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Background and Aims. An increasing number of high-risk patients with coronary heart disease (similar to acute myocardial
infarction (AMI)) are using PCSK9 inhibitors. However, whether PCSK9 affects myocardial repair and the molecular
mechanism of PCSK9 modulation of immune inflammation after AMI are not known. The present research investigated the
role of PCSK9 in the immunomodulation of macrophages after AMI and provided evidence for the clinical application of
PCSK9 inhibitors after AMI to improve cardiac repair. Methods and Results. Wild-type C57BL6/J (WT) and PCSK9-/- mouse
hearts were subjected to left anterior descending (LAD) coronary artery occlusion to establish an AMI model. Correlation
analysis showed that higher PCSK9 expression indicated worse cardiac function after AMI, and PCSK9 knockout reduced
infarct size, improved cardiac function, and attenuated inflammatory cell infiltration compared to WT mice. Notably, the
curative effects of PCSK9 inhibition were abolished after the systemic depletion of macrophages using clodronate liposomes.
PCSK9 showed a regulatory effect on macrophage polarization in vivo and in vitro. Our studies also revealed that activation of
the TLR4/MyD88/NF-κB axis was a possible mechanism of PCSK9 regulation of macrophage polarization. Conclusion. Our
data suggested that PCSK9 modulated macrophage polarization-mediated ventricular remodeling after myocardial infarction.

1. Introduction

Proprotein convertase subtilisin/kexin9 (PCSK9) is the ninth
member of the proprotein convertase family, and it has a
specialized function of targeting LDL receptor (LDLR) for
degradation [1, 2]. The present study showed that the liver
synthesized most circulating PCSK9 in peripheral blood
[3]. The PCSK9-LDLR complex is transported to the lyso-
some for degradation and prevents the LDLR from recycling
to the cell membrane [4]. Therefore, the functions of PCSK9
in lipoprotein metabolism have attracted increasing atten-
tion [5, 6]. Beyond that, PCSK9 has been detected in various
tissues in the body, such as the lung [7], brain, and heart [8].
More and more studies concentrated on the role of PCSK9
beyond plasma LDL regulation. In recent years, many stud-
ies have found that PCSK9 inhibitors not only can effectively
reduce LDL but also are related to early plaque formation,
late plaque rupture, thrombosis, and angiogenesis [9]. Sun
et al. [10] indicated that PCSK9 interacts with apolipopro-
tein B and prevents its intracellular degradation irrespective

of the low-density lipoprotein receptor. A clinical trial
showed that independently of LDL plasma levels, PCSK9
levels correlate with an elevated probability of future cardio-
vascular events [11]. Many researchers also found that
PCSK9 modulated inflammation levels [12, 13] and regu-
lated the levels of inflammatory markers of macrophages,
such as Arg-1 and IL10 [13]. Clinical analysis showed that
PCSK9 levels correlate with white blood cell count in
patients with stable coronary artery disease [14] and PCSK9
affected rheumatoid arthritis and sepsis [15, 16].

Acute myocardial infarction (AMI) is one of the most
common reasons for death and heart failure worldwide
[17]. In AMI, reduced blood flow to a region of the myocar-
dium led to a region of mechanical weakness [18]. Scar
deposition was needed to prevent myocardial rupture and
limit functional deterioration in this mechanical weakness
myocardium [19]. In the early stage of AMI, this adaptive
remodeling is necessary. However, excessive and progressive
ventricular remodeling would alter the ventricular structure
and cardiac function and eventually lead to the clinical

Hindawi
Journal of Immunology Research
Volume 2022, Article ID 7685796, 18 pages
https://doi.org/10.1155/2022/7685796

https://orcid.org/0000-0001-9570-8607
https://orcid.org/0000-0002-1947-7445
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7685796


40

30

20

10

0

PC
SK

9 
(n

g/
m

l)

ns

⁎⁎⁎

⁎⁎⁎

W
T 

isc
he

m
ia

W
T 

sh
am

W
T 

co
nt

ro
l

(a)

ns

10

8

6

4

2

0

PC
SK

9 
m

RN
A

re
lat

iv
e e

xp
re

ss
io

n

⁎⁎⁎

W
T 

isc
he

m
ia

W
T 

sh
am

W
T 

co
nt

ro
l

(b)

ns

ns

80

60

40

20

0

LV
EF

 (%
)

6

4

2

0

LV
ID

;d
 (m

m
)

⁎⁎⁎ ⁎⁎⁎

⁎⁎⁎

WT sham WT control WT ischemia3

5

7

9

11

3

5

7

9

11

3

5

7

9

11
1.2

3.0

6.0

9.0

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6

Image:2/2 Image:2/2 Image:2/2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

1.1

2.9

5.9

8.9

1.1
2.9

5.9

8.9

4.7 4.8

BPM
RR
°C

BPM
RR
°C

BPM
RR
°C

W
T 

isc
he

m
ia

W
T 

sh
am

W
T 

co
nt

ro
l

W
T 

isc
he

m
ia

W
T 

sh
am

W
T 

co
nt

ro
l

(c)

PCSK9 (ng/ml) PCSK9 (ng/ml)

LV
ID

;s 
(m

m
)

25

25

20

20

15

15

10

5

0

LV
EF

 (%
)

30 35 40 252015 30 35 40

R2 = 0.6675
P = 0.0039

6.0

5.5

5.0

4.5

4.0

3.5

R2 = 0.7119
P = 0.0022

(d)

Figure 1: High expression of PCSK9 after acute myocardial infarction and the relationship between cardiac function. (a, b) Compared with
WT control and WT sham group, the mice after AMI have a high level of PCSK9 protein and mRNA. (c) LVEF% and LVIDd measured by
echocardiography 7 days after AMI, n = 6. (d) The correlation between the level of PCSK9 protein and cardiac function EF%, LVIDs in the
mice after AMI, n = 10. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001; ns: not significant.
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Figure 2: Continued.
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syndrome of HF (heart failure) [20]. The main feature of the
intense inflammatory reactions triggered by AMI is the infil-
tration of leukocytes into the infarcted heart [21]. Numerous
studies demonstrated that highly focused inflammatory
reactions in infarcted hearts are the main causes of severe
complications, including postinfarction heart failure and
cardiac rupture [22–24]. Maintaining the balance of adaptive
and maladaptive remodeling is very important for the pre-
vention of complications after AMI [25]. Macrophages are
pleiotropic cells in the innate immune system and play cen-

tral roles in the initial inflammatory response to injury and
subsequent healing of tissue damaged by ischemia. Macro-
phages are generally classified into two major subsets: the
inflammatory M1 type and the anti-inflammatory M2 type
[26]. M1 macrophages are characterized by the secretion of
proinflammatory cytokines and growth factors and typically
facilitate degradation of the extracellular matrix and remove
cell debris during the early phase of myocardial infarction
[27, 28]. However, the prolonged presence of M1 macro-
phages leads to excessive or persistent inflammation and
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Figure 2: Inhibition of highly expressed PCSK9 reduced infarct size, inflammation, and myocardial fibrosis and improved cardiac function
after 7 days of AMI. (a–c) Cardiac function measured by echocardiography, n = 5. (d) TTC staining showed the infarct size and quantitative
analysis by ImageJ in each group, n = 5. (e) Masson staining for infarct size and myocardial fibrosis. Scale bar = 1 μm, n = 5. (f) Quantitative
analysis by ImageJ for collagen volume fraction and percentage infarct size of hearts in (e). (g) HE staining for the infract regions in hearts.
Scale bar = 50μm, n = 5, and quantification of inflammatory cell infiltration. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001; ns: not significant.
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Figure 3: Continued.
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expansion of the infarction area [29]. In contrast, M2 mac-
rophages are characterized by the secretion of anti-
inflammatory and reparative factors that facilitate angiogen-
esis and repair myocardial lesions [30]. Therefore, switching
the macrophage phenotype from M1 to M2 is a promising
approach to identifying novel therapeutic targets for myo-
cardial repair after myocardial infarction [31–33].

With the wide use of PCSK9 inhibitors in high-risk
patients with coronary heart disease (e.g., AMI), researchers
are increasingly interested in whether PCSK9 affects myo-
cardial repair after AMI. Emerging evidence indicated that
PCSK9 was upregulated in ischemic myocardium and deter-
mined the development of infarct size, heart function, and
autophagy. However, some studies found that PCSK9 defi-
ciency impacted cardiac lipid metabolism and contributed
to the development of HFpEF (HF with preserved ejection
fraction) [34]. Therefore, our research further examined
the relationship between PCSK9 expression and cardiac
function after AMI. The results suggested that PCSK9 gene
and protein expression was significantly increased after
AMI, and high PCSK9 levels indicated poor cardiac func-
tion. The inhibition of highly expressed PCSK9 improved
cardiac function. To examine the correlating mechanism,
we injected clodronate liposomes to clear systemic macro-
phages in mice. Notably, the curative effects of PCSK9 inhi-
bition were abolished after macrophage depletion. Based on
these research results, we hypothesized that high PCSK9
expression after AMI would lead to poor myocardial repair
by promoting M1 macrophage polarization. Inhibition of
PCSK9 expression may induce switching of the macrophage
phenotype from M1 to M2 and promote myocardial repair
after infarction.

2. Materials and Methods

2.1. Animals. C57BL/6 wild-type mice were purchased from
Jiangsu Jicui Yaokang Animal Corp. PCSK9 heterozygous
mice on a C57BL/6 background were kindly provided by
Dr. Lu Xifeng (Shenzhen University, China) and purchased
from the Jackson Laboratory (number 005993-
PCSK9tm1Jdh). Colonies were maintained by intercrossing
heterozygous mutant mice to generate PCSK9+/+ and
PCSK9-/- mice. All laboratory animal experiments and
maintenance procedures were approved by the Institutional
Ethics Committee of Guangdong Pharmaceutical University.

2.2. Animal Experimental Protocol. Only 10-week-old male
mice were used in our study. To create an AMI state, WT
and PCSK9-/- mice were anesthetized via 1.5% isoflurane
inhalation, and the left anterior descending branch (LAD)
was ligated using 7-0 silk suture. The LAD was only
threaded in the sham group and was not ligated. The mice
were euthanized at 7 days, and the hearts were collected
for further examination. To study the role of macrophages,
clodronate liposomes were injected (150μL, 5mg/mL)
(Liposoma BV, NL) into the mouse tail vein 24 h before
and after the artery ligation surgery, and mice in the control
group were injected with PBS.

2.3. Echocardiography. Seven days after surgery, ecthocar-
diography was performed to assess the left ventricular func-
tion of the mice in each group. We used a 12MHz probe
(VisualSonics Vevo 2100, Canada) to perform M-mode
and B-mode echocardiography on mice anesthetized via iso-
flurane (1%) inhalation. The left ventricular ejection fraction
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Figure 3: Systemic depletion of macrophages reduced the benefits of PCSK9 knockout in cardiac repair after myocardial infarction. (a) After
being adaptively fed for 6 days, Cl2MDP or PBS were injected into the tail vein to systemically deplete macrophages. (b)
Immunohistochemical staining for F4/80 expression in mouse hearts from Cl2MDP- and PBS-treated mice after myocardial infarction.
Scale bar = 50μm, n = 5. Quantitative analysis by ImageJ for F4/80+ cells of myocardium in (b). (c, d) Cardiac function measured by
echocardiography after Cl2MDP and PBS treatment in the WT ischemia group, n = 4. (e, f) Cardiac function measured by
echocardiography after Cl2MDP and PBS treatment in the PCSK9-/- ischemia group, n = 4. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001; ns: not
significant.
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Figure 4: Continued.
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(LVEF) and left ventricular fractional shortening (FS%) were
quantified as FS% = ½ðLVEDd − LVESdÞ/LVEDd� × 100%;
LV end-systolic diameter (LVIDs) and LV end-diastolic
diameter (LVIDd) were measured.

2.4. ELISA of PCSK9. A mouse PCSK9 ELISA kit (BOSTER,
China) was used to measure the PCSK9 levels in peripheral
blood that was collected 7 days after surgery.

2.5. Histological and Immunohistochemical Analysis. Mice
were sacrificed with injections of 1% sodium pentobarbital
into the cavum abdominis. The chest was opened quickly,
perfused, and fixed with 4% paraformaldehyde. 4% parafor-
maldehyde was used to fix the hearts overnight; then, the
hearts were sectioned for H&E staining, immunohistochem-

ical analysis, and Masson trichrome histopathology analyses.
The cardiac macrophage population was stained with the
macrophage marker F4/80 (Abcam, ab100790, UK). Macro-
phage polarization marker CD206 and iNOS immunofluo-
rescence antibodies were purchased from Abcam (ab64693,
ab3523, UK), and F4/80 antibody was provided by Service-
bio (GB11027, China).

2.6. Cell Culture and Treatments. Mouse RAW264.7 cells
(Procell Life Science & Technology, China) were cultured
in 10% FBS high-glucose complete DMEM in 95% air and
5% CO2 at 37°C. The RAW264.7 cells were stimulated for
12 h with 1ng/mL LPS (Sigma, L2880, USA) and for 24h
with 20ng/mL IL4 (Sigma, SRP3211, USA) to induce M1
macrophage and M2 macrophage differentiation
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Figure 4: PCSK9 knockout inhibited M1 polarization and promoted M2 polarization in myocardial macrophages after infarction. (a)
Representative immunofluorescence staining showing the percentages of M1 (F4/80+iNOS+CD206-) and M2 (F4/80+iNOS-CD206+) in
WT/PCSK9-/- mouse myocardium after ischemia or sham. Nuclei were counterstained with DAPI. Scale bar = 50μm, n = 5. Quantitative
analysis of the percentage of M1 and M2 macrophages of (a). (b, c) q-PCR analysis of IL-6, iNOS, TGF-β, and CD206 mRNA
expression in WT/PCSK9-/- mouse myocardium after ischemia or sham, n = 3. (d) Representative images of Western blots for PCSK9,
IL6, iNOS, and TGF-β in WT/PCSK9-/- mouse myocardium after ischemia or sham, n = 3.
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respectively. To investigate the effects of PCSK9 on macro-
phage polarization, recombinant mouse PCSK9 protein
(500 ng/mL) (Novoprotein, CA86, China) was added to
polarized RAW264.7 cells for 24 h. To further analyze
whether TLR4 is involved in PCSK9-regulated macrophage
polarization, cells were pretreated with TLR4 inhibitor
(TAK-242, 20 nM) (Sigma, A3850, USA) for 6 h.

2.7. Western Blot Analysis. Protein from the mouse hearts
and RAW264.7 cells was prepared using a RIPA lysis buffer
system (Santa Cruz, CA, USA). A BCA protein assay kit was
used to determine the quantity of the protein samples. After
the proteins were transferred to a polyvinylidene fluoride
membrane and blocking with 5% nonfat milk for 2 h, the
membranes were incubated overnight with primary anti-
body at 4°C, then incubated with a secondary antibody (goat
anti-rabbit IgG) for 1 h after washing with TBST. Signals
were detected using a Bio-Rad Gel Doc EZ imaging system

(Gel Doc EZ Imager, CA, USA). The following primary anti-
body information was used: PCSK9 (Abcam, ab32727, US),
IL6 (CST, 12912, USA), TNF-α (CST, 11948, USA), iNOS
(CST, 13120, USA), TGF-β (CST, 41896, USA), TLR4
(CST, 14358, USA), MyD88 (CST, 4283, USA), and NF-κB
(CST, 3036, USA).

2.8. Real-Time Quantitative PCR. RNA was extracted from
mouse hearts and RAW264.7 cells using the TRIzol reagent
and reverse-transcribed using SuperScript II (Life Technologies,
USA) at 42°C. The expression of each gene of interest was mea-
sured using SYBR Green PCR core reagents (Applied Biosys-
tems). GAPDH was used as an internal mRNA standard, and
the 2–ΔΔCTmethod was used tomeasure the relative expression
levels of each gene. Primers were designed according to the fol-
lowing GenBank database information: IL6 (AAGTCCGGA
GAGGAGACTTC TGGATGGTCTTGGTCCTTAG), TGF-β
(CGGAGAGCCCTGGATACCA CGGAGAGCCCTGGATA
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Figure 5: In vitro, the exogenous PCSK9 protein induced inflammatory macrophages to acquire the M1 phenotype. The morphologic
changes in macrophages stimulated by LPS/IL4. Cell shape changed from round to fusiform in LPS-stimulated RAW264.7 cells to ellipse
in IL4-stimulated RAW264.7 cells. Scale bar = 50μm. (b) 0.5μg/mL PCSK9 protein significantly induced IL6 expression in RAW264.7
and have no effect on cell viability. (c) Representative flow cytometry plots showing the percentages of M1 (F4/80+/iNOS+/CD206-) and
M2 (F4/80+/iNOS-/CD206+) phenotype in LPS/IL4-stimulated RAW264.7 cells after cocultivation with PCSK9 protein for 24 h, n = 3.
Pooled flow cytometry data from (c). (e, f) q-PCR analysis of IL-6, iNOS, TGF-β, and CD206 mRNA expression in LPS/IL4-stimulated
RAW264.7 cells after cocultivation with PCSK9 protein for 24 h, n = 3. (g) Representative images of Western blots for IL6, iNOS, and
TGF-β in LPS/IL4-stimulated RAW264.7 cells after cocultivation with PCSK9 protein for 24 h, n = 3. Protein levels of IL6, iNOS, and
TGF-β of (g). ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001; ns: not significant.
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Figure 6: PCSK9 regulated M1 macrophage polarization by targeting TLR4. Representative images of Western blots for TLR4 and
downstream MyD88/NF-κB in WT/PCSK9-/- mouse myocardium after ischemia or sham, n = 3. (b) Protein levels of TLR4 and
downstream MyD88/NF-κB of (a). (c) Representative images of Western blots for TLR4 and downstream MyD88/NF-κB in LPS/IL4-
stimulated RAW264.7 cells after cocultivation with PCSK9 protein for 24 h, n = 3. (d) Protein levels of TLR4 and downstream MyD88/
NF-κB of (c). (e)TLR4 inhibitor (TAK242) was used to analyze whether TLR4 is involved in PCSK9-regulated macrophage polarization;
(f) protein levels of IL6, iNOS, TLR4, and downstream MyD88/NF-κB of (e). ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001; ns: not significant.
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CCA), iNOS (TCACCTTCGAGGGCAGCCGA TCCGTG
GCAAAGCGAGCCAG), CD206 (CTGCAGATGGGTGGGT
TATT GGCATTGATGCTGCTGTTATG), GAPDH (AGAA
CATCATCCCTGCCTCTACT GATGTCATCATATTTG
GCAGGTT), and PCSK9 (ATGAGCAGTGACCTGTTGGG
TGGGCGAAGACAAAGGAGTC).

2.9. Flow Cytometry Analysis. Flow cytometry of three fluo-
rescence markers was used to count the percentages of M1
and M2 macrophages in each group after the cells were
treated with LPS or IL4 and recombinant mouse PCSK9 pro-
tein. M1 macrophages were identified as F4/80+/iNOS+/
CD206- cells, and M2 macrophages were identified as F4/
80+/iNOS-/CD206+ cells. After these experimental steps,
the RAW264.7 cells were digested into a single-cell suspen-
sion at a density of 1 × 106 cells/mL. A 100μL cell suspen-
sion was incubated with fluorescent antibodies (anti-F4/80,
anti-iNOS, and anti-CD206) at 4°C for 1 h. The cells were
immediately analyzed using flow cytometry. The following
primary antibodies were used: CD206 and iNOS immuno-
fluorescence antibodies were purchased from Abcam
(ab64693,ab3523, USA), and F4/80 antibodies were provided
by Servicebio (GB11027, China).

3. Statistical Analysis

Data from at least three independent experiments are pre-
sented as the means ± SD, and significant differences
between two groups were determined using unpaired t
-tests. One-way analysis of variance (ANOVA) was used to
assess the differences between multiple comparisons
followed by Tukey’s multiple comparisons test. Two differ-
ent interventions between multiple comparisons were tested
using two-way ANOVA followed by Bonferroni’s multiple
comparisons test. GraphPad Prism software was used to per-
form all analyses, and a P value less than 0.05 was considered
statistically significant.

4. Results

4.1. Overexpression of PCSK9 in Myocardial Tissue and
Peripheral Mouse Blood after AMI. To clarify the changes
in PCSK9 expression after myocardial infarction, q-PCR
and ELISA were performed. The ELISA analysis showed that
the expression of PCSK9 in peripheral mouse blood was
increased in the WT ischemia group compared to the con-
trol group and WT sham group (P < 0:05) (Figure 1(a)).
The results also showed that PCSK9 mRNA expression in
the WT ischemia group was obviously increased compared
to the control group and WT sham group (P < 0:05)
(Figure 1(b)). To further understand the relationship
between PCSK9 expression and cardiac function after
AMI, EF% and LVIDd were measured using echocardiogra-
phy 7 d after AMI (Figure 1(c)), and the correlation between
these factors was calculated. The results showed that PCSK9
expression is negatively correlated with the LVEF
(R2 = 0:6675, P = 0:0039) and positively correlated with the
LVIDs (R2 = 0:7119, P = 0:0022) (Figure 1(d)). Taken
together, the data showed that the expression of PCSK9

increased significantly after AMI in mice. The correlation
analysis indicated a significant correlation between PCSK9
expression and cardiac function after myocardial infarction.

4.2. Inhibition of Highly Expressed PCSK9 Reduced Infarct
Size and Inflammation and Improved Heart Function after
AMI in Mice. To inquire about the role of PCSK9 in myocar-
dial injury, we constructed PCSK9-knockout mice. Seven
days after LAD artery ligation surgery, we compared the
infarct size, inflammation, echocardiographs, and myocar-
dial fibrosis of the mice in the WT and PCSK9-/- ischemia
groups. The results of echocardiography showed that LVEF
(16:02 ± 6:8% vs. 35:14 ± 5:0%, P < 0:05) (Figures 2(a) and
2(b)) and LVFS (10:62 ± 4:09% vs. 18:01 ± 1:16%, P < 0:05)
(Figures 2(a) and 2(b)) in the PCSK9-/- ischemia group were
significantly higher than that in the WT ischemia group. The
LVIDd (4:65 ± 0:43 vs. 3:76 ± 0:36, P < 0:05) (Figures 2(a)
and 2(c)) and LVIDs (4:43 ± 0:33 vs. 3:47 ± 0:18, P < 0:05)
(Figures 2(a) and 2(c)) were lower than that in the WT
ischemia group (P < 0:05). The results of TTC staining
showed that the infarct size was obviously smaller in the
PCSK9-/- ischemia group (36:15 ± 2:24% vs. 19:47 ± 0:91%,
P < 0:05) (Figure 2(d)). Masson staining was used to evalu-
ate the extent of myocardial fibrosis and indicated that the
collagen density in the infarcted area of the PCSK9-/- ische-
mia group was obviously decreased compared to the WT
ischemia group (44:15 ± 8:38% vs. 25:32 ± 3:23%, P < 0:05)
(Figures 2(e) and 2(f)). HE staining of myocardial tissue
showed that a large number of inflammatory cells infiltrated
the WT ischemia group myocardium compared to the WT
sham group, but the number of inflammatory cells decreased
notably when PCSK9 expression was knocked down
(13:6 ± 1:39% vs. 7:50 ± 0:81%, P < 0:05) (Figure 2(g)).
These figures suggested that inhibition of highly expressed
PCSK9 after AMI reduced the infarct size, myocardial fibro-
sis, and inflammatory response and promoted cardiac func-
tion repair after acute myocardial infarction.

4.3. Systemic Depletion of Macrophages Reduced the Benefits
of PCSK9 Knockout in Cardiac Repair after Myocardial
Infarction. The role of macrophages in the modulation of
cardiac inflammation after AMI was explored in recent
years, but the relationship between macrophages and the
effects of PCSK9 on the modulation of cardiac function after
AMI are not clear. To examine this relationship, we injected
clodronate liposomes into the mouse tail vein 24 h before
and after the artery ligation surgery (Figure 3(a)). The results
showed that clodronate liposomes significantly reduced the
cardiac macrophage population, as indicated by the F4/80
macrophage marker level in immunohistochemistry analy-
ses (Figure 3(b)). After clodronate liposome injection, we
found that cardiac function was not significantly different
between the Cl2MDP-treated and PBS-treated WT ischemia
groups in LVEF (17:41 ± 4:76% vs. 16:72 ± 2:45%, P > 0:05)
or LVIDs (5:43 ± 0:45% vs. 5:59 ± 0:53%, P > 0:05)
(Figures 3(c) and 3(d)). Clodronate liposomes did not aggra-
vate ischemic injury. However, clodronate liposomes attenu-
ated the benefits of PCSK9 gene knockout, as indicated by
the worsened cardiac function. Cardiac function was
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significantly worse in the Cl2MDP-treated group than in the
PBS-treated PCSK9-/- ischemia group, including LVEF
(37:95 ± 2:01% vs. 15:40 ± 3:22%, P < 0:05) and LVIDs
(3:75 ± 0:37 vs. 4:80 ± 0:39, P < 0:05) (Figures 3(e) and 3(f
)). These results showed that depletion of macrophages
attenuated the benefits of PCSK9 gene knockout after myo-
cardial infarction. Therefore, cardiac macrophages were
required for the effects of PCSK9 on infarction repair.

4.4. PCSK9 Knockout Inhibited M1 Polarization and
Promoted M2 Polarization in Myocardial Macrophages
after Infarction. Macrophages exhibit distinct subtypes and
polarization statuses after infarction. On the basis of our
results, we investigated the function of PCSK9 on cardiac
macrophage polarization in mice after infarction. The pro-
portions of M1 (F4/80+iNOS+CD206-) and M2 (F4/80-
+iNOS-CD206+) macrophages were measured using
immunofluorescence staining of the myocardium. The
results showed that the proportion of M2 macrophages
was increased compared to the WT ischemia group
(27:58 ± 0:97% vs. 43:34 ± 0:61%, P < 0:05) (Figure 4(a)),
and the proportion of M1 macrophages was decreased in
the PCSK9-/- ischemia group (45:32 ± 4:19% vs. 34:54 ±
2:95%, P < 0:05) (Figure 4(a)). The results of the q-PCR
and Western blot analyses showed that the expression of
M1 macrophage markers (IL6, iNOS) was remarkably
reduced in the PCSK9-/- ischemia group compared to the
WT ischemia group (Figures 4(b)–4(d)), but the expression
of M2 macrophage markers (TNF-β and CD206) was
increased (Figures 4(b)–4(d)). Collectively, the results
showed that PCSK9 knockout polarized macrophages from
the M1-like phenotype toward the M2-like phenotype upon
myocardial injury.

4.5. In Vitro, Exogenous PCSK9 Protein Induced
Inflammatory Macrophages to Acquire the M1 Phenotype.
To examine the effect of PCSK9 on macrophage polarization
in vitro, recombinant mouse PCSK9 protein was added to
polarized RAW264.7 cells stimulated with 1ng/mL LPS
and 20ng/mL IL4 for 24h (Figure 5(a)). The concentration
grading experiment revealed that 0.5μg/mL PCSK9 protein
significantly induced IL6 expression in RAW264.7 cells
and had no effect on cell viability (Figure 5(b)). The expres-
sion of M1 markers (IL6 and iNOS) and M2 markers (TGF-
β and CD206) in cultured RAW264.7 cells was determined
using q-PCR, Western blotting, and flow cytometry. Flow
cytometry analysis showed that the proportion of M1 mac-
rophages increased significantly (P < 0:05) (Figures 5(c)
and 5(d)), but there was no significant difference in the pro-
portion of M2 macrophages (P > 0:05) (Figures 5(c) and
5(d)) compared to the control group. The q-PCR results
showed that PCSK9 mRNA addition increased the expres-
sion of IL6 and iNOS (P < 0:05) (Figure 5(e)), but there were
no significant differences in the expression of TGF-β and
CD206 (P > 0:05) (Figure 5(f)) compared to the control
group. Western blot analysis also showed that M1 markers
(IL6 and iNOS) increased significantly (P < 0:05)
(Figure 5(g)), but M2 markers (TGF-β and CD206) were
not significantly different (P > 0:05) (Figure 5(g)). These

data showed that high expression of PCSK9 promoted M1
macrophage polarization in vitro.

4.6. PCSK9 Regulated M1 Macrophage Polarization by
Targeting TLR4. In vivo and in vitro Western blot analyses
showed that high expression ofPCSK9 significantly upregu-
lated the TLR4/MyD88/NF-κB pathway. In vivo, the expres-
sion of the TLR4/MyD88/NF-κB pathway was upregulated
in the WT ischemia group and downregulated in the
PCSK9-/- ischemia group (Figures 6(a) and 6(b)). In vitro,
after cocultivation with PCSK9 protein for 24h, TLR4 and
downstream MyD88/NF-κB were significantly upregulated
in the LPS+mPCSK9 group compared with the LPS group.
But there was no significant difference between the IL4
group and the IL4+mPCSK9 group (Figures 6(c) and 6(d)).
To further analyze whether TLR4 is involved in PCSK9-
regulated macrophage polarization, cells were pretreated
with TLR4 inhibitor (TAK-242), TAK-242 is a small-
molecule cyclohexene derivative, and it selectively binds to
Cys-747 in the TIR (Toll/IL-1 receptor) domain of the intra-
cellular receptor, which in turn hinders the downstream
adaptor proteins (TRAM and TIRAP) from binding to
TLR4 to totally suppress the pathway [35, 36]. Western blot
was performed to detect levels of M1 macrophage markers
IL-6 and iNOS. As shown in Figures 6(e) and 6(f), LPS
was added to culture systems in order to induce an inflam-
matory microenvironment. With the presence of inhibitors
TAK-242, the M1 macrophage markers iNOS and IL-6
induced by PCSK9 were suppressed and significantly lower
than those without inhibitors (P < 0:05). Meanwhile, the
presence of inhibitors TAK-242 significantly upregulates
the level of the MyD88/NFκB pathway. The results suggested
that TLR4 may be a key factor in PCSK9-regulated macro-
phage polarization.

5. Discussion

Animal experiments previously showed that the plasma
PCSK9 concentration was significantly increased in AMI
[37]. SREBP-2 and HNF1α are predominant transcription
factors for PCSK9 and play important roles in the upregula-
tion of PCSK9. PCSK9 gene and protein expression were sig-
nificantly increased in the ischemia group 7d after LAD
ligation in our study, which was consistent with previous
studies. The correlation analysis between these factors indi-
cated that the PCSK9 level positively correlated with LVIDs
and negatively correlated with LVEF. These data suggested
that PCSK9 gene and protein expression were significantly
increased after AMI, and a high PCSK9 level indicated poor
cardiac function. Because of relatively small samples in line-
arity analysis, larger samples should be used in future stud-
ies, particularly clinical samples.

Another interesting finding of our research was that
TGF-β, which is an important regulator of cardiac fibrosis,
was upregulated in the PCSK9-/- group compared to the
WT group after AMI, which was not completely consistent
with the Masson staining results in our study. We hypothe-
sized that the reason for this difference was that the role of
TGF-β signaling in the infarcted myocardium always elicited

15Journal of Immunology Research



complex and opposing cellular responses [38]. Some studies
showed that early TGF-β antagonism within 24 h following
myocardial infarction led to increased mortality and
enhanced proinflammatory cytokine and chemokine gene
expression [39]. In contrast, late TGF-β inhibition decreased
collagen deposition after the infarct healing and meanwhile
attenuated adverse remodeling [40]. Therefore, TGF-β likely
exerts different roles during different stages of myocardial
infarction. Our research found that PCSK9 knockout pro-
vided better protection against myocardial injury by upregu-
lating TGF-β and inducing M2 macrophage polarization.
We will design experiments to further demonstrate the
effects of PCSK9 in TGF-β modulation of fibroblast pheno-
type and fibrosis. What is the role of high expression of
PCSK9 regarding the function and adaptation of cardiomyo-
cytes? The Ding et al. study showed that hypoxia-induced
PCSK9 expression in cardiomyocytes and expression of
PCSK9 were dependent on the duration of hypoxia; what
is more, PCSK9 secretion by cardiomyocytes causes the
development of autophagy [8]. According to the abovemen-
tioned results, we hypothesized that ischemia-hypoxia-
induced cardiomyocytes in ischemic areas secreted PCSK9
which regulated macrophage switching to inflammatory
M1 polarization. The macrophage/cardiomyocyte coculture
system under hypoxia conditions will be designed to test this
hypothesis in future studies.

The relationship between cardiac function after AMI and
the levels of PCSK9 in peripheral blood has not been estab-
lished in clinical studies. Wiviott et al. showed that PCSK9
inhibitors had different effects on different myocardial
infarct subtypes [41]. For example, evolocumab (PCSK9
monoclonal antibody) reduced the risk of spontaneous and
procedural AMI but had no effect on type 2 (as indicated
by a mismatch in myocardial oxygen supply and demand)
AMI events [42]. The ORION-4 trial will assess the effects
of reduced PCSK9 levels in circulation on clinical outcomes
[43]. Recent studies showed that better outcomes were
attributed to LDL-C level reduction [44]. Our study is the
first report to explain the possible mechanisms by which
PCSK9 inhibition modulates the immunoregulatory func-
tions of macrophages to promote heart repair after infarc-
tion. Through this study, we wanted to explore the
causative role of PCSK9 in post-AMI ventricular remodeling
and its potential as a therapeutic target for cardiac repair
after AMI.

Macrophages play important roles in the extent and
effect of inflammatory cell infiltration in the ischemic heart
following AMI [45]. Therefore, promotion of proinflamma-
tory M1 macrophage switching to anti-inflammatory M2
macrophages after AMI may be a novel treatment for
immune regulation [18]. The exact mechanisms of macro-
phage polarization post-MI are not clear [30], and the
sources of macrophages and the local microenvironment
may explain the difficulty in determining the mechanism
of macrophage phenotype switching [27, 46]. The microen-
vironment post-MI is filled with early proinflammatory M1
factors and anti-inflammatory M2 macrophages, which
likely induce macrophage polarization [47, 48]. Previous
studies showed that PCSK9 was a direct inflammatory medi-

ator because PCSK9 increased the expression of proinflam-
matory cytokines, such as TNF-α and IL-6, in
macrophages [49, 50]. Investigation into the regulatory func-
tion of PCSK9 in atherosclerosis showed that PCSK9 acti-
vated NF-κB signaling to promote inflammation [12]. The
inhibition of TLR4 and its downstream MyD88/NF-κB sig-
naling pathway has been shown to alleviate inflammation
by negatively polarizing M1 macrophages [51]. Our research
revealed that overexpression of PCSK9 in myocardium and
macrophage both upregulated TLR4 and its downstream
MyD88/NF-κB expression which also induced M1 macro-
phage polarization. With the presence of TLR4 inhibitors
TAK-242, the M1 macrophage markers induced by PCSK9
were suppressed and significantly lower than those without
inhibitors. These results demonstrated that PCSK9 induced
M1 macrophage polarization by promoting the activation
of the TLR4/MyD88/NF-κB pathway.

In summary, our findings suggest that high expression of
PCSK9 after AMI leads to poor myocardial repair by regu-
lating M1 macrophage polarization via TLR4/MyD88/NF-
κB signaling. In contrast, PCSK9 knockout provides better
protection against myocardial injury by inducing M2 macro-
phage polarization. However, deficiency of clinical data of
patients who used PCSK9 inhibitor after AMI is the limita-
tion of our research. The major reason is that there are only
two monoclonal antibodies targeting PCSK9 available for
treating hypercholesterolemia in clinic. They can obviously
decrease LDL particles in blood without affecting plasma
PCSK9 levels. In further studies, we will screen desirable
PCSK9 small molecule inhibitors which can reduce plasma
PCSK9 levels in vivo to reveal more PCSK9 functions in car-
diovascular diseases beyond LDL-cholesterol plasma level
regulation.
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