus was to investigate granulo-
cyte and monocyte frequencies, but lymphocyte frequency
was also analyzed (detailed lymphocyte data published in
Nived et al.) [12].

2.6. Statistical Analysis. Statistical analyses were performed
with GraphPad Prism 9.3.1 software (GraphPad Software,
San Diego, CA, USA). Mann–Whitney U test was used for
two-group comparisons and Kruskal-Wallis with Dunn’s
multiple comparisons test for three or more groups. Paired
data were analyzed using Wilcoxon matched-pairs signed
rank test.

Statistical analysis was only performed for the parame-
ters considered relevant for answering one or more of the
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hypotheses of the study. Samples with pneumococcal
serotype-specific IgG concentrations below the lower limit
of detection (for serotype 9V, n = 2, one 0DMARD patient
and one HC, both before vaccination) were set to 0. Sub-
groups of n < 4 were not included in the statistical analyses.
Values are expressed as median with interquartile range
(IQR) unless otherwise specified. Results were considered
statistically significant at p < 0:05.

3. Results

3.1. Characteristics of Study Participants. 11 RA patients
scheduled to start treatment with MTX (MTX group), 13
RA patients without ongoing or planned DMARD treatment
(0DMARD group), and 13 healthy controls (HC) were
enrolled. Patients in the 0DMARD group and HC were
included at time of vaccination, whereas MTX patients were
included when initiating MTX treatment. Demographics
and characteristics of study participants are described in
Table 1. The healthy controls were younger than the RA
patients (p = 0:008). There were more females than males
in all three groups, with the highest female to male ratio in
the MTX group and the lowest in the HC group. Compared
to the 0MDARD group, the majority of patients in the MTX
group was older at RA debut (p < 0:05), had shorter disease
duration (p = 0:02), higher disease activity score (p = 0:008),
and higher ESR (p = 0:04) at inclusion.

3.2. MTX Treatment Attenuates Antibody Response following
Pneumococcal Vaccination. To evaluate vaccine response,
pneumococcal antibody levels were measured in patients
and controls. Pneumococcal serotype-specific IgG concen-
trations of 11 serotypes included in 13-valent pneumococcal
conjugate vaccine (PCV13) were analyzed, right before and
4–6 weeks after vaccination. A positive antibody response
(≥ twofold increase in ≥ 6 serotypes pre- to postvaccination)
was seen in 90% of HC, 87.5% of the 0DMARD group, and
56% of the MTX group. Number of serotypes with at least
twofold increase in antibody level was only significantly dif-
ferent between HC and MTX groups (9.00, 8.25-11.0 and
6.00, 1.00-7.50, respectively, p = 0:02). Serotype-specific
antibody responses are shown in Table S1 and Figure S2.

Antibody response ratio (ARR, the ratio of post- to pre-
vaccination antibody levels) was lower in the MTX group for
five serotypes compared to HC (Figure S3a). Furthermore,
changes in antibody titers pre- to postvaccination, in
absolute values, were lower in the MTX group for three
serotypes compared to HC and for one serotype compared
to 0MDARD (Figure S3b).

The composite antibody response, i.e., the sum of change
in pneumococcal serotype-specific IgG concentrations (μg/
mL), for the 11 capsular serotypes included in PCV13, pre-
to postvaccination, is depicted in Figure 1. The composite
antibody response was lower in the MTX group compared
to HC (p = 0:006).

3.3. No Differences in Cell Frequencies at Baseline. Patients
and HC were sampled at inclusion, i.e., prior to initiation of
MTX medication (MTX group) or vaccination (0DMARD

and HC). There were no differences in percentages and con-
centrations of total monocytes and granulocytes, their subsets,
or total lymphocytes, between MTX, 0DMARD, and HC
groups at baseline (Table 2 and data not shown). If combining
the MTX and 0DMARD patients to one RA group (patients
were not treated with any DMARD at baseline), the percent-
age of CD14+CD16++ monocytes (of monocytes) was lower
in RA patients compared to HC (p = 0:03, Table S2).

3.4. Higher Frequency of Basophils during MTX Treatment.
To investigate the impact of MTX on monocyte and granu-
locyte frequencies, these were analyzed before initiation of
MTX treatment and at vaccination, i.e., when patients had
been on unaltered MTX dose for at least four weeks (6-12
weeks of total treatment duration). The percentage of baso-
phils increased during MTX treatment (p = 0:01,
Figure 2(a)), and there was a tendency of higher concentra-
tion of basophils (0:067 × 109/L, 0.055-0.087 and 0:086 ×
109/L, 0.057-0.11, p = 0:09). Moreover, the percentage of
basophils was higher in the MTX group compared to HC
and 0DMARD before vaccination (p = 0:02 and p = 0:006,
respectively, Figure 2(b)). No other significant changes in
cell frequencies were induced by MTX treatment.

The percentage of eosinophils was higher in the MTX
group compared to the 0DMARD group (3.57%, 2.54-5.84
and 1.71%, 0.938-4.69, respectively, p = 0:04), and there
was a tendency of higher percentage of eosinophils com-
pared to HC (3.00%, 1.60-3.29, p = 0:08).

3.5. Frequencies of Monocytes, Granulocytes, and
Lymphocytes in relation to Methotrexate Treatment and
Vaccination with Pneumococcal Conjugate Vaccine. To
investigate the underlying mechanisms by which MTX
exerts its effect on antibody response, frequencies of circulat-
ing monocytes, granulocytes, and lymphocytes were ana-
lyzed in RA patients and healthy controls, 6-7 days after
administration of PCV13.

Matched-paired analysis of patients with MTX treatment,
before and after vaccination, displayed no differences in
monocyte, granulocyte, or lymphocyte frequencies or concen-
trations, except for a lower lymphocyte concentration after
vaccination (p = 0:02, Table S3), while patients with no
DMARD had higher frequency of basophils after vaccination
(p = 0:002, Table S4). Further, healthy controls showed
higher frequency of eosinophils (p = 0:01, Table S5).

Apart from a tendency of higher percentage of eosino-
phils in the MTX patients compared to 0DMARD group
(p = 0:05, Table 3), there were no conclusive differences
between the MTX, 0DMARD, and HC groups, after admin-
istration of PCV.

3.6. Lower Percentage of Monocytes in Nonresponders to
Pneumococcal Conjugate Vaccine in RA Patients with MTX
Treatment. As previously demonstrated and confirmed in
the present study, MTX impairs the antibody response to
pneumococcal conjugate vaccine (PCV) [6–9]. To explore
underlying pathophysiological mechanisms, the cellular
phenotype and laboratory features between MTX-treated
vaccine responders and nonresponders were compared.
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Antibody titers pre- and postvaccination were available
for nine out of eleven patients with MTX treatment. Five
patients displayed a positive antibody-response according
to the definition (≥ twofold increase in antibody titers in
≥ 6 serotypes pre- to postvaccination) and four were
nonresponders.

There were no statistical differences between the groups
regarding age, disease duration, disease activity (DAS28),
or MTX dose. Before initiating MTX treatment, there were
tendencies to higher CRP and ESR in nonresponders com-
pared to responders (p = 0:1 and p = 0:06, respectively,
Table S6). At the time of vaccination, i.e., when they had
been on unaltered MTX dose for at least four weeks, ESR
was significantly higher in nonresponders (p = 0:03,
Table S6). Demographics and clinical data of MTX-treated
responders and nonresponders are presented in Table S6.

We continued by investigating cell frequencies at the
three different time points, pre-MTX, pre- and postvacci-
nation. Before initiation of MTX, there were no differ-
ences observed in granulocyte, monocyte, or lymphocyte
frequencies or concentrations between responders and
nonresponders, except for a tendency of higher granulo-
cyte concentration in nonresponders (Figure 3 and data
not shown). After 6-12 weeks of MTX treatment (prevac-
cination), the percentage and concentration of monocytes

were lower in nonresponders (p = 0:02 and p = 0:03,
respectively, Figure 3 and Table 4 and data not shown).
The lower percentage of monocytes in nonresponders
remained after vaccination (p = 0:02, Figure 3, Table S7).
In addition, there was a tendency of higher frequency
of granulocytes in nonresponders postvaccination
(p = 0:1, Table S7).

The monocyte population was further divided into clas-
sical, intermediate, and nonclassical monocytes. The subsets
did not differ between responders and nonresponders, but
there was a tendency of lower concentration of classical
(CD14++CD16-) monocytes in nonresponders before vacci-
nation (0:49 × 109/L, 0.42-0.64 and 0:28 × 109/L, 0.072-
0.40, p = 0:06). After vaccination, there were weak tenden-
cies of lower percentage of classical monocytes and higher
percentage of nonclassical (CD14+CD16++) monocytes in
nonresponders (p = 0:1 for both comparisons, Table S7).

The percentage and concentration of eosinophils were
higher in nonresponders after 6-12 weeks of MTX treatment
(p = 0:02 and p = 0:03, respectively, Table 4 and data not
shown), but these differences were not present after vaccina-
tion (Table S7).

As a result of the difference in monocyte frequency
between responders and nonresponders that developed
during MTX treatment, we wanted to further explore the

Table 1: Demographic profile and characteristics of study participants.

HC (n = 13) RA 0DMARD (n = 13) RA MTX (n = 11)
Age (years), median (IQR) 41.1 (35.9-56.5) 61.2 (43.1-68.0) 62.9 (58.3-66.7)

Female/male, n %ð Þ 8/5 (61.5/38.5) 9/4 (69/31) 10/1 (91/9)

Age at debut of RA (years), median (IQR) NA 41.3 (31.0-58.7) 59.4 (51.4-65.3)

Disease duration (years), median (IQR) NA 5.5 (0.3-16.6) 0.3 (0.2-0.6)

Current smoker, n %ð Þ 0 (0) 4 (31) 2 (18)

Ex-smoker, n %ð Þ 3 (23) 2 (15) 5 (45)

Never smoker, n %ð Þ 10 (77) 7 (54) 4 (36)

Radiographic changes, yes/no/no data, na NA 6/6/1 4/5/2

Presence of subcutaneous nodules, n %ð Þ NA 3 (23) 0 (0)

RF positive, n %ð Þ — 10 (77) 11 (100)

ACPA positive, n %ð Þ — 11 (85) 5 (45)

DAS28 at MTX start, median (IQR)b NA NA 5.6 (5.1-6.6)e

DAS28 at vaccination, median (IQR)b NA 4.6 (3.1-5.2) 4.6 (3.6-5.6)

CRP at MTX start (mg/L), median (IQR)c NA NA 8.8 (2.6-32.0)

CRP at vaccination (mg/L), median (IQR)c 0.7 (0.6-1.2) 3.5 (1.6-7.0) 2.8 (1.6-8.9)

ESR at MTX start (mm), median (IQR)d NA NA 51 (28-67)

ESR at vaccination (mm), median (IQR)d 6 (3-13) 25 (16-43) 35 (12-45)

Prednisolone at vaccination, n %ð Þ 0 (0) 2 (15) 5 (45)

-Dose in treated (mg/day), median (IQR) NA 3.75 (2.5-5) 5 (2.5-10)

Methotrexate at vaccination (mg/week), median (IQR) 0 (0) 0 (0) 20 (15-25)

HC: healthy controls; RA: rheumatoid arthritis; 0DMARD: without disease-modifying antirheumatic drug treatment; MTX: methotrexate; IQR: interquartile
range; NA: not applicable; RF: rheumatoid factor; ACPA: anticitrullinated protein antibody; DAS28: Disease Activity Score 28 joints examined; CRP: (P-CRP)
C-reactive protein; ESR: (B-ESR) erythrocyte sedimentation rate. aFulfil criteria 7 in 1987 Rheumatoid Arthritis Classification. bOn a scale 0-10 DAS28 > 5:1
high, 5.1-3.2 moderate, < 3.2-2.6 low disease activity, and < 2.6 remission. cReference range < 3:0mg/L. dReference range < 30mm (female), < 20mm (male).
en = 10.
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monocyte population in respect to level of activation. Sur-
face expression of CD11b (leukocyte adhesion and migra-
tion), CD62L (L-selectin, adhesion to activated endothelial
cells), CD69 (upregulated upon activation), CD80 (B7-1),
and HLA-DR (antigen-presenting capacity) on circulating
monocytes was analyzed in responders and nonresponders,
pre-MTX, pre- and postvaccination. There were no statis-
tical differences in expression of these activation markers
on monocytes and subsets between responders and nonre-
sponders at the three different time points (Table S8).

4. Discussion

Autoimmune inflammatory rheumatic diseases are accom-
panied by an increased risk of infections; therefore, immuni-
zation against vaccine-preventable diseases is important. In
this study, we found that MTX-treated nonresponders to
PCV display lower frequency and concentration of mono-
cytes compared to responders.

At inclusion, there were no differences in cell percent-
ages or concentrations between MTX, 0DMARD, and HC
groups. However, if combining the patient groups, the per-
centage of nonclassical (CD14+CD16++) monocytes was
lower in RA patients compared to HC. This is partly in
contrast with previous studies that have demonstrated
both higher and unchanged monocytes and subsets in

untreated RA patients as compared to HC [23–25]. The
different results reported in untreated patients could possi-
bly be related to disease activity and duration. In Chara
et al., patients not responding to MTX showed higher
absolute number of circulating monocytes, before starting
and throughout treatment. Responders to MTX showed
normal numbers of monocytes, and their subsets cells,
over the study period [24].

Here, we demonstrate that 6-12 weeks of MTX treat-
ment induced only minor alterations in circulating granu-
locytes and monocytes. The frequency of basophils
increased in the MTX group, as well as in relation to the
0DMARD and HC groups, and the frequency of eosino-
phils was higher in the MTX group compared to the
0DMARD group, at the prevaccination time point. The
relevance of these findings for the decreased immune
responsiveness in MTX-treated patients is unclear. Baso-
phils have been implicated in RA pathogenesis by affecting
the Th1/Th2 balance [26], and decreased basophil/lym-
phocyte ratio and increased eosinophil/lymphocyte ratio
have been demonstrated in inflammatory diseases includ-
ing RA [27]. However, in a prospective observational
study, a majority of RA patients had a secondary cause
of eosinophilia, and DMARDs did not influence the eosin-
ophil blood count [28].

Using vaccination with pneumococcal vaccine (PCV) as
a model for antigen challenge, our group has previously
investigated phenotypic changes of circulating B and T cells
in RA patients. The hypothesis was that MTX treatment
could exert a negative effect on the formation of germinal
center follicular T helper cells, resulting in a decreased num-
ber of circulating memory follicular T helper cells after vac-
cination. We demonstrated that MTX treatment reduced the
frequency and concentration of Th17 cells and attenuated
expansion of plasmablasts and switched memory B cells fol-
lowing PCV vaccination [12].

In the present study, vaccination of MTX-treated
patients with PCV induced no significant alterations in
monocyte and granulocyte frequencies or concentrations.
Moreover, there were no differences between the MTX,
0DMARD, and HC groups, after administration of PCV.
However, patients and controls were sampled 6-7 days fol-
lowing vaccination. An earlier sampling time point could
possibly have generated more information on changes in
cell frequencies induced by the local inflammation and
vaccine response. Diks et al. observed increased levels of
neutrophils and monocytes, with expansion of intermedi-
ate and nonclassical monocytes, up to 5 days after pertus-
sis booster vaccination [29]. Furthermore, an increase in
frequency and activation of dendritic cells and monocyte
subsets has been observed 1 and 3 days after Ebola vacci-
nation [30].

Two different but partially overlapping meta-analyses
based on twelve and nine studies, respectively, concluded
that MTX exposure diminishes the antibody response to
pneumococcal vaccination. For influenza vaccination, the
supporting data were more contradictory [8, 9]. Park
et al. demonstrated that holding MTX for 4 weeks (2
weeks before and 2 weeks after vaccination or 4 weeks
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Figure 1: Composite antibody response in healthy controls, RA
0DMARD, and RA MTX groups, after immunization with 13-
valent pneumococcal conjugate vaccine (PCV13). Composite
antibody response represents the sum of change in pneumococcal
serotype-specific IgG concentrations (μg/mL), for 11 capsular
serotypes included in PCV13, pre- to postvaccination.
Nonresponders are depicted in grey and the remaining are
responders (defined as ≥ twofold increase in antibody titers in ≥ 6
serotypes pre- to postvaccination). Kruskal-Wallis with Dunn’s
multiple comparisons test was used to calculate level of
significance. Data are presented with medians. ab: antibody; HC:
healthy control; 0DMARD: without disease-modifying
antirheumatic drug treatment; MTX: methotrexate; RA:
rheumatoid arthritis. Antibody titers were measured in 10 HC, 8
0DMARD and 9 MTX patients.
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Table 2: Frequencies of circulating leukocytes in RA patients and HC, at baseline.

Phenotype (% of leukocytes unless otherwise specified) Healthy controls (n = 13) RA 0DMARD (n = 12) RA MTX (n = 10)
Monocytes 5.62 (4.82-7.58) 5.88 (5.04-8.56) 6.34 (5.03-7.47)

CD14++CD16- (% of monocytes) 84.5 (79.3-87.8) 86.2 (81.9-91.0) 86.6 (83.7-90.9)

CD14++CD16+ (% of monocytes) 2.62 (2.04-4.14) 4.77 (2.24-5.55) 4.12 (1.78-4.70)

CD14+CD16++ (% of monocytes) 13.3 (9.11-16.0) 9.21 (5.41-12.6) 8.63 (5.58-12.9)

Granulocytes 60.1 (43.5-69.6) 66.0 (57.4-82.0) 66.3 (58.3-79.7)

Basophils 0.940 (0.570-1.24) 0.885 (0.433-1.10) 1.04 (0.670-1.26)

Eosinophils 3.00 (1.60-3.29) 1.71 (0.938-4.69) 2.76 (2.13-5.32)

Neutrophils 57.9 (39.2-66.1) 59.4 (55.7-79.0) 60.8 (53.1-76.2)

Lymphocytes 24.8 (20.9-42.0) 20.1 (9.00-32.4) 19.2 (11.6-27.1)

Frequencies of circulating monocytes, granulocytes, and lymphocytes analyzed in patients with RA (in the MTX group before scheduled MTX treatment) and
healthy controls, before administration of PCV13, using flow cytometry. Kruskal-Wallis test and Dunn’s multiple comparisons test were used to calculate level
of significance. There were no statistical differences in frequencies between the three groups. Data are presented with medians and interquartile ranges. RA:
rheumatoid arthritis; HC: healthy control, 0DMARD: without disease-modifying antirheumatic drug treatment; MTX: methotrexate.
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Figure 2: Percentage of basophils (of leukocytes) in peripheral blood from (a) patients with rheumatoid arthritis before methotrexate
treatment and after 6-12 weeks on methotrexate, (b) healthy controls (HC), patients without disease-modifying antirheumatic drug
treatment (0DMARD group), and patients on MTX treatment (MTX), before administration of 13-valent pneumococcal conjugate
vaccine. Wilcoxon matched-pairs signed rank test and Mann–Whitney U test were used to calculate level of significance. Data are
presented with medians.

Table 3: Frequencies of circulating leukocytes in RA patients and HC, after vaccination with PCV13.

Phenotype (% of leukocytes unless otherwise specified) HC (n = 12) 0DMARD (n = 11) MTX (n = 11)
Monocytes 6.21 (4.59-8.26) 7.19 (5.58-10.5) 7.86 (3.42-10.9)

CD14++CD16- (% of monocytes) 82.9 (78.3-86.2) 88.3 (85.5-90.9) 86.5 (80.1-90.1)

CD14++CD16+ (% of monocytes) 2.93 (2.34-3.42) 2.12 (1.08-4.47) 3.26 (1.39-4.99)

CD14+CD16++ (% of monocytes) 14.8 (10.8-18.9) 7.99 (6.48-10.9) 10.4 (6.63-13.9)

Granulocytes 58.2 (46.0-73.3) 73.2 (53.6-78.2) 71.0 (60.3-81.0)

Basophils 0.870 (0.595-1.26) 0.960 (0.890-1.38) 1.17 (1.11-1.49)

Eosinophils 2.95 (1.91-4.68) 1.90 (1.66-2.59) 5.73 (2.32-8.17)

Neutrophils 54.0 (41.3-69.5) 70.4 (47.9-75.1) 61.7 (55.8-73.5)

Lymphocytes 30.9 (15.9-37.6) 15.2 (10.4-28.4) 15.4 (9.77-29.0)

Frequencies of circulating monocytes, granulocytes, and lymphocytes analyzed in RA patients on MTX treatment for 6-12 weeks, patients in the 0DMARD
group and HC, 6-7 days after administration of PCV13, using flow cytometry. Kruskal-Wallis test and Dunn’s multiple comparisons test were used to calculate
level of significance. Data are presented with medians and interquartile ranges. RA: rheumatoid arthritis; HC: healthy control; PCV13: 13-valent
pneumococcal conjugate vaccine; 0DMARD: without disease-modifying antirheumatic drug treatment; MTX: methotrexate.
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postvaccination) increased the response to quadrivalent
seasonal influenza vaccination [31, 32]. This data further
supports the direct role of MTX in decreased immune
responsiveness in RA.

Here, to investigate how MTX impairs the antibody
response to PCV, patients were divided into responders
and nonresponders to PCV. There is no generally
accepted definition of what constitutes an adequate
serotype-specific antibody response following immuniza-
tion with PCV [33]. In this study, we defined responders
to PCV as those with ≥ twofold increase in antibody titers
in ≥ 6 serotypes pre- to postvaccination, in line with pre-
vious studies [7, 12].

The main finding was a difference in monocyte fre-
quency between responders and nonresponders that devel-
oped following MTX treatment. The frequency was lower
in nonresponders compared to responders, and this dispar-
ity was sustained after PCV administration.

MTX displays a large number of effects of which several
are postulated to be anti-inflammatory, e.g., reversal of T cell
cycle checkpoint abnormalities and resistance to apoptosis,
decreased activity of NF-κB in T cells, and activation of
adenosine receptors in fibroblast-like synoviocytes [10]. In
monocyte cell lines, MTX has displayed proinflammatory
properties with induction of apoptosis and increased pro-
duction of IL-1, TNF, and IL-6 [34].

We noticed a lower frequency of classical monocytes and
a higher frequency of inflammatory monocytes in nonre-
sponders following MTX treatment; however, these changes
were not significant.

Several studies indicate an inverse correlation between
frequency of inflammatory monocytes and antibody
response, possibly via a defect of T cell help to B cells [35].
Further, Mitchell et al. have shown in murine models and
in vitro that interrupting inflammatory monocyte recruit-
ment to lymph nodes leads to enhanced cellular and
humoral immune responses to vaccination [36].

Moreover, before MTX treatment, there were
tendencies of higher C-reactive protein and erythrocyte
sedimentation rate (ESR) in nonresponders compared to
responders, and following MTX treatment (at the time of
vaccination), ESR was higher in nonresponders. Possibly,
the higher level of inflammation could contribute to the
decreased antibody response in nonresponders. In support
of this, Nakaya et al. have in an extensive study of gene
signatures related to immunogenicity of influenza vaccina-
tion showed that baseline genetic signatures of monocyte
inflammation were negatively correlated with antibody
responses at 1 month. They reason that inflammation pre-
vaccination might be unfavorable to the vaccine-induced
antibody response [37].

Limitations of the present study are the small sample
size and the nonrandomized design. Further, the study
groups were not age- or gender-matched, and a limited
number of absolute white blood cell counts were avail-
able. The healthy controls were younger than the RA
patients which might contribute to differences in antibody
responses to vaccination, but did not affect the main con-
clusions within the MTX group or comparisons between
the patient groups. In addition, the sampling time follow-
ing vaccination was not optimal to investigate the innate
immune response [29, 30]. Another aspect of the overall
aim of the study is the method used to identify
responders to the vaccination. Here, we used serotype-
specific pneumococcal antibody response ratio (post- to
prevaccination) to determine vaccine responsiveness.
Analysis of the T cell response to the vaccine (and/or
its constituents), as well as opsonophagocytosis, would
have added information complementing the serotype-
specific antibody response [38].

Monocytes, macrophages, and granulocytes are impor-
tant to the innate response to vaccine antigens and adju-
vant, and are necessary to provide an effective adaptive
immune response [13, 29, 39]. Here, we show that
MTX exerts an effect on the innate immune system by
suppressing monocytes in future nonresponders to PCV
vaccination. If reproduced in a larger cohort, the next
step would be to explore the underlying mechanisms
reflected in the disparity of monocyte frequencies
between responders and nonresponders to PCV. For
example, knowledge about MTX-induced tissue alterations
of cell populations of the innate and adaptive immune
system could contribute to the understanding of changes
found in circulating immune cells. This could potentially
be explored in animal experiments. In summary, mono-
cyte frequency in peripheral blood could have the poten-
tial to act as a biomarker to identify future
nonresponders to pneumococcal vaccination in MTX-
treated RA patients.
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Figure 3: Comparison of monocytes (% of leukocytes), before
initiation of methotrexate (MTX) treatment (pre-MTX), with
MTX treatment for 6-12 weeks and before vaccination (pre-
vacc.), and 6-7 days after administration of 13-valent
pneumococcal conjugate vaccine (post-vacc.), in peripheral blood
from rheumatoid arthritis patients, sorted in responders and
nonresponders to the vaccine. Positive antibody response was
defined as an antibody response ratio (ARR, i.e., the ratio of post-
to prevaccination antibody levels) ≥ 2, in > 50% of serotypes. Flow
cytometry data was not available for one patient (responder) pre-
MTX.
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5. Conclusions

In this limited cohort, we demonstrate a possible role for the
innate immune system in the blunted vaccine response of
MTX-treated RA patients. The suppressive effect of MTX
on monocyte concentration and frequency could act as a
biomarker to identify nonresponders to PCV vaccination.
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