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Background. The cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) plays critical functions in innate immune responses
via the production of the second messenger cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), which
stimulates the adaptor stimulator of interferon genes (STING). However, the clinical relevance and prognostic value of the
cGAS-STING pathway in human cancers remains largely unexplored. Methods. A gene signature related to the cGAS-STING
score was identified. The pan-cancer landscape of cGAS-STING expression was calculated using the RNAseq data acquired
from the TCGA cohort. Tumor-infiltrating immune cells (TIICs) were determined by the ssGSEA method. Kaplan–Meier
curves, Cox regression analyses, and the area under the curve (AUC) were employed to decipher the predictive value of cGAS-
STING risk score and TIICs across several human cancers. Results. Most tumor tissues displayed a higher cGAS-STING score
compared with their corresponding nontumor tissues, except for prostate adenocarcinoma (PRAD) and uterine corpus
endometrial carcinoma (UCEC). Higher cGAS-STING score was closely associated with poor clinical outcome of kidney renal
clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP), whereas the cGAS-STING score predicted a
better prognosis in pheochromocytoma and paraganglioma (PCPG). Enrichment analysis showed that cGAS-STING was
profoundly implicated in diverse immune-related pathways in KIRC, KIRP, and PCPG. Significant positive correlations were
noticed between cGAS-STING score and TIICs, including activated CD8+ T cells, activated CD4+ T cells, monocytes, and
mast cells. Finally, the cGAS-STING score was revealed to be an independent prognostic factor for KIRC patients and
possessed a strong predictive power for the prognostic evaluation of KIRC and KIRP patients. Conclusions. We constructed a
cGAS-STING gene signature to predict survival and tumor immunity across human cancers, which can serve as a novel
prognostic indicator and therapeutic target, especially in KIRC and KIRP.

1. Introduction

As a first line of defense against pathogen infection, the
innate immune system deploys germline-encoded receptors

named pattern recognition receptors (PRRs) to detect
pathogen-associated molecular patterns (PAMPs) and
danger damage-associated molecular patterns (DAMPs)
[1, 2]. For extracellular pathogens, transmembrane receptors,
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including Toll like receptors (TLRs) and C-type lectin recep-
tors (CLRs), are the main sensors [3]. Activation of these sig-
naling cascades triggers transcription factor activation and
results in the expression of multiple genes involved in
immune and inflammatory responses [4]. For extranuclear
DNA or extracellular RNA as DAMP signals, nucleic acid
(NA) sensing is an essential mechanism of the innate immu-
nity [5].

Recently, various classes of cytosolic NA sensors have
been discovered [6, 7]. These include RNA sensors and
DNA sensors. The retinoic acid-inducible gene-I- (RIG-I-)
like receptor (RLR) family is responsible for cytosolic RNA
sensing [8], while the cyclic guanosine monophosphate-
adenosine monophosphate (cGAMP) synthase (cGAS) is
the most well-known and best-studied cytosolic DNA sensor
[9, 10]. cGAS can directly bind to cytosolic DNA and then
catalyzes the synthesis of 2′-3′-cyclic GMP-AMP (cGAMP)
from ATP and GTP [11]. cGAMP acts as a secondary mes-
senger to bind the endoplasmic reticulum- (ER-) membrane
adaptor protein stimulator of interferon genes (STING),
which traffics to the ER-Golgi intermediate compartment
and the Golgi apparatus [12, 13]. STING activates IKK and
recruits tank-binding kinase 1 (TBK1), which in turn
recruits interferon regulatory factor 3 (IRF3) for phosphory-
lation by TBK1 and activates nuclear factor kappa B (NF-
κB) [14, 15]. Finally, activation of this cascade converges
on the expression of transcription of type I interferons
(IFNs), interferon-stimulated genes (ISGs), and other antivi-
ral and/or proinflammatory cytokines and chemokines [16].

Self DNA from dying or damaged cancer cells, as an
important danger DAMPs signal, triggers the cGAS-
STING signaling pathway to induce IFNs, which is critical
for intrinsic antitumor immunity [17–20]. However, many
studies also suggested that cancer cells developed strategies
to suppress the cGAS-STING pathway, likely for immune
evasion during tumor development and progression [17].
For example, STING-dependent DNA sensing enhances tol-
erogenic states and promotes tumor growth in tumors char-
acterized by low antigenicity via activation of indoleamine
2,3 dioxygenase (IDO) [21]; Moreover, brain metastatic can-
cer cells can transfer cGAMP to neighboring astrocytes,
resulting in activation of the STING pathway and produc-
tion of inflammatory cytokines such as IFNα and tumor
necrosis factor (TNF), which ultimately facilitate tumor
metastasis [22]. However, how the cGAS-STING pathway
might lead to stimulatory immune responses versus
oncogenic activities in different tumor types remains largely
obscure.

In the present study, we performed a pan-cancer analysis
using the cGAS-STING-related risk score. Through analyz-
ing multiple levels of data from The Cancer Genome Atlas
(TCGA), we comprehensively identified the molecular fea-
tures, its association with tumor-infiltrating immune cells
(TIILs), and the clinical relevance of the cGAS-STING path-
way across a wide variety of cancer types. The capability of
the cGAS-STING score in predicting the prognosis of cancer
patients was also validated. It is anticipated that the compre-
hensive pan-cancer analysis could guide cGAS-STING-
dependent cancer therapy with better precision.

2. Materials and Methods

2.1. Data Acquisition. The Cancer Genome Atlas (TCGA)
research network has profiled and analyzed a large collection
of clinical and molecular data of over 10,000 tumor patients
across 33 different tumor types. Transcriptome RNA-seq
data of 33 cancers were extracted from the TCGA database
(/https://xena.ucsc.edu/). The corresponding clinicopatholo-
gical parameters including sex, age, TNM stage, lymph node
metastasis, histological type, and follow-up information
were also extracted for further analysis. The cancer types
were shown as follows: BLCA, bladder urothelial carcinoma;
BRCA, breast invasive carcinoma; CESC, cervical squa-
mous cell carcinoma and endocervical adenocarcinoma;
COAD, colon adenocarcinoma; ESCA, esophageal carci-
noma; GBM, glioblastoma multiforme; HNSC, head and
neck squamous cell carcinoma; KICH, kidney chromophobe;
KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal
papillary cell carcinoma; LIHC, liver hepatocellular carci-
noma; LUAD, lung adenocarcinoma; LUSC, lung squamous
cell carcinoma; PAAD, pancreatic adenocarcinoma; PCPG,
pheochromocytoma and paraganglioma; PRAD, prostate
adenocarcinoma; READ, rectum adenocarcinoma; STAD,
stomach adenocarcinoma; THCA, thyroid carcinoma; and
UCEC, uterine corpus endometrial carcinoma.

2.2. Identification and Assessment of cGAS–STING Genes.
According to previous review works [9, 10, 23], 5 genes crit-
ically involved in the cGAS-STING signaling pathway were
identified, including CGAS, TMEM173 (STING), TBK1,
IKBKE, and IRF3. Next, the differential expression of this
gene signature was assessed in human cancers. The cGAS-
STING gene signature score of the different tumor samples
was determined by ssGSEA in the R Bioconductor package
Gene Set Variation Analysis (GSVA, v.3.5) with default
parameters (Figure 1).

2.3. Identification of Differentially Expressed Genes. Accord-
ing to the score of the cGAS-STING gene signature, the
tumor samples were divided into two groups using the
median score as a cutoff. Differentially expressed genes
(DEGs) between the high-score and low-score subgroups
were then identified using the “limma” package. Genes with
P value < 0.05 and jlog2FCj ≥ 1 were seemed as a DEG in
each cancer type.

2.4. Functional Enrichment Analysis. Gene Ontology (GO)
analysis was employed to annotate the DEGs related to the
cGAS-STING signal. Briefly, we performed GO analysis by
using the “clusterProfiler” (http://www.bioconductor.org/
packages/release/bioc/html/clusterProfiler.html) R package.
The results for BP (biological process), CC (cellular compo-
nent), and MF (molecular function) were finally visualized.
The enriched signaling pathways were then visualized
with the “ggplot2” (https://cran.r-project.org/web/packages/
ggplot2/index.html) R package. Two-tailed P less than 0.05
was considered statistically significant.

2.5. Identification of TIIC Subpopulations. Cell-type identifi-
cation by Estimating Relative Subsets of RNA Transcripts
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(CIBERSORT) algorithm was utilized to calculate the
immune scores for each patient. The association between
the cGAS-STING score and 28 tumor-infiltrating immune
cells (TIICs) was then analyzed. The immune cell types
enrolled in the analysis included activated B cells, activated
CD4 T cells, activated CD8 T cells, central memory CD4 T
cells, central memory CD8 T cells, effector memory CD4 T
cells, effector memory CD8 T cells, gamma delta T cells,
immature B cell, memory B cell, regulatory T cell, T follicu-
lar helper cell, type 1 T helper cell, type 17 T helper cell, type
2 T helper cell, activated dendritic cell, CD56 bright natural
killer cell, CD56dim natural killer cell, eosinophil, immature
dendritic cell, macrophage, mast cell, monocyte, myeloid-
derived suppressor cell (MDSC), natural killer cell, natural
killer T cell, neutrophil, and plasmacytoid dendritic cell
[24]. The estimated fraction of individual immune cell types
was calculated using single sample gene set enrichment anal-
ysis (ssGSEA) in the R package GSVA.

2.6. Clinical Significance Analysis. To determine the prog-
nostic value of the cGAS-STING score, all patients were
divided into two groups based on the median expression of
the cGAS-STING score. The log-rank test was used to com-
pare the survival rate difference between the two groups.
Multivariable Cox regression was utilized to test whether
the cGAS-STING score was an independent risk factor
among all risk factors. P values less than 0.05 were consid-
ered statistically significant. The survival analysis was per-
formed using R package survival and survminer.

2.7. Statistical Analysis. All statistical analysis was conducted
with the R software (version 3.6.1). Receiver-operating char-
acteristic (ROC) curve analysis was carried out to test the
sensitivity and specificity of the risk prediction according
to the cGAS-STING score. The Kruskal-Wallis test was used
to compare immune scores between two subgroups. Kaplan-
Meier method was used to compare survival curves. P values
less than 0.05 were considered statistically significant.

3. Results

3.1. Expression Landscape of the cGAS-STING Sensor across
Human Cancers. Given the fact that cGAS-STING is an
important biomarker for cancer diagnosis and targeting the
cGAS-STING signaling pathway represents a new therapeu-
tic strategy, we evaluated the score of cGAS-STING signal in
different tumors and their corresponding normal tissues.
Data from TCGA database revealed that the cGAS-STING
score was significantly higher in BRCA, CESC, COAD,
ESCA, HNSC, KIRC, KIRP, LUAD, READ, STAD, and
THCA tumor tissues compared to that in paired normal tis-
sues, suggesting that cGAS-STING might play oncogenic
roles in the development of those tumor types (Figure 2).
In contrast, PRAD and UCEC had lower cGAS-STING scores
compared with their corresponding control tissues. Notably,
COAD had the highest cGAS-STING score while BRCA had
the lowest among those tumor types (Figure 2(a)). Moreover,
a similar phenomenon was also noticed in unpaired tumor
and nontumor tissues (Figure 2(b)).

3.2. Prognostic Analysis of the cGAS-STING Sensor across
Human Cancers. Next, we assessed the prognostic value of
the cGAS-STING sensor for pan-cancer overall survival.
Cancer cases were divided into high-expression and low-
expression groups based on the score of cGAS-STING gene
signature, and correlation between the level of cGAS-
STING score and the prognosis of patients was investigated.
As a result, 20 tumor types were available for analysis. In
detail, high cGAS-STING score was linked to poor prognosis
of overall survival for KIRC (HR = 2:41, 95% CI 1.878-3.25,
P = 2:0e − 08) and KIRP (HR = 1:89, 95% CI 1.042-3.41,
P = 3:7e − 02) within TCGA project (Figure 3(a)). Addi-
tionally, cGAS-STING score was associated with a better
overall survival in PCPG (HR = 0:16, 95% CI 0.031-0.79,
P = 4:6e − 02) (Figure 3(a)). Therefore, we selected KIRC,
KIRP, and PCPG for further analysis. The results showed
that KIRC and KIRP patients with dead survival status
had higher scores of cGAS-STING signal, while no signif-
icant difference was found in PCPG patients (Figure 3(b)).

3.3. Alterations Related to the cGAS-STING Sensor in KIRC,
KIRP, and PCPG. To elucidate the molecular implication of
cGAS-STING sensor in the carcinogenesis of KIRC, KIRP,
and PCPG, we first identified DEGs by using a dichotomous
score of cGAS-STING. As displayed in Figure 4(a), many
DEGs were revealed in the corresponding tumor types. By
annotation of those DEGs with Gene Ontology (GO), many
cancer-related pathways were visualized (Figure 4(b)). In
KIRC, DEGs related to the cGAS-STING sensor mainly
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Figure 1: Graphic abstract for the cGAS-STING pathway and
method flow.
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participated in cytokine binding, cytokine receptor activity,
immune receptor activity, lymphocyte differentiation, leuko-
cyte chemotaxis, leukocyte cell-cell adhesion, cell chemo-
taxis, etc. In KIRP, DEGs were enriched in CCR chemokine
receptor binding, peptidase inhibitor activity, G-protein
coupled receptor, positive regulation of T-cell activation,
lymphocyte chemotaxis, acute phase response, etc. Different
from KIRC and KIRP, DEGs were enriched in receptor
ligand activity, ion channel activity, G-protein coupled pep-
tide receptor activity, regulation of angiogenesis, embryonic
organ development, extracellular structure organization,
etc. in PCPG (Figure 4(b)). These findings prompted a link
between the cGAS-STING sensor and TIICs in the tumor
microenvironment.

3.4. Correlation between the cGAS-STING Sensor and TIICs
in KIRC, KIRP, and PCPG. TIICs are an essential part of

the tumor microenvironment that modulate tumor initia-
tion and progression of many cancers [25]. The quantity
and activity status of TIICs are also important predictive
factors for patients’ prognosis [26]. To further dissect the
connection between the cGAS-STING sensor and TIICs,
we interrogated 28 immune cell types for detailed analysis,
which involves both adaptive immunity and innate immu-
nity. The results showed that the cGAS-STING score was
associated with infiltration of many immune cells in KIRC,
KIRP, and PCPG (Figure 5(a)). In KIRC and KIRP, the
cGAS-STING scores had significant correlations with acti-
vated CD4 T cells and activated CD8 T cells (Figures 5(b)
and 5(c)). In contrast, the cGAS-STING score was remark-
ably correlated with the infiltration levels of mast cells and
monocytes in PCPG (Figure 5(d)). Taken together, the
results indicated that the cGAS-STING signal was tightly
correlated with the extent of immune infiltration in cancers.
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Figure 2: Expression landscape of the cGAS-STING sensor across human cancers. (a) The expression score of the cGAS-STING signal in
paired tumor and nontumor tissues. (b) Significant difference of the cGAS-STING score between tumor and normal samples. BLCA: bladder
urothelial carcinoma; BRCA: breast invasive carcinoma; CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD:
colon adenocarcinoma; ESCA: esophageal carcinoma; HNSC: head and neck squamous cell carcinoma; KICH: kidney chromophobe; KIRC:
kidney renal clear cell carcinoma; KIRP: kidney renal papillary cell carcinoma; LIHC: liver hepatocellular carcinoma; LUAD: lung
adenocarcinoma; LUSC: lung squamous cell carcinoma; PAAD: pancreatic adenocarcinoma; PCPG: pheochromocytoma and
paraganglioma; PRAD: prostate adenocarcinoma; READ: rectum adenocarcinoma; STAD: stomach adenocarcinoma; THCA: thyroid
carcinoma; UCEC: uterine corpus endometrial carcinoma. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001; ∗∗∗∗P < 0:0001.
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3.5. Multivariable Cox Regression Analysis of the cGAS-
STING Sensor and TIICs in KIRC, KIRP, and PCPG. To
investigate whether the prognostic value of the cGAS-
STING score is independent of TIICs associated with
tumor progression, the multivariable Cox regression analy-
sis was performed using the cGAS-STING score, activated

CD4 T cells, activated CD8 T cells, mast cells, and mono-
cytes as covariates. Interestingly, the cGAS-STING score
was revealed as an independent risk factor for KIRC
patients (HR = 726:876, 95% CI 64.29-8218.47, P < 0:001)
(Figure 6(a)). In KIRP, activated CD4 T cells but not
cGAS-STING score was identified as an independent risk
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Figure 3: Prognostic analysis of the cGAS-STING sensor across human cancers. (a) Univariate Cox regression analysis was performed to
determine the prognostic values of the cGAS-STING sensor. (b) Expression pattern of cGAS-STING in KIRC, KIRP, and PCPG with
different survival status (censored or death). BLCA: bladder urothelial carcinoma; BRCA: breast invasive carcinoma; CESC: cervical
squamous cell carcinoma and endocervical adenocarcinoma; COAD: colon adenocarcinoma; ESCA: esophageal carcinoma; GBM:
glioblastoma multiforme; HNSC: head and neck squamous cell carcinoma; KICH: kidney chromophobe; KIRC: kidney renal clear cell
carcinoma; KIRP: kidney renal papillary cell carcinoma; LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; LUSC: lung
squamous cell carcinoma; PAAD: pancreatic adenocarcinoma; PCPG: pheochromocytoma and paraganglioma; PRAD: prostate
adenocarcinoma; READ: rectum adenocarcinoma; STAD: stomach adenocarcinoma; THCA: thyroid carcinoma; UCEC: uterine corpus
endometrial carcinoma; HR: hazard ratio. ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001; ∗∗∗∗P < 0:0001.
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factor (HR = 4:1 + e06, 95% CI 1:8 + e06 − 9:5 + e08, P <
0:001) (Figure 6(b)). In PCPG, no factors were related to
a worse prognosis as a continuous variable (Figure 6(c)).
Therefore, our findings suggested that the cGAS-STING
score exhibited unbiased efficacy for predicting the prog-
nosis of KIRC patients.

3.6. The Clinical Value of the cGAS-STING Score in KIRC,
KIRP, and PCPG. To further investigate the clinical value
of the cGAS-STING risk score in the management of cancer
patients, receiver-operating characteristic (ROC) analysis
was conducted to determine the sensitivity and specificity
of survival prediction. The area under the ROC curve
(AUC) was evaluated with the cGAS-STING risk score. As
a result, we observed that the cGAS-STING risk score risk
model possessed a strong predictive power for the prognos-
tic evaluation of KIRC patients (AUC = 0:686) (Figure 7(a)).
In KIRP, the efficacy of diagnosis using the cGAS-STING
risk score was higher than KIRC, with an AUC of 0.71
(Figure 7(b)). However, the cGAS-STING risk score could
not efficiently distinguish the prognosis of PCPG patients
(Figure 7(c)).

4. Discussion

The involvement of DNA sensors in the antitumor response
makes them attractive drug targets in tumor therapy, partic-
ularly for the cGAS-STING pathway and its downstream
transcription factors IRF3 and NF-κB [27]. Due to the
important mechanism in fuelling the development of
inflammation and immune response, the cGAS-STING
pathway has emerged as a critical regulator of cancer
development. Most studies have proven that the activation
of cGAS-STING signaling stimulates antitumor immune
responses. However, activation of STING can recruit not
only immune-supporting cells to inhibit malignant transfor-
mation but also immunosuppressive cells to drive tumor
progression [28]. In this study, we comprehensively ana-
lyzed the expression pattern, prognostic value of the cGAS-
STING pathway, as well as its correlation with TIICs in the
tumor microenvironment in an extensive manner.

cGAS is activated by interacting with double-stranded
DNA (dsDNA). The second messenger, cGAMP, then acti-
vates STING on the ER, which forms a tetramer through
high-order oligomerization and translocates from ER to
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Figure 4: Alterations related to the cGAS-STING sensor in KIRC, KIRP, and PCPG. (a) Volcano plots displayed the differentially expressed
genes between tumors with higher cGAS-STING score and tumors with the lower cGAS-STING score; the median value was set as a cutoff.
(b) Gene Ontology analysis of differentially expressed genes was performed in KIRC, KIRP, and PCPG, respectively.
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ER-Golgi intermediate region. At the Golgi, palymitoyla-
tion of STING has been proposed to recruit TBK1 and
IRF3, at which point IRF3 translocates to the nucleus
and performs its transcriptional function in expressing

immune-stimulating genes (ISG) and type 1 IFN. Mean-
while, STING also activated IKK-mediated induction of
NF-κB-driven inflammatory genes [29]. According to KEGG
databases and related studies, using a 5-gene cGAS-STING
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Figure 5: Correlation between the cGAS-STING sensor and TIICs in KIRC, KIRP, and PCPG. (a) Heatmap showed the correlation
efficiency between cGAS-STING sensor and different immune cells in KIRC, KIRP, and PCPG; infiltrating immune cells in different
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CD8 T cells in KIRP. (d) Heatmap showed the activity score of the cGAS-STING sensor on monocyte and mast cells in PCPG.
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signature, we identified the activity of the cGAS-STING
pathway in many cancer types based on the data of TCGA.
In contrast to the well-documented antitumor activities
induced by the cGAS-STING pathway, we revealed that the
majority of cancer types had higher cGAS-STING scores

compared with their normal counterparts. Consistent with
our findings, a previous study also reported that upregulated
cGAS-STING signaling is negatively associated with the infil-
tration of immune cells and a high level of cGAS-STING sig-
naling predicts a poor prognosis in certain cancers [30].
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Figure 6: Multivariable Cox regression analysis of the cGAS-STING sensor and TIICs in KIRC, KIRP, and PCPG. (a) Multivariable Cox
regression analyses of the cGAS-STING sensor, activated CD4 T cells, and activated CD8 T cells in KIRC. (b) Multivariable Cox
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analyses of the cGAS-STING sensor, monocytes, and mast cells in PCPG. ∗P < 0:05; ∗∗∗P < 0:001.
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Different from that study, a gene set signature instead of a
single gene to indicate the activity of the cGAS-STING path-
way was adopted. In our study, patients with a high cGAS-
STING score had a worse clinical outcome in KIRC and
KIRP. These findings suggest a tumor-promoting effect of
the cGAS-STING pathway in KIRC and KIRP. Consistent
with our findings, Msaouel et al. reported that renal medul-
lary carcinoma is characterized by high replication stress
and an abundance of focal copy number alterations associ-
ated with activation of the cGAS-STING pathway [31].
Moreover, cGAS-STING-dependent DNA-sensing of micro-
nuclei in tumor cells can couple chromosome instability to
tumor metastasis [32], suggesting a contradictory role for
the pathway in cancer biology. Therefore, the distinct roles
of the cGAS-STING pathway might be tumor-specific, and
future therapies targeting the cGAS-STING pathway should
be tailored to each cancer type.

Activation of the cGAS-STING pathway can induce the
recruitment of immune cells into the tumor microenviron-
ment, such as CD8+ T cells, dendritic cells (DCs), and natu-
ral killer (NK) cells. More importantly, STING agonists can
elevate immunogenicity in nonimmunogenic tumors, thus
improving the efficacy of immunotherapy [33]. Accumu-
lated studies revealed the greatest promise of application of
STING agonists in combination with other immuno-
oncology agents, such as the immune checkpoint inhibitors
anticytotoxic T lymphocyte antigen 4 (CTLA-4), antipro-
grammed cell death 1 (PD-1), and its ligand antipro-
grammed cell death 1 ligand 1 (PD-L1) [34]. In this study,
we also revealed a close link between the cGAS-STING path-
way and TIICs in KIRC, KIRP, and PCPG. Inflammation is a
common feature and is an essential factor for cancer devel-
opment. Deciphering the tumor immune microenvironment
reprogrammed by the cGAS-STING pathway is of great
importance to understand cancer development in each
cancer type. Activation of cGAS-STING signaling pathway
has a bidirectional effect, which can not only activate
immune-supporting cells to play an antitumor role but
also create an immunosuppressive environment, thus pro-
moting tumor formation and metastasis [28]. Therefore,

more works are encouraged to uncover cGAS-driven
inflammation microenvironment in different cancer types
to enable therapy.

Prognosis prediction analysis is important in cancers as
it can aid better clinical management of cancer patients.
Emerging studies have reported a functional link between
the cGAS-STING pathway and tumor diseases [19–21].
However, whether the cGAS-STING score can predict
patients’ prognosis remains to be answered. In this study,
we for the first time analyzed the relationship between over-
all expression level of cGAS-STING signaling pathway and
tumor prognosis. The results demonstrated that the expres-
sion level of cGAS-STING is a risk factor in KIRC and KIRP
patients, and the risk score is powerful to predict patients’
prognosis. We speculated that the unique characteristics of
cGAS-STING genes in KIRC and KIRP may be related to
the unique tumor microenvironment. Renal cancer has a
high level of immune invasion [35]. More specifically, T
cells, CD8+, T helper cell 1 (Th1), dendritic cells (DC), neu-
trophils, and cytotoxic cells scored highest in clear cell renal
cell carcinoma (ccRCC), while Th2 and regulatory T cells
(Treg) scores were relatively low, suggesting an overall pro-
inflammatory effect of ccRCC [36]. T cell activation status
in invasive tumors is a stronger prognostic indicator. Unlike
most other cancer types, CD8+ T cell infiltrates are generally
higher in ccRCC with a poor prognosis, suggesting that the
invasive CD8+ T cell pool may be dominated by suppressed
and dysfunctional cells [37]. Another study showed that
accumulation of CD39+CD8+ T cells indicated poor prog-
nosis in ccRCC patients [38]. Thus, a further independent
validation cohort is warranted to confirm the predictive
value of the cGAS-STING score and TIICs in the survival
prognosis of renal cancers.

There may be several limitations in this study. Because
many molecular components are included in the cGAS-
STING pathway, different gene signatures related to cGAS-
STING might generate minor inconsistencies for the molec-
ular and clinical relevance of the cGAS-STING pathway. In
addition, all analysis was performed by the TCGA data; fur-
ther validation in the other cohorts is needed in future
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Figure 7: The clinical value of the cGAS-STING score in KIRC, KIRP, and PCPG. (a) Receiver-operating characteristic (ROC) analysis of
the sensitivity and specificity of the risk prediction by the cGAS-STING score in KIRC. (b) ROC analysis of the sensitivity and specificity of
the risk prediction by the cGAS-STING score in KIRP. (c) ROC analysis of the sensitivity and specificity of the risk prediction by the cGAS-
STING score in PCPG. AUC indicates the area under the ROC curve.
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studies. Finally, further prospective clinical studies are
needed to verify our findings.

5. Conclusions

In conclusion, we systematically analyzed the genetic land-
scape and biological and clinical relevance of the cGAS-
STING signature across human cancers. It helps to better
understand the dysregulation of the cGAS-STING pathway
in cancers, especially KIRC, KIRP, and PCPG. The findings
from the present study can be readily applied to further pre-
clinical translational researches and are highly promising for
personalized cancer treatment and clinical application in
oncology.
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