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Background. AML (acute myeloid leukemia) is a common hematological malignancy in children with poor treatment effects and
poor prognosis. Recent studies have shown that as a novel BRD4 (bromodomain containing 4) PROTACs (proteolysis targeting
chimeras) degrader, GNE-987 can slow down the growth of various tumors and increase apoptosis, with promising clinical
prospects. However, the function and molecular mechanism of GNE-987 in AML remain unclear. This study is aimed at
investigating the therapeutic effect of GNE-987 on AML and its underlying mechanism. Methods. The association between
BRD4 and AML was assessed by studying public databases. After GNE-987 was added to AML cells, cell proliferation slowed
down, the cycle was disturbed, and apoptosis increased. Western blotting was used to detect BRD2 (bromodomain containing
2), BRD3 (bromodomain containing 3), BRD4, and PARP (poly ADP-ribose polymerase) proteins. The effect of GNE-987 on
AML cells was analyzed in vivo. RNA-seq (RNA sequencing) and ChIP-seq (chromatin immunoprecipitation sequencing)
validated the function and molecular pathways of GNE-987 in processing AML. Results. BRD4 expression was significantly
elevated in pediatric AML samples compared with healthy donors. GNE-987 inhibited AML cell proliferation by inhibiting the
cell cycle and inducing apoptosis. BRD2, BRD3, and BRD4 were consistent with decreased VHL (Von Hippel Lindau)
expression in AML cells. In an AML xenograft model, GNE-987 significantly reduced the hepatosplenic infiltration of leukemia
cells and increased the mouse survival time. Based on analysis of RNA-seq and ChIP-seq analyses, GNE-987 could target
multiple SE- (super-enhancer-) related genes, including LYL1 (lymphoblastic leukemia 1), to inhibit AML. Conclusions. GNE-
987 had strong antitumor activity in AML. GNE-987 could effectively inhibit the expression of SE-related oncogenes including
LYL1 in AML. Our results suggested that GNE-987 had broad prospects in the treatment of AML.

1. Background

AML (acute myeloid leukemia) is the most common hema-
tological malignancy in adults and ranks second in child-
hood hematological malignancies [1, 2]. It is a serious
threat to children’s physical and mental health. The patho-

genesis of acute myeloid leukemia is unknown, and it is
mostly believed to be related to abnormal epigenetic events
caused by DNA or chromatin modification [3]. The epige-
netic target screening using the shRNA (short-hairpin
RNA) library and genome-wide CRISPR library proves that
the BET (bromodomain and extraterminal) protein family
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member BRD4 (bromodomain containing 4) is the most
important member of the BET family of histone reading
proteins, which is essential to maintain AML [4, 5].

The acetylated lysine residues in histone H4 can bind to
BETP (bromodomain and extraterminal protein), which
provides the assembly of multimolecular superenhancer
complexes [6, 7]. The HLH (helix loop helix) TF (transcrip-
tion factor) family contains key regulators of lymphocyte
development and maturation, such as Tal1 (T-cell acute
lymphoblastic leukemia 1)/SCL (stem cell leukemia)/TCL5
(T-cell leukemia/lymphoma 5) [8]. The other two basic
HLH (bHLH) TFs, LYLl and Tal2 (T-cell acute lymphoblas-
tic leukemia 2), are closely related to Tal1 in structure. Stud-
ies have shown that LYL1 is considered a super-enhancer-
associated gene that causes AML [9, 10]. MYC (myelocyto-
matosis viral oncogene) is one of the key oncogenes that rely
on transcription mediated by the hyperenhancer complex
containing BETP [11, 12]. LYL1 and MYC lack pockets that
can be directly targeted by small molecules, and directly tar-
geting them is difficult. Therefore, a lot of energy has been
focused on indirect targeting strategies.

Some of the previous BRD4 inhibitors, such as JQ1 and
I-BET, by disrupting the binding of BETP to acetylated his-
tones, provide a way to target transcription by disrupting the
“superenhancer” transcription complex MYC [11, 12]. How-
ever, these drugs cannot inhibit transcription, leading to
drug resistance. PROTACs (proteolysis targeting chimeras)
are bifunctional molecules that promote protein target deg-
radation rather than inhibit activity as a therapeutic strategy.
These molecules contain a motif (peptide or small molecule)
that binds a protein target connected by a chemical linker to
a motif that binds to E3-ubiquitin ligase. This allows E3-
ubiquitin protein ligase to recruit to the protein target, selec-
tively become the target of ubiquitination, and promote its
degradation through the cell’s endogenous proteasome deg-
radation mechanism. PROTAC activity requires the forma-
tion of a ternary complex similar to a three-body structure
in the 1 : 1 : 1 subunit stoichiometry, which contains the tar-
get protein, PROTAC, and E3-ubiquitinated ligase [6, 13].
Traditional inhibitor molecules require a 1 : 1 stoichiometry
to inhibit a single protein target molecule, and PROTAC
can play a substoichiometric role using one PROTAC mole-
cule to promote the degradation of multiple copies of the
target protein because PROTAC is released after protein
degradation. This allows for lower dosing concentrations
and a larger therapeutic window and reduces the need to
maintain high intracellular compound concentrations. The
effective time of targeting degraded proteins is also shorter,
and the weaker and lower affinity region can be used as
the target site. Therefore, it can target the previously
difficult-to-degrade protein [14].

As a new type of BRD4 PROTAC degradation agent,
GNE-987 is a ternary complex formed between BRD4B1
and BRD4B2 (BRD4 bromodomains 1 and 2) and VHL
E3-ubiquitin ligase. BRD4 is an effective drug target affected
by various cancers, whereas VHL is usually recruited by
PROTACs to degrade various targets in vitro and in vivo.
GNE-987 has previously been proven to be a more effective
in vitro degradation product of BRD4 than standard PRO-

TACs MZ1 and ARV-825. The half-life measurement results
of the ternary complex based on SPR (surface plasmon res-
onance) show that the BRD4B1 ternary complex is more sta-
ble than the ternary complex containing BRD4B2 [15]. The
binding of GNE-987 to the target can improve the stability
and pharmacokinetics in vivo and effectively increase the
degradation of BRD4 and the killing of tumor cells by
GNE-987 [16]. GNE-987 inhibits proliferation and induces
cell apoptosis more effectively than traditional BRD4 inhib-
itors and has a longer-lasting drug effect, possibly through
the rapid and durable degradation of BRD4 and inhibition
of downstream targets. However, at present, no study has
focused on GNE-987 in AML. Therefore, we examined the
antitumor activity of GNE-987 on BRD4 in AML and con-
firmed that it downregulated the expression of many super-
enhancers and related oncogenes, such as LYL1, to
determine an effective strategy for the treatment of children
with AML.

2. Materials and Methods

2.1. Samples. To determine the potential utility of targeting
BRD4 in the treatment of AML, we analyzed the expression
of BRD4 based on public RNA-seq (RNA sequencing) data
in AML samples. Standardized gene expression data were
used to assess the prognostic significance of BRD4 and the
correlation between the two, and the overall survival rate
of patients with BRD4 and AML patients was also analyzed.

2.2. Cell Culture. Human leukemia cell lines NB4, Kasumi-1,
HL-60, MV4-11, and K562 and mouse leukemia cell line
P388-D1 were all from the Chinese Academy of Sciences
Cell Bank. They were all verified by short tandem repeat
analysis in 2019 and 2020. Cells were cultured in RPMI1640
(Roswell Park Memorial Institute 1640) medium containing
10% FBS (fetal bovine serum) (Thermo Fisher Scientific,
MA, USA) and penicillin and streptomycin (Millipore, Bil-
lerica, MA, USA) at 37°C and 5% CO2 in a humidified incu-
bator and routinely tested for mycoplasma.

2.3. Cell Viability Determination. GNE-987 was dissolved in
100% DMSO (dimethyl sulfoxide), the stock solution had a
concentration of 10mmol, and it was placed in a refrigerator
at -80°C. AML cells were planted in a 96-well cell culture
plate with a cell density of 2 × 104 in each well and were
treated with GNE-987 with different concentration gradi-
ents. The primary leukemia cells were separated from the
bone marrow of children by Ficoll-Hypaque centrifugation
and then planted in a 96-well plate with a density of 1 ×
105 cells in the culture medium. Cells treated with 0.05%
DMSO in a complete medium without GNE-987 were used
as controls. After 24 hours of drug treatment, according to
the manufacturer’s instructions, cell viability was deter-
mined by the CCK8 (Cell Counting Kit 8) assay (Dojindo
Molecular Technologies, Tokyo, Japan). Each concentration
was in triplicate, repeated in at least three independent
experiments. Graph Prism software 8.3.0 (GraphPad Soft-
ware Inc., San Diego, CA, USA) was used to calculate the
half-maximum inhibitory concentration (IC50) of GNE-987.
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2.4. Soft Agar Clone Formation Analysis. Agarose and auto-
clave (1.2% and 0.7%) were prepared and placed in a 55°C
water bath. 2x RPMI1640 medium containing 20% FBS, 2x
penicillin, and streptomycin was prepared and filtered out
with a 0.2-micron filter bacteria. For the lower layer gel,
1.2% agarose gel was mixed with 2x medium 1 : 1, added to
a 6-well plate 1.5ml per well, and solidified at room temper-
ature. For the cell count, AML cells treated with GNE-987 at
different concentration gradients were washed with PBS
(phosphate-buffered saline), mixed and diluted with new
medium, and adjusted to 5 × 103/ml with 100μl of cell sus-
pension in each well. For the upper glue, 0.7% agarose gel
was mixed with 2x medium 1 : 1, and 100μl of cell suspen-
sion was added. After mixing wells, 1.5ml was added to each
well. The cells were placed in a 37°C CO2 incubator, the cul-
ture medium was added every three days, and the cells were
harvested after approximately 3 weeks. The number of cells
treated with different concentrations of GNE-987 was
counted, compared, and finally analyzed to calculate the rate
of monoclonal formation.

2.5. Preparation and Infection of Lentivirus. shRNA (short-
hairpin RNA) targeting VHL (GGAGCCTAGTCAAGCC
TGAGA CATCCGTTGATGTGCAATGCG) was con-
structed in the pLKO.1 lentiviral vector. The CDS region
of the VHL gene was searched in PubMed, synthesized,
and constructed into the PLVX-EF1a-puro vector. Short-
hairpin RNA (shRNA) targeting LYL1 (Table 1) was con-
structed in the pLKO.1-puro lentiviral vector (IGE Biotech-
nology Ltd., Guangzhou, China). When preparing lentivirus,
envelope plasmid and packaging plasmid were purchased
from Addgene (pMD2.G: #12,259; psPAX2: #12,260; Cam-
bridge, MA, USA). pMD2.G, psPAX2, and the transfer plas-
mid with polyethyleneimine were cotransfected into 293FT
cells (linear MW 25000Da, 5mg/ml, pH7.0) (cat. No.
23966-1; Polysciences, Warrington, PA, USA) according to
the manufacturer’s instructions. After 6 h, the medium was
completely replaced with fresh medium. The virus superna-
tant was collected 48 h after transfection and filtered with a
0.22μm filter. Then, AML cells were infected with lentivirus
for 24 hours in the presence of 10μg/ml polyene (Sigma-
Aldrich). Stable cell lines were screened with puromycin
(Sigma-Aldrich).

2.6. RNA Preparation and Real-Time PCR (Polymerase
Chain Reaction) Expression Analysis. Total RNA was
extracted from cell pellets using the TRIzol® reagent (Invi-
trogen, CA, USA), according to the manufacturer’s protocol.
For cDNA synthesis, 1μg of total RNA was converted to
cDNA using a high-capacity cDNA reverse transcription
kit (Applied Biosystems, CA, USA). Quantitative real-time
PCR analysis was carried out using LightCycler® 480 SYBR
Green I Master Mix (cat. No. 04707516001; Roche, Penz-
berg, Germany) with a LightCycler 480 Real-Time System
(Roche), according to the manufacturer’s protocol. mRNA
expression levels were calculated using the Ct method with
GAPDH (glyceraldehyde 3-phosphate dehydrogenase)
expression as an internal reference. Primer sequences are
listed in Table 2.

2.7. Cell Cycle Analysis. At 24 hours after adding different
concentrations of GNE-987 to the AML cell line, the cell line
was trypsinized, washed, and fixed in 70% ethanol at 4°C
overnight. Then, the cells were washed with cold PBS, resus-
pended in 0.5ml of PI/RNase staining fermentation broth
(cat. No. 550825; BD Pharmingen™, San Diego, CA, USA),
and then incubated at room temperature for 15min. Flow
cytometry was performed using the Beckman Gallios™ Flow
Cytometer (Beckman, Krefeld, Germany), and the cell cycle
was analyzed using Multicycle AV DNA analysis software
(Verity Software House, Topsham, ME, USA).

2.8. Cell Apoptosis Analysis. Different concentrations of
GNE-987 were added to the cell line and collected after
24 h, centrifuged at 2000 rpm for 3min. Then, the superna-
tant was removed, and the remains were washed once with
cold PBS and centrifuged at 4000 rpm for 3min. After taking
the supernatant, they were suspended in a 1x binding buffer.
The fluorescein isothiocyanate-Annexin V apoptosis kit and
PI solution staining (cat. No. 556420; BD Biosciences,
Franklin Lakes, NJ, USA) were used as per the manufactur-
er’s instructions. The cell counting method was adopted to
analyze cell apoptosis (Beckman Gallios™ Flow Cytometer;
Beckman).

2.9. Western Blotting Analysis. The following antibodies
were used for Western blotting analysis: BRD2 (cat. No.
5848 s; 1 : 1000; Cell Signaling Technology, Boston, MA,
USA), BRD3 (cat. No. 11859-1-AP; 1 : 1000; Proteintech,
Chicago, IL, USA), BRD4 (cat. No. 13440 s; 1 : 1000; Cell Sig-
naling Technology), VHL (cat. No. 68547 s; 1 : 1000; Cell
Signaling Technology), LYL1 (cat. No. sc-374164; 1 : 1000;
Santa Cruz Biotechnology), and PARP (cat. No. 9542;
1 : 1000; Cell Signaling Technology) with glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) (cat. No. MA3374;
1 : 1000; Millipore) as a reference protein. Peroxidase-
conjugated AffiniPure goat anti-rabbit IgG (H+L) (cat.
111-035-003; 1 : 5000) and goat anti-mouse IgG (H+L) (cat.
No. 115-035-003; 1 : 5000) were purchased from Jackson
Immuno Research Laboratories, Inc. (West Grove, PA,
USA). To define the role of the proteasome, MG132 (cat.
No. 474787, Sigma-Aldrich, St. Louis, MO, USA) inhibited
the proteasome activity. After 24h of treatment with differ-
ent concentrations of GNE-987, the cells were collected,
and the BRD2, BRD3, BRD4, PARP, VHL, LYL1, and
GAPDH proteins were determined by Western blotting
analysis.

2.10. Study of the Antitumor Effect of GNE-987 In Vivo. In
this study, all experimental animal procedures in this study
were approved and licensed by the Animal Care and Use
Committee of Children’s Hospital of Soochow University
(CAMSU-AP#: JP-2018-1). SPF-grade BALB/c mice were
obtained from Linghang Biotechnology Co., Ltd. (Shanghai,
China). Five-week-old female mice (n = 5 in each group)
were injected with 3 × 105 P388-D1 cells via the tail vein.
Two days after the injection of cells, each mouse was injected
with luciferase into the abdominal cavity and immediately
anesthetized with isoflurane gas. Then, each group of mice

3Journal of Immunology Research



was imaged using the NightOWL In Vivo Imaging System
(Berthold, Germany). After the tumor fluorescence signal
appeared (day 2), the experimental group was injected intra-
peritoneally with 0.5mg/kg GNE-987, and the control group
was injected intraperitoneally with GNE-987 (5%®HS15)
once a day, nine times in total (days 2~10). Then, we contin-
ued to use the NightOWL In Vivo Imaging System to image
each group of mice on days 4, 7, and 10. The mice were
weighed daily, and fur color and mobility were observed.
The liver, spleen, kidneys, and intestines of the experimental
group and control group mice were collected, and organ size
was observed and weighed. Each organ specimen was sub-
jected to immunohistochemistry and HE (hematoxylin and
eosin) staining. The primary antibody against BRD4 (cat.
No. 13440 s; 1 : 1000; Cell Signaling Technology), cleaved-
caspase 3 (cat. No. GB11009-1, 1 : 300, Servicebio, Boston,
MA, USA), and Ki67 (cat. No. ab15580, 1 : 300, Abcam,
Cambridge, UK) was used according to the manufacturer’s
recommendations.

2.11. RNA-Seq and Data Processing. RNA-seq was con-
ducted according to the protocols suggested by Novogene
Bioinformatics Technology Co., Ltd. (Beijing, China). First,
the total RNA was reverse transcribed into cDNA to con-
struct a library, and then, the cDNA library was then
sequenced. The original reads were filtered, and the clean
reads were mapped according to HISAT (Hierarchical
Indexing for Spliced Alignment of Transcripts). Then, the
gene expression level was calculated (as the fragment
mapped per million reads per kilobase exon model). Using
DESeq2 analysis, differentially expressed genes were identi-
fied (P < 0:05 and fold change > 2 or fold change < 0:5).
For enrichment analysis, differentially expressed genes were
analyzed using the GSEA software (UC San Diego and
Broad Institute).

2.12. Chromatin Immunoprecipitation Sequencing (ChIP-
seq). Furthermore, 3-5 × 107 cells were cross-linked with
1% formaldehyde for 10 minutes and neutralized with
1.25M glycine at room temperature for 5 minutes. Bioruptor
(Diagenode, Liège, Belgium) was used to collect, lyse, and
sonicate fixed cells. Sonicated chromatin was incubated with

an anti-histone H3 (acetyl K27) antibody (cat. No. ab4729;
Abcam, Cambridge, UK) overnight at 4°C. DNA was eluted
and purified using a QIAquick PCR purification kit (cat. No.
208106; Qiagen, Hilden, Germany). The samples were
sequenced on the NovaSeq 6000 platform (Novogene Bioin-
formatics Technology Co., Ltd. Beijing, China) and a BGI-
SEQ 2000 platform (Beijing Genomics Institute, Shenzhen,
China). Raw data of ChIP-seq H3K27ac analysis were
aligned to the reference genome (UCSC hg38) using Bowtie2
(v 2.3.5) [17], with alignment parameters -p 4 -q -x. Peaks
were identified using MACS2 (v2.0.9) [18], with parameters
-g hs -n test -B -q 0.01. The bedGraph files generated by
MACS2 were converted to bigwig files using the UCSC bed-
GraphToBigWig tool, and bigwig files were then visualized
by Integrative Genomics Viewer (IGV) [19]. Superenhancers
were then identified using the ROSE (Rank Order of Super-
enhancers) method [20, 21], with parameters -s 12500 -t
2000.

2.13. Statistical Analysis. All experiments were conducted at
least three times independently. Statistical analysis was car-
ried out using IBM SPSS Statistics for Windows, version
21.0 (IBM Corp., NY, USA). Survival analysis was per-
formed by Kaplan-Meier estimates with log-rank tests. Stu-
dent’s t-test was used to compare the percentage of
apoptosis, BRD4 mRNA level, and cell viability. Normally
distributed measurement data were expressed as the mean
± standard deviation. The t-test was used to compare the
differences between the two groups. Nonnormally distrib-
uted data were expressed in quartiles (usually the median
plus the range) and were compared using the Mann-
Whitney U test. All experiments were two-tailed, and P <
0:05 was considered significant.

3. Results

3.1. BRD4 Is Overexpressed in Patients with AML and Is
Associated with Poor Prognosis. Compared with the normal
population, BRD4 expression in patients with AML
increased significantly according to the GEPIA (Gene
Expression Profiling Interactive Analysis) database (http://
gepia.cancer-pku.cn/index.html, Figure 1(a)). The expected
overall survival rate of high BRD4 expression in patients
with AML was lower than that of patients with low expres-
sion, according to the R2 database (https://hgserver1.amc
.nl/cgi-bin/r2/main.cgi, Figure 1(b)) and the GEPIA data-
base (http://gepia.cancer-pku.cn/index.html, Figure 1(c)).
These results suggested that BRD4 would become a potential
therapeutic target for pediatric AML.

Table 1: shRNAs used to knock down LYL1.

Name Sequence

Homo-LYL1-sh1 CCGGAGAAGGCAGAGATGGTGTGTGCTCGAGCACACACCATCTCTGCCTTCTTTTTTTGAATT

Homo-LYL1-sh2 CCGGCACTTTGGCCCTGCACTACCACTCGAGTGGTAGTGCAGGGCCAAAGTGTTTTTTGAATT

Homo-LYL1-sh3 CCGGCTTCCTCAACAGTGTCTACATCTCGAGATGTAGACACTGTTGAGGAAGTTTTTGAATT

Table 2: Primers used for qRT-PCR analyses.

Name Sequence (5′ ⟶ 3′)
LYL1 forward ACAGTGTCTACATTGGGCCAG

LYL1 reverse GGCTGCTAGGGAAGATGCT

GAPDH forward ACAACTTTGGTATCGTGGAAGG

GAPDH reverse GCCATCACGCCACAGTTTC
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3.2. GNE-987 Causes the Death of the AML Cell Lines and
Inhibits Its Growth. The cell viability curve after adding dif-
ferent concentration gradients of GNE-987 to AML cells is
shown in Figure 2(a). The IC50 and 95% CI of GNE-987
in different AML cells are shown in Figure 2(b). The half-
inhibitory concentration value was low at the nmol level.
The BET family members are universally expressed in mye-
loid leukemia cell lines (Figure 2(c)). Fluorescence micros-
copy showed that the vast majority of AML cells died 24
hours after the addition of GNE-987 (Figure 2(d)). After
adding GNE-987 to AML cells, cell growth was slower com-
pared with the group without GNE-987, the number of
clones decreased, and the difference was significant
(Figures 2(e) and 2(f)).

3.3. GNE-987 Blocked Cell Cycle and Promoted Apoptosis of
AML Cell Lines. By influencing the cell cycle and promoting
cell apoptosis, GNE-987 has higher cytotoxicity in AML. We
detected cell cycle defects by PI staining. Most AML cells
were distributed in the G1/S phase, but after 24 hours of
treatment with GNE-987, the proportion of cells in the G1
phase increased significantly (Figure 3(a)). In addition, cell
treatment with GNE-987 was for 24 hours, which increased
the apoptotic rate of AML cell lines (Figure 3(b)).

3.4. GNE-987 Causes Degradation of BET Protein in AML
Cell Lines. GNE-987 was designed with PROTAC technol-
ogy to selectively degrade target proteins through the ubiqui-
tin proteasome system. Therefore, we analyzed the BET
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Figure 1: BRD4 is a potentially good target for AML. (a) Expression of BRD4 with AML and normal controls according to the GEPIA
database (http://gepia.cancer-pku.cn/index.html). (b) The expected overall survival rate of high BRD4 expression with AML is lower than
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Figure 2: GNE-987 can cause the death of AML cell lines and inhibit their growth. (a) Cell viability curve after adding different
concentration gradients of GNE-987 to NB4, Kasumi-1, HL-60, and MV4-11 cell lines. (b) IC50 values of GNE-987 with different
concentration gradients were added to AML cells. (c) Basal BET protein level analysis in myeloid cell lines NB4, Kasumi-1, HL-60,
MV4-11, and K562. (d) Fluorescence microscope photos of AML cell lines NB4, Kasumi-1, HL-60, and MV4-11 24 hours after adding
GNE-987. (e) Number of AML cell clones added with different concentrations of GNE-987. (f) Statistical histogram of the number of
AML cell clones added with different concentrations of GNE-987.
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Figure 3: GNE-987 blocked the cell cycle and promoted the apoptosis of AML cell lines. (a) PI-labeled cell cycles of NB4, Kasumi-1, HL-60,
and MV4-11 cells were analyzed after treatment with DMSO or different concentrations of GNE-987 for 24 h. AML cells were distributed in
the G1/S phase, and the cell population in the G1 phase increased dramatically after treatment with GNE-987. (b) Annexin V and PI-labeled
cell apoptosis of AML cells were analyzed by flow cytometry after treatment with DMSO or different concentrations of GNE-987 treatment
for 24 h. The apoptotic rates of AML cells were significantly increased after GNE-987 treatment.
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Figure 4: GNE-987 inhibits the expression of BET protein in AML cells and increases the expression of PARP protein, and the effect is far
better than those of JQ1 and ARV-825. (a) Western blotting analysis showed that GNE-987 induced BET protein degradation, and PARP
increases in NB4, Kasumi-1, HL-60, and MV4-11 cell lines. (b) Drug sensitivity assay of NB4, Kasumi-1, HL-60, and MV4-11 cell lines after
treatment with gradient concentrations of GNE-987, JQ1, and ARV-825 for 24 h. (c) After adding JQ1 and ARV-825 at the highest
concentration of 100 nM, the degradation efficiency of BET protein is much lower than that of GNE-987.
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Figure 5: VHL was a powerful helper for GNE-987 in AML cells; BRD protein degradation is proteasome-dependent. (a) Western blot
analysis of VHL protein expression in AML cell lines. (b) The molecular structure of GNE-987 contains BRD4 ligand and VHL ligands.
(c) Western blot analysis showed that VHL degradation increased after adding different concentration gradients of GNE-987. (d)
Knockdown/overexpression of VHL expression by sh-VHL lentivirus/pLX304-VHL-V5 for 5 days in NB4 and Kasumi-1 cells. (e) VHL
downregulation increased the half-inhibitory concentration of GNE-987 in NB4 and Kasumi-1 cells, whereas VHL overexpression
decreased the half-inhibitory concentrations of GNE-987 in these cells. (f) NB4 and Kasumi-1 cells were treated with GNE-987 and
different concentrations of MG132. After treatment for 24 h, BRD2, BRD3, and BRD4 protein levels were investigated by Western
blotting analysis.
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Clinical and molecular characteristics of 2 primary pediatric AML
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Figure 6: Continued.
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protein expression of AML cell lines after treatment with five
different concentrations of GNE-987 for 24 hours. Western
blotting analysis showed that GNE-987 induced the degra-
dation of BET protein and increased PARP (Figure 4(a)).
BRD4 protein was almost completely degraded in the AML
cell lines treated with GNE-987. In addition to BRD4,
GNE-987 also reduced the expression levels of BRD2 and
BRD3 proteins. These data indicated that GNE-987 down-
regulated BET protein expression in AML cells. We also
compared the drug sensitivity test of GNE-987, JQ1, and
ARV-825 gradient treatment of AML cell lines for 24 hours
(Figure 4(b)). The effect of GNE-987 was much higher than
that of JQ1 and ARV-825. We added JQ1 and ARV-825 to
NB4 cells 24 hours later to observe the degradation efficiency
of BET protein. As shown in Figure 4(c), after adding JQ1
and ARV-825 at the highest concentration of 100 nM, the
BET protein was almost not degraded.

3.5. VHL Is the Key E3 Enzyme for the Function of GNE-987,
and the Degradation of BRD Protein Depends on the
Proteasome. VHL is a powerful assistant of GNE-987. We
tested the expression of VHL in AML cell lines. VHL was
widely expressed in myeloid leukemia cell lines
(Figure 5(a)). The molecular structure of GNE-987 con-
tained BRD4 ligand and VHL ligands (Figure 5(b)). After
adding different concentrations of GNE-987 to NB4,
Kasumi-1, HL-60, and MV4-11 cell lines, the expression of
VHL was also significantly reduced when BET was con-
sumed (Figure 5(c)). In addition, we successfully transfected
VHL knockdown and VHL overexpression vectors into NB4
and Kasumi-1 cells and verified their expression by Western
blotting analysis (Figure 5(d)). GNE-987 could recruit VHL.
To illustrate this hypothesis, we conducted the following
experiment. VHL downregulation increased the half-
inhibitory concentration of GNE-987 in NB4 and Kasumi-
1 cells whereas VHL overexpression decreased the half-
inhibitory concentration of GNE-987 in these cells. This
showed that VHL was the key E3 enzyme for the functioning
of GNE987 (Figure 5(e)). To determine the role of the pro-
teasome in GNE-987-induced BRD degradation, we used
the proteasome inhibitor MG132 to evaluate proteasome
activity (Figure 5(f)). MG132 is widely used to inhibit pro-
teasome activity. The results showed that by blocking the
proteasome with MG132, BRD proteins increased in a

dose-dependent manner. In summary, these data indicated
that GNE-987 induced growth inhibition through a VHL-
mediated mechanism.

3.6. GNE-987 Has a Strong Antitumor Effect on Patients with
Primary AML. We used two diagnostic AML samples from
children to determine whether the primary pediatric AML
cells are sensitive to GNE-987 treatment. The clinical and
molecular characteristics of 2 cases of primary AML in chil-
dren are shown in Figure 6(a). Consistent with the results of
the previous AML cell lines, the sensitivity of primary cells
to GNE-987 was much higher than that of JQ1 and ARV-
825 (Figure 6(b)). We treated primary cells with DMSO or
different doses of GNE-987 and found that GNE-987 pro-
moted cell apoptosis (Figure 6(c)). In GNE-987-treated pri-
mary AML cells, the expression levels of BRD2, BRD3,
BRD4, and VHL proteins also decreased, and PARP
increased, which was consistent with the results of the cell
line. In GNE-987-treated cultures, LYL1 protein levels were
also significantly reduced (Figure 6(d)).

3.7. In Vivo Studies Confirm That GNE-987 Has a Powerful
Antitumor Effect. To further examine the in vivo activity of
GNE-987, we used P388-D1 cells to establish a preclinical
model of AML. The entire operation process is shown in
Figure 7(a). On days 2, 4, 7, and 10, we used the NightOWL
In Vivo Imaging System to image each group of mice
(Figure 7(b)). Compared with the control group, the liver
and spleen infiltration of the mice in the GNE-987 treatment
group was significantly reduced. The histogram of tumor
luminous flux showed that the GNE-987 group was much
lower than the control group (Figure 7(c)). By comparing
the survival time of the two groups of mice, it is proved that
GNE-987 could prolong the lifespan of mice (Figure 7(d)).
The difference in the body weights of the two groups was
not significant, indicating that GNE-987 had no obvious side
effects (Figure 7(e)). The mice were dissected to obtain liver
and spleen specimens. The size and weight of the liver and
spleen of the GNE-987 treatment group were significantly
smaller than those of the control group (Figures 7(f) and
7(g)). In the spleen of the GNE-987 treatment group,
BRD4- and Ki67-positive cells decreased, whereas the pro-
portion of cleaved-caspase 3-positive cells in the spleen of
the GNE-987 treatment group increased (Figure 7(h)). The
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Figure 6: GNE-987 shows cytotoxicity in primary AML cells. (a) Clinical and molecular characteristics of 2 primary pediatric AML. (b) The
drug sensitivity of 2 cases of primary cells treated with gradient concentrations of GNE-987, JQ1, and ARV-825 for 24 hours was
determined. (c) After 24 hours of treatment with DMSO or different concentrations of GNE-987, the primary cells were analyzed for
Annexin V and PI-labeled apoptosis by flow cytometry. The apoptotic rate of primary cells increased significantly after GNE-987
treatment. (d) The Western blot analysis showed that GNE-987 induced the degradation of BET protein, and VHL and LYL1 proteins
were also downregulated, and PARP in these primary AML cells increased.
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HE-stained sections of the liver, spleen, kidney, and intestine
of the two groups of mice showed that the tumor cells of the
liver and spleen were significantly reduced after GNE-987
treatment, the pathological changes in the kidney were not
obvious, and intestinal injury was mild, which also indicated
that GNE-987 did less damage to the organs (Figure 7(i)).

3.8. GNE987 Treatment Downregulated the Expression of
Super-Enhancer-Related Gene LYL1 in AML Cells. We per-
formed RNA-seq gene expression profile analysis on NB4
cells after GNE987 treatment. Compared with the DMSO-
treated control group, in GNE987-treated NB4 cells, the
expression of 7553 genes was upregulated and the expression
of 4281 genes was downregulated (Figure 8(a)). The GSEA
diagram showed that the differentially expressed genes were
enriched in apoptosis, KRAS, and P53 signaling pathways
(Figure 8(c)). Then, we combined ChIP-seq superenhancer
profiling and gene expression analysis to determine the key
oncogenes involved in the pathogenesis of AML. We per-
formed H3K27ac ChIP-seq detection in NB4 cells and fil-
tered 215 super-enhancer-related genes in NB4 cells which

were also downregulated in GNE987-treated NB4 cells
(Figure 8(b)). LYL1 is involved in the 215 genes. Essentially,
after AML cell lines were treated with GNE987, the expres-
sion of the super-enhancer-related gene LYL1 was also sig-
nificantly downregulated (Figure 9(a)). We detected the
LYL1 knockdown efficiency in the NB4 cell line and
Kasumi-1 cell line by qPCR (quantitative PCR) and Western
blotting (Figures 9(b) and 9(c)). Consistent with the
expected results, after we downregulated LYL1, we observed
significant apoptosis induction in NB4 and Kasumi-1 cell
lines. Among them, sh-LYL1-3-induced apoptosis was the
most obvious, and the difference was statistically significant
(Figures 9(d) and 9(e)). In addition, gene knockout analysis
showed that the downregulation of LYL1 significantly inhib-
ited the growth of NB4 and Kasumi-1 cell lines (Figure 9(f)).

4. Discussion

AML is a relatively common malignant tumor in children
with poor prognosis and complex etiology [22]. It is neces-
sary to understand its pathogenesis in detail to improve the
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Figure 7: In vivo studies confirm that GNE-987 has a powerful antitumor effect. (a) Schematic diagram of the in vivo experiment. (b) On
days 2, 4, 7, and 10, we used the NightOWL In Vivo Imaging System to image each group of mice. (c) The comparison of the fluorescence
statistics of the two groups of mice shows that GNE-987 can significantly reduce liver and spleen infiltration in mice. (d) GNE-987 can
extend the survival time of mice. (e) The body weights of the two groups were not significantly different. (f) Photographs of the liver
and spleen of two groups of mice. (g) Liver and spleen weight from GNE-987- or vehicle-treated mice. (h) IHC staining of BRD4, Ki67,
and cleaved-caspase 3 in AML xenograft models from GNE-987- or vehicle-treated mice. (i) HE-stained sections of the liver, spleen,
kidney, and intestine from GNE-987- or vehicle-treated mice.
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treatment and prognosis of AML [23]. BRD4 plays an
important role in multiple cancer types, such as prostate
cancer, lung cancer, and hematological malignancies
[24–26]. However, the biological significance of BRD4 in
AML is unclear. We found that in CCLE (Cancer Cell Line
Encyclopedia) samples, BRD4 was the top gene in AML cell
lines compared to other types of cancer cell lines. RNA-seq
analysis in this study showed that AML samples had higher
BRD4 mRNA expression levels than healthy samples; more-
over, BRD4 contributed to a worse prognosis in children
with AML. Studies have shown that BRD4 can accumulate

in superenhancer regions involved in the control of key
oncogenes, such as c-Myc, Bcl-xl, and Bcl-2 [15, 24–26].
This suggests that it can serve as a novel therapeutic target
to improve prognosis.

Many BRD4 inhibitors, such as JQ1 and OTX015, have
obvious drawbacks. For example, these drugs can only
inhibit the growth of a few tumor cells in patients with stage
I, promote cell apoptosis, and cannot continuously inhibit
transcription [2, 15]. Therefore, new ideas for improving
BRD4 inhibition are urgently needed, and GNE-987 came
into being. GNE-987 is designed to be an irreversible
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Figure 8: In AML cells, after GNE987 treatment, the expression of many super-enhancer-related genes is downregulated. (a) Compared
with the control group, in GNE987-treated NB4 cells, the expression of a total of 11834 genes was affected (upregulation of 7553 genes
and downregulation of 4281 genes). (b) Venn diagram of genes related to superenhancers and sensitive to GNE987 in NB4 cells. (c) The
GSEA diagrams show that the differently expressed genes in GNE987-treated NB4 cells were enriched in the apoptosis, KRAS, and P53
signaling pathways.
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Figure 9: LYL1 is necessary for AML cell growth and survival. (a) Western blot analysis showed that after adding different concentration
gradients of GNE-987 to the AML cell lines, LYL1 downregulation increased. (b) Detection of LYL1 knockdown efficiency in NB4 and
Kasumi-1 cell lines by qPCR. (c) Detection of LYL1 knockdown efficiency in NB4 and Kasumi-1 cell lines by Western blotting. (d) Flow
cytometry showed that knockdown LYL1 increased the apoptosis rate of NB4 cells and Kasumi-1 cells. (e) Statistical histogram of the
apoptosis rate of different sh-LYL1 sequences. (f) Knockdown of LYL1 can inhibit the proliferation rate of NB4 cells and Kasumi-1 cells.
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covalent inhibitor that can achieve the desired effect at a
lower drug concentration. The ternary complexes of
BRD4B1 or BRD4B2 and VHL promoted by PROTAC
GNE-987 were determined by high-resolution natural mass
spectrometry. Moreover, the ternary complex of BRD4B1
forms is larger than the ternary complex containing
BRD4B2, which indicates that the complex containing
BRD4B1 is more stable [27]. Through the direct measure-
ment of natural mass spectrometry, we understood the rela-
tionship between the ligase and the PROTAC target, the
number of ternary complexes formed, and the balance
between the binary and ternary interactions that drive the
“hook effect” [28].

As a new type of BRD4 degradation agent, we found that
the IC50 of GNE-987 in AML cell lines was less than
100nmol, which was significantly lower than that of JQ1
and ARV-825. Our study results reveal that GNE-987 can
significantly reduce the growth of AML cells in vivo and
in vitro by slowing down cell proliferation, interfering with
the cell cycle, and accelerating cell apoptosis. These results
are consistent with the observations of BRD4 inhibitors such
as JQ1 and ARV-825 on solid tumors and AML [29–31], and
GNE-987 has more advantages than JQ1 and ARV-825 [32,
33]. BET proteins, including BRD2, BRD3, and BRD4, are
epigenome readers known to be associated with acetylated
chromatin and transcriptional regulation. Our study found
that after treatment with GNE-987, not only are BRD4
degraded but also the levels of BRD2 and BRD3 proteins
are reduced, which is similar to the results of other BET
inhibitors [15]. Given the high homology between BET fam-
ily members, GNE-987 can bind to all BET family members.
GNE-987 is a PROTAC targeting BRD4 and BET proteins. It
can undergo VHL-mediated proteasome degradation and
can greatly consume BET protein. This can describe the dis-
covery of a new and highly active chimeric BET degradation
agent, which contains an effective BET binder/inhibitor, a
VHL-binding fragment, and a ten methylene spacer. VHL
targets the chimeric BET degrading agent payload to deliver
to the tumor, which may explain the potent killing effect of
GNE-987 on AML.

At present, superenhancers are a hot spot in tumor
research. Compared with ordinary enhancers, superenhan-
cers can recruit numerous transcription/cofactors and
induce the transcription of many target genes. Studies have
shown that superenhancers are closely related to oncogenes
[34]. However, the biological significance of superenhancers
in AML is unclear, so it is urgent to study the key superen-
hancers in AML. In this study, we found that adding GNE-
987 to AML cells could downregulate the expression of
super-enhancer-related genes, including LYL1. Previous
studies have shown that LYL1 can play a role in renal clear
cell carcinoma and osteosarcoma, and copy number amplifi-
cation occurs in glioma [35–37]. A study also shows that the
expression of LYL1 in AML is higher than that in normal
bone marrow [9]. LYL1 plays a role in the seven transcrip-
tion factors of human CD34+ hematopoietic stem progeni-
tor cells (hsps), and LYL1 can also affect the prognosis of
AML [38]. Generally, in our study, while GNE-987 con-
sumes BET in AML cell lines, it also downregulated the

expression of multiple super-enhancer-related genes, includ-
ing LYL1. These findings provide new insights into the path-
ophysiology of AML and provide a new direction for the
treatment of AML.

The well-studied JQ1 (BRD4 inhibitor), THZ1 (CDK7
inhibitor), and CBP30 (EP300 inhibitor) have been tested
in clinical trials. For example, alvocidib (NCT03298984,
NCT03969420, and NCT02520011) listed by Tolero Phar-
maceuticals as a cyclin-dependent kinase inhibitor has
entered phase II trials in AML and has been reported to have
significant activity in patients with relapsed or refractory
AML [39]. In the present study, we describe a potent tran-
scriptional interfering factor, the BRD4-targeting inhibitor
GNE-987. It has strong antitumor activity in AML cell lines,
primary child AML samples, and in vivo experiments. The
clinical value of GNE-987 in the treatment of AML needs
to be evaluated in future studies.

5. Conclusions

In summary, the results of this study show that GNE-987
has strong antitumor activity in AML cell lines, primary
child AML samples, and in vivo experiments. GNE-987
exerts its antitumor effect by degrading BET protein, and
VHL is the key E3 enzyme for GNE-987 functioning. In
addition, GNE-987 can also downregulate the expression
of super-enhancer-related genes in AML cells, including
the expression of LYL1, which is closely related to AML.
These results indicate that GNE-987 may be a promising
treatment for AML and is worthy of further investigation.
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