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Diabetic nephropathy (DN) is the most important cause of end-stage renal disease with a poorer prognosis and high economic
burdens of medical treatments. It is of great research value and clinical significance to explore potential gene targets of renal
tubulointerstitial lesions in DN. To properly identify key genes associated with tubulointerstitial injury of DN, we initially
performed a weighted gene coexpression network analysis of the dataset to screen out two nonconserved gene modules (dark
orange and dark red). The regulation of oxidative stress-induced intrinsic apoptotic signaling pathway, PI3K-Akt signaling
pathway, p38MAPK cascade, and Th1 and Th2 cell differentiation were primarily included in Gene Ontology (GO) annotation
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of these two modules. Next, 199 differentially expressed
genes (DEGs) were identified via the limma package. Then, the GO annotation and KEGG pathways of the DEGs were
primarily enriched in extracellular matrix (ECM) organization, epithelial cell migration, cell adhesion molecules (CAMs), NF-
kappa B signaling pathway, and ECM-receptor interaction. Gene set enrichment analysis showed that in the DN group, the
interaction of ECM-receptor, CAMs, the interaction of cytokine-cytokine receptor, and complement and coagulation cascade
pathways were significantly activated. Eleven key genes, including ALB, ANXA1, ANXA2, C3, CCL2, CLU, EGF, FOS, PLG,
TIMP1, and VCAM1, were selected by constructing a protein-protein interaction network, and expression validation, ECM-
related pathways, and glomerular filtration rate correlation analysis were performed in the validated dataset. The upregulated
expression of hub genes ANXA2 and FOS was verified by real-time quantitative PCR in HK-2 cells treated with high glucose.
This study revealed potential regulatory mechanisms of renal tubulointerstitial damage and highlighted the crucial role of
extracellular matrix in DN, which may promote the identification of new biomarkers and therapeutic targets.
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1. Introduction

Diabetic nephropathy (DN) is a principal microvascular
complication with diabetes, which also is one of the most
important causes of end-stage renal disease (ESRD). It
imposes substantial personal and economic burdens on soci-
ety and greatly reduces patients’ quality of life [1, 2]. In
recent decades, the prevalence of DN among diabetic
patients has consistently been over 20%, while the preva-
lence of reduced glomerular filtration rate (GFR) has been
increasing annually. The number of adults with diabetes is
expected to increase to 642 million by 2040, 30%–40% of
whom will develop DN [3]. DN is dominated by persistent
albuminuria and/or progressive decrease in GFR and
develops insidiously and slowly, eventually leading to ESRD.
Because of the complex mechanism of DN, its prevention
and treatment strategies have been the research hotspots at
home and abroad, although no breakthrough progress has
yet been made. Current comprehensive treatments of DN
include lifestyle guidance, glycemic and lipid control, blood
pressure and proteinuria management, and renal replace-
ment therapy [4]. Although strict blood glucose and blood
pressure control can effectively delay the progression of
DN, many patients will still develop ESRD. Therefore, early
diagnosis and effective treatment are essential for the prog-
nosis of DN.

Renal tubulointerstitial injury is the primary cause of
early DN, and its severity is closely associated with renal
impairment in DN, which determines the long-term prog-
nosis of the disease [5]. In the pathogenesis of DN, various
mechanisms such as metabolic abnormalities, inflammation,
oxidative stress, and hemodynamic changes can mediate
renal tubulointerstitial lesions including inflammation and
fibrosis, which play key roles in the progression of DN.
The mechanisms of tubulointerstitial lesions in DN have
been studied in great depth, resulting in the identification
of many genes that have been found to constitute a complex
pathway network, and new strategies for the treatment of
DN have been obtained, therefore. For example, Sirtuin 1
was reported to be a new therapeutic target for patients with
DN, due to it reducing inflammation in DN by inhibiting
NF-κB acetylation and activity [6]. Additionally, kidney-
targeting Smad7 gene transfer can block transforming
growth factor- (TGF-) β/Smad signaling to inhibit tubuloin-
terstitial fibrosis in DN [7]. Therefore, an in-depth investiga-
tion of the genetic targets of tubulointerstitial renal lesions in
DN has significant research value and clinical significance.
In recent years, bioinformatics analysis has promoted new
strategies for DN study.

In the present study, we used the GSE104954 dataset
downloaded from the Gene Expression Omnibus (GEO)
database by performing weighted gene coexpression network
analysis (WGCNA) to find out highly coregulated and DN
closely associated gene modules for further analysis of Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG). Moreover, the differentially expressed
genes (DEGs) were screened from the dataset and analyzed
by GO and KEGG. Then, the gene set enrichment analysis
(GSEA) was performed and a protein-protein interaction

(PPI) network was constructed. Finally, 11 key genes were
selected for further study. Validation of the expression,
ECM-related pathways, and GFR correlation analysis of the
11 key genes was performed via the GSE30529 dataset, and
experimental validation was performed using high glucose-
treated HK-2 cells. This study revealed potential regulatory
mechanisms underlying tubulointerstitial injury in DN and
may promote the identification of novel biomarkers and
therapeutic targets.

2. Results

2.1. Construction of a Coexpression Network. A coexpression
network was constructed at the transcriptional level using the
WGCNAmethod. We then compared differences between the
specific networks of the DN and LD groups. The soft power
selection results of the two groups are shown in Figure 1(a).
First, after clustering, one sample, GSM2811043, was removed
from the LD group; the final number of renal tubule samples
in the GSE104954 database was 17 in the DN group and 20
in the LD group; their detailed information is listed in Supple-
mentary Table S1. We continued to cluster and merge the
modules. We then set the height of the clustering tree to 0.3,
calculated the distance matrix using the Pearson correlation
coefficient between the modules, and merged the modules.
Modules with correlation over 0.7 were merged into a new
module. The clustering diagram of the DN and LD groups is
shown in Figure 1(b).

2.2. GO and KEGG Pathway Analyses of Characteristic
Modules. To verify the robustness of WGCNA, we analyzed
the conservation of the modules. The preservation median
rank and Z summary score of each module are detailed in
Figure 2(a). Accordingly, we selected two characteristic
modules (nonconserved modules with the lowest Z sum-
mary) of DN (dark orange and dark red) for GO analysis.
The most important biological functions in the dark orange
module included regulation of oxidative stress-induced
intrinsic apoptotic signaling pathway, Notch receptor pro-
cessing, and tumor necrosis factor-mediated signaling path-
way (Figure 2(b)); the most important biological functions
in the dark red module were primarily enriched in the
p38MAPK cascade, regulation of cell-cell adhesion, and pos-
itive regulation of cytokine production (Figure 2(c)).
Detailed information about the functional enrichment could
be found in Supplementary Tables S2 and S3. Analysis of the
KEGG pathways of the two modules showed that the dark
orange module was primarily enriched in extracellular
matrix- (ECM-) receptor interaction, focal adhesion, and
PI3K-Akt signaling pathway (Figure 2(d)), whereas the
main pathways in the dark red module included cell
adhesion molecules (CAMs), Th1 and Th2 cell
differentiation, and cytokine-cytokine receptor interaction
(Figure 2(e)). Significant enriched pathways are listed in
Supplementary Tables S4 and S5.

2.3. Identification and Enrichment Analyses of DEGs
Associated with Tubulointerstitial Injury in DN. After merg-
ing and normalizing the microarray data, 199 DEGs closely
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related to DN were identified via the R package limma
(P < 0:05 and ∣logFC ∣ ≥1); the volcano plot and heat map
of DEGs are shown in Figures 3(a) and 3(b), respectively.
Next, we obtained the GO and KEGG pathway enrichment
for all DEGs. The DEGs were significantly enriched in GO
functions, including extracellular matrix organization, epi-
thelial cell migration, negative cell adhesion regulation, and
complement activation regulation (Figure 3(c)). Further-
more, the DEGs were significantly enriched with KEGG
pathways, including PI3K-Akt signaling pathway, cell adhe-
sion molecules (CAMs), ECM-receptor interaction, and NF-
kappa B signaling pathway (Figure 3(d)). Significant
enriched terms or pathways are listed in Supplementary
Tables S6 and S7. GSEA was performed to identify the
gene sets that were statistically different between the
normal controls and DN group. The results illustrated that

the gene sets and DN group were positively correlated
which were significantly enriched in interaction of ECM-
receptor CAMs, interaction of cytokine-cytokine receptor,
and complement and coagulation cascades (Figure 3(e)).

2.4. Analysis of PPI Network and Recognition of Key Genes.
The PPI network of DEGs was constructed by using
STRING and then was visualized using Cytoscape software
(Figure 4(a)). Key genes were screened using the Cytoscape
cytoHubba plugin based on the four methods, Degree,
Betweenness, Closeness, and MNC (Figure 4(b)), and the
top 20 ranked genes were intersected, resulting in 11 key
genes: ALB, ANXA1, ANXA2, C3, CCL2, CLU, EGF, FOS,
PLG, TIMP1, and VCAM1 (Figure 5(a)). Exact value of
the Degree, Betweenness, Closeness, and MNC for hub genes
could be found in Supplementary Table S8.
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Figure 1: Gene modules in WGCNA analysis. (a) The soft power selection result of the DN and LD groups. (b) Module assignment in
hierarchical clustered genes in the DN and LD groups. Genes within different modules are labeled with different colors according to
WGCNA’s conventions. DN: diabetic nephropathy; LD: living donors; WGCNA: weighted gene coexpression network analysis.
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Figure 2: Characterizations of gene modules in WGCNA. (a) Preservation median rank and Z summary score of all modules were
presented. The lowest Z summary statistics indicates nonconserved modules. The top two gene modules most significantly related with
DN (dark orange, dark red) were selected for further analysis. The blue and green dotted lines indicate the thresholds Z = 2 and Z = 10,
respectively. (b, c) GO enrichment results for dark orange and dark red modules. (d, e) KEGG pathway enrichment results for dark
orange and dark red modules. GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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Figure 3: Continued.
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2.5. Dataset Validation, ECM-Related Pathway, and GFR
Correlation Analysis. We validated the above 11 key genes
in the GSE30529 dataset and found that they demonstrated
similar patterns of upregulated expression (Figures 5(b)–
5(l)). The expression of TIMP1, C3, CCL2, VCAM1, CLU,
ANXA2, and ANXA1 was reversely correlated with GFR
(Figures 6(a)–6(k)). We also investigated the correlation
between ECM-related pathways and the 11 key genes, and
we found that many of the genes showed significant correla-
tion with these pathways (Figure 6(l)).

2.6. Validation of the Key Genes. The RT-qPCR showed that
ANXA2 and FOS were upregulated in HK-2 cells under a
high-glucose environment, and the differences were statisti-
cally significant compared with the control group
(Figures 7(a) and 7(b)).

3. Discussion

DN has become the primary cause of dialysis treatment in
chronic kidney disease patients and is an important cause

of death from diabetes. The pathogenesis of DN is complex
and remains unclear to a large extent. Previous studies on
DN focused primarily on glomerular lesions. Recently, some
studies focused on tubulointerstitial pathogenesis in DN to
identify important genes associated with tubulointerstitial
damage and to provide novel insights into its pathogenesis
by emerging bioinformatics developments. For example, by
analyzing DEGs in DN, Zeng et al. screened key genes to
investigate their associations with clinical features (i.e.,
GFR, creatinine, and proteinuria). They identified drugs that
prevent diabetic tubular interstitial injury and proposed
many key genes involved in diabetic tubulointerstitial dam-
age [8]. Song et al. identified VAV1, LCK, and Plk as reliable
biomarkers of DN that can be used as indicators of develop-
ment of DN in clinical management [9]. Furthermore, EST1
was found to be an important transcription factor in the
development of DN, promoting the expression of integrin
subunit beta 2, and may be a drug target in DN therapy
[10]. Although some other genes have been reported in
DN, the regulatory network of these key genes and related
signaling pathways remain unclear.
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Figure 3: Identification and enrichment analyses of DEGs related to tubulointerstitial injury in DN. (a) Volcano plot of differential
expressed genes (DEGs) between DN and LD tubule samples. The x-axis corresponds to log2 transformed fold change, and the y-axis
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In this study, we first identified the unconserved mod-
ules by WGCNA analyses. The GO or KEGG annotation
of dark orange module showed their association with oxida-
tive stress-induced apoptosis pathway, tumor necrosis fac-

tor- (TNF-) mediated signaling pathway, and Notch
receptor processing, which is consistent with previous stud-
ies’ results. Oxidative stress is an important process in DN
pathogenesis. Meanwhile, it can mediate apoptosis in
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Figure 4: PPI network analysis and key genes’ recognition. (a) PPI network for DEGs. Red rectangle node: upregulated genes; green
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Figure 5: Screening and validation of key genes. (a) 11 key genes were selected from the intersected top 20 genes in the above four screening
methods. Validation of expression levels of hub genes from the GSE30529 dataset. 11 key genes showed the similar upregulation trend: (b)
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proximal tubular epithelial cells by affecting the expression
of multiple caspases [11, 12]. TNF-α is a prime inducer
and driver of renal microinflammation and is centrally act-
ing in the proinflammatory molecular network of DN. In
DN, TNF-α mediates activation of the protein kinase/phos-
phoinositide 3-kinase pathway or NADPH oxidase, which
eventually produces reactive oxygen species that cause cellu-
lar damage. TNF-α also decreases nephrin expression and
reduces Akt activity by mediating PI3K-Akt pathway activa-
tion, leading to reduced cell survival [13]. Notably, as a rep-
resentative receptor involved in the Notch protein family,
activation of Notch-1 is closely related to the degree of podo-
cyte injury induced by high glucose [14]. The GO annota-
tions of the dark red module indicated its correlation with
p38MAPK cascade, regulation of cell-cell adhesion, and
cytokine production with positive regulation. The inflamma-
tory response in diabetes is a key factor that can contribute
to the activation of the p38MAPK signaling pathway,
thereby inducing activation of downstream inflammatory
cells and promoting the expression of inflammatory factors
further to aggravate renal damage [15, 16]. In DN, many sig-
naling pathways and molecular networks in vivo induce
mesenchymal cell properties in interepithelial cells by inhi-
biting their expression of E-cadherin and decreasing their
adhesiveness, resulting in renal fibrosis [17]. KEGG enrich-
ment analysis of the dark orange module presented the
involvement of the interaction of ECM-receptor, focal adhe-
sion, and the PI3K-Akt signaling pathway, demonstrating
the ECM changes in DN, and this was further validated by
the correlation between ECM-related pathways and key
genes, whereas the main pathways enriched for genes in
the dark red module also included CAMs, Th1 and Th2 cell
differentiation, and interaction of cytokine-cytokine recep-
tor. This suggests a key role for the PI3K-Akt signaling path-
way and T cell immune responses in DN. The PI3K-Akt
signaling pathway has been implicated as an important path-
ogenic mechanism in DN [18, 19]. An increasing number of
studies have also confirmed that Th1 and Th2 cells are
involved in the development of DN [20, 21]. Similarly, we
observed enrichment of immunological and ECM-related
pathways based on the DEGs between control and DN sam-
ples, including ECM organization, epithelial cell migration,
cell adhesion with negative regulation, and regulation of

complement activation. Tubular epithelial myofibroblast
transdifferentiation can be observed in DN, and epithelial
cell transdifferentiation results in loss of adhesion, increased
migration, and abnormal accumulation because of secreted
ECM, thereby promoting the progression of kidney intersti-
tial fibrosis [22, 23]. Furthermore, evidence has revealed the
important role of complement activation in tubulointerstitial
injury in DN [24, 25]. Additionally, NF-kappa B signaling
was enriched, and it is a key mechanism underlying the
inflammatory response in DN [26]. All the results suggested
the engagement of ECM-related pathological mechanisms in
DN development and their potential interaction with immu-
nocytes, highlighting the critical role of immune-stromal
interplay.

We identified 11 key genes (ALB, ANXA1, ANXA2, C3,
CCL2, CLU, EGF, FOS, PLG, TIMP1, and VCAM1) and val-
idated their expression and correlation with ECM-related
pathways, GFR. Among them, ANXA2 and FOS deserve fur-
ther investigation due to their biological importance and
unclear role in the renal tubulointerstitial injury of DN.
Therefore, we confirmed ANXA2’s and FOS’s upregulation
in HK-2 cells under a high-glucose environment by RT-
qPCR. ANXA2, an important member of the annexin fam-
ily, is a calcium-dependent phospholipid-binding protein
with various biological functions, including cell prolifera-
tion, apoptosis, migration, invasion, and adhesion regula-
tion. Previous studies on the ANXA2 mechanism mainly
focused on tumor diseases [27]. In recent years, only a few
studies initially suggested that ANXA2 may be related to
DN. ANXA2 was found to affect the occurrence of DN
[28], and the protein levels of ANXA2 and antiproliferative
molecules were upregulated in the glomeruli of diabetic
KKAy mice [29]. ANXA2 also played a role in the miR-
151-3p/ANXA2 axis influenced by interference of Hsa_
circ_0003928, which alleviated high glucose-induced HK-2
cell apoptosis and inflammation [30]. However, no studies
report the specific mechanisms and pathways of ANXA2 in
the occurrence and development of DN, especially its role
in diabetic tubulointerstitial lesions. Hence, we are commit-
ted to ANXA2 in tubulointerstitial injury in DN, an area
with no known evidence. FOS is a nuclear phosphoprotein
and encodes the nuclear oncoprotein c-Fos. As a class of
nuclear protein transcription factor, FOS has important
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Figure 7: Validation of the expression level of three key genes using RT-qPCR in HK-2 cells under high-glucose stimulation: (a) ANXA2
and (b) FOS. ∗∗P < 0:01; unpaired Student’s t-test.
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roles in regulating cell growth, division, proliferation, differ-
entiation, and programmed death. In glomerular mesangial
cells under a high-glucose environment, c-Fos protein
expression is significantly upregulated and the phosphoryla-
tion of c-Fos (ser32) is increased, which promotes the down-
stream gene expression, leading to DN development [31,
32]. However, the specific mechanism of its effects is still
unclear in DN and was not reported in the tubulointerstitial
injury of DN. Discovering the mechanisms of ANXA2 and
FOS in DN will improve the understanding of DN patho-
genesis and benefit novel DN therapeutic strategy
development.

In summary, this study identified and selected underly-
ing genes that may play a significant role in the pathogenesis
of tubulointerstitial injury in DN. Meanwhile, it highlighted
the importance of tubulointerstitial injury in DN, especially
in providing more in-depth research on the molecular level.
However, we acknowledge that our study had a few potential
limitations that must be considered. First, the original
microarray data lacked sufficient clinical data and experi-
mental results. Second, we only used renal tubular epithelial
cell models to verify our results, while no animal experi-
ments were conducted. Further studies at multiple research
levels are necessary to illustrate additional insights into the
diagnosis and progression of diabetic tubular interstitial
lesions in order to improve the management of this disease.

4. Conclusion

In conclusion, we identified unconserved gene modules
between DN and LD and noticed that they were enriched
in immune and ECM-related pathways. Subsequently, we
screened out 11 key genes involved in tubulointerstitial
injury in DN via bioinformatics analysis and validated that
they were upregulated and correlated with ECM-related
pathways and GFR in DN. Further, we confirmed the upreg-
ulation of ANXA2 and FOS in DN via RT-qPCR experi-
ments. Identification of these genes may shed light on the
ECM-related mechanisms of DN and benefit effective thera-
peutic strategy development.

5. Methods

5.1. Microarray Data Acquisition. The GSE104954 and
GSE30529 datasets were selected from the Gene Expression
Omnibus (GEO) database for this study. GSE104954 is
based on GPL22945 (Affymetrix Human Genome U133 Plus
2.0 Array) and GPL24120 (Affymetrix Human Genome
U133A Array) platforms. They include 17 renal tubulointer-
stitial tissue samples of the patients with DN and 21 normal
control sample. GSE30529 was performed with the GPL571
Array platform (Affymetrix Human Genome U133 2.0),
which contains 10 renal tubular tissue samples of patients
with DN and 12 normal control samples. The GSE30529
dataset was used for gene expression validation and clinical
characterization. ECM-related gene sets were downloaded
from GSEA. The workflow designed for the study is shown
in Figure 8.

5.2. Screening of DEGs. Data preprocessing consisted of con-
version from gene probes into gene symbols, consolidation
of data, and batch normalization. The gene probes with no
gene symbols or genes with multiple probes were removed
or taken the maximum probe, respectively. The merged data
were preprocessed via the R package sva [33] (version 3.5.3)
(Broad Institute, Inc., Massachusetts Institute of Technol-
ogy, and California, USA) to eliminate batch effects. Post
batch normalization, DEGs were identified using the R pack-
age limma [34] with adjusted P value < 0.05 and ∣logFC ∣ ≥1
in renal tubulointerstitial tissues from patients of DN and
healthy controls. Heat maps of DEGs were plotted using
the Pheatmap R package.

5.3. Weighted Gene Coexpression Network Analysis
(WGCNA). WGCNA is a biological method for identifying
genes with similar expression patterns among different sam-
ples. It is used to identify coexpressed gene modules by sample
clustering and explores the association between gene networks
and clinical phenotypes. After preprocessing with raw data, a
WGCNA was performed via the WGCNA package in R [35]
to identify significant gene modules for analysis. To summa-
rize, the Pearson correlation coefficients of the chosen genes
were calculated in a pairwise fashion, and the similarity matrix
(Sij) was obtained. The soft thresholding power was set to “7”
and “8” for the DN and living donor (LD) groups, respectively.
Based on the scale-free topology, the soft threshold “β” was
used as the weight coefficient to achieve scale-free of the
network (R2 = 0:9). The matrix was transformed to an adja-
cency matrix (aij) via a power function. Average linkage
hierarchical clustering was conducted, and closely associated
genes of the classification modules were then created. The
different functions were symbolized as tomtype according
to the topological overlap matrix, and the network was
interconnected by calculating the topological overlap. Based
on their linkage strength, genes were constructed on a 1-TOM
basis, and genes were grouped according to the average
hierarchical clustering, which is measured by the hclust
function. A module represented a set of extremely coex-
pressed genes, generally consisting of over 30 genes. Then,
genes that were not assigned to a specific module were des-
ignated as gray. The module preservation function was used
to analyze module conservation between the DN and LD
group networks, and nonconserved DN-related modules
(those with the lowest Z summary) were selected for subse-
quent analysis by combining both preservations median
rank and Z summary statistics.

5.4. Pathway Analysis. GO is a bioinformatics initiative to
annotate genes and proteins to determine their characteristic
biological properties, including biological processes, cellular
components, and molecular functions. The KEGG pathway
database is a resource for understanding the high-level func-
tion and utility of biological systems, which includes various
biochemical pathways. In this study, the cluster profiler
package [36] was used for GO and KEGG analyses.

5.5. Gene Set Enrichment Analysis (GSEA). GSEA (Broad
Institute, Inc., Massachusetts Institute of Technology,
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California, USA) applies computational methods to help
determine significant differences between gene sets. GSEA
was performed using the R package Pi. ∣NES ∣ >1, P < 0:05,
and q < 0:25 were considered statistically significant.

5.6. Construction of PPI Network and Identification of the
Key Genes. PPI networks of DEGs were established using
search tools for retrieval of interacting genes (STRING v10;
http://string-db.org [37]) and were visualized using Cytoscape
software [38]. Next, key genes were screened in Cytoscape
cytoHubba [39], and key genes were obtained using four cri-
teria including Degree, Betweenness, Closeness, and MNC.

5.7. Validation of the Key Genes

5.7.1. Cell Cultivation and High-Glucose Stimulation. HK-2
cells were maintained with DMEM/F12 medium containing
10% FBS in the conditions: 95% air and 5% CO2 at 37

°C in
an incubator, and passaged or preserved every 2–3 days. Cells
were observed under microscopy and digested with 0.25%
trypsin solution for passaging when they reached 80%–90%
confluence. HK-2 cells were separated into the two groups:
high-glucose group (DMEM/F12 medium supplemented with
30mmol/L glucose) and normal group (DMEM/F12 medium
supplemented with 5.5mmol/L glucose).

5.7.2. Microarray Data Acquisition. Total RNA was
extracted using TRIzol reagent (Invitrogen, Carlsbad, CA)

based on the manufacturer’s instructions. Then, total RNA
was reverse transcribed to cDNA using a MiScript reverse
transcription kit (Qiagen, Hilden, Germany) to measure
the expression of key genes. mRNA expression was mea-
sured based on the reverse transcription via a PrimeScript
RT kit (Takara, Tokyo, Japan). Relative expression (with
GAPDH as control) was measured using SYBR premix Ex
Taq II (TaKaRa, Tokyo, Japan) with an Applied Biosystems
7500 system (Thermo Fisher Scientific, Waltham, MA,
USA). Relative expression was calculated using the 2ΔΔCq
method. Primer sequences are shown in Table 1.

5.8. Analyses of ECM-Related Pathway Enrichment. The
ECM-related pathways in DN were proposed in a review
[40], and we calculated the enrichment levels of the gene sets
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Figure 8: The flowchart designed for the study.

Table 1: Real-time primer sequences of HK-2 cell line primer
sequences.

Gene Sequences

Actin
Forward: ACCCTGAAGTACCCCATCGAG

Reverse: AGCACAGCCTGGATAGCAAC

ANXA2
Forward: GCACGGCCCAGGTTATCTT

Reverse: ATGTGTTCAACCAAGCGGGA

FOS
Forward: CCGAGCTGGTGCATTACAGA

Reverse: CGCACAGATAAGGTCCTCCC

12 Journal of Immunology Research
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using ssGSEA of GSVA [41]. The correlation between ECM-
related gene sets and the 11 key genes was further analyzed
and visualized in a heat map.

5.9. Statistical Analysis. The normality of the variables was
tested via the Shapiro–Wilk test. For normally distributed
variables, differences between the two groups were com-
pared by the unpaired Student’s t-test. The correlation
between ECM-related pathways, GFR, and hub gene expres-
sion was quantified using Spearman’s correlation coefficient.
Data were statistically analyzed using the R statistical analy-
sis package (version 3.5.3). The values of P < 0:05 were
regarded statistically significant comparison in this study.

Data Availability

The GEO datasets can be retrieved from “https://www.ncbi
.nlm.nih.gov/gds/?term=,” and the GO and KEGG gene sets
were downloaded from the Molecular Signature Database of
GSEA (http://www.gsea-msigdb.org/gsea/msigdb/index.jsp).
The R codes can be available from the corresponding
authors.
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