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One of the most prevalent malignant primary brain tumors is primary glioma. Although glutathione peroxidase 8 (GPX8) is
intimately associated with carcinogenesis, its function in primary gliomas has not yet been thoroughly understood. Here, we
leveraged Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and Genotype-Tissue Expression
(GTEx) database to investigate the association between GPX8 and overall survival (OS) of patients with primary gliomas,
and our results showed that GPX8 expression was negatively correlated with OS. Moreover, the expression of GPX8 is
significantly lower in normal tissue when compared to glioma tissue. According to results of univariate and multivariate
analysis from CGGA using R studio, GPX8 is a valuable primary glioma prognostic indicator. Interestingly, high GPX8
expression is correlated positively with the hedgehog and kras signaling pathways and negatively with G2 checkpoint,
apoptosis, reactive oxygen species (ROS) pathway, and interferon gamma pathway, which could be beneficial for the
proliferation of glioma cells. Furthermore, GPX8 knockdown caused G1 cell cycle arrest, increased cell death, and reduced
colony formation in U87MG and U118MG cells. In conclusion, GPX8 is a promising therapeutic target and meaningful
prognostic biomarker of primary glioma.

1. Introduction

The majority of primary central nervous system tumors,
approximately 50–60% of all malignant brain tumors, are
gliomas [1, 2]. The World Health Organization (WHO) has
categorized gliomas into grades I through IV based on histol-
ogy and molecular genetic abnormalities [2, 3]. Glioma is
conventionally treated with surgery followed by chemo- and
radiotherapies [4]. Despite active treatments used today, over-
all survival (OS) and progression-free survival in patients with

glioma remain predictable [5, 6]. Therefore, it is urgently
required to search for novel and valuable glioma prognostic
or predictive biomarkers, which could notably increase effec-
tiveness for glioma therapy [2, 6]. Numerous studies have
shown that mRNA is involved in regulating glioma pathology,
and several mRNAs have been found to be promising bio-
markers to predict the OS time of glioma patients [7, 8].

The glutathione peroxidase family (GPXs) consists of 8
enzymes, which can eliminate H2O2 and prevent lipotoxicity
[9]. Some of them have been discovered to be strongly
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related to carcinogenesis, although their main protective
effect is in decreasing damage caused by intracellular oxida-
tive stress [10]. GPX8, as the last discovered member of the
GPXs, is a 209-amino acid-long type II transmembrane
protein located in the endoplasmic reticulum. It contains
an N-terminal signal peptide and a C-terminal endoplasmic
reticulum (ER) membrane localization signal and functions
in regulating calcium homeostasis [11]. In addition, lots of
studies have shown that GPX8 is linked to various sorts of
human malignant tumors [12–15].

Previously, several research groups explored the potential
role of GPX8 in glioma patients, but their studies were only

based on The Cancer Genome Atlas (TCGA) [14, 15]. Here,
we further investigated this gene by combined using the Chi-
nese Glioma Genome Atlas (CGGA) databases and a variety
of algorithms. Our multivariate analysis showed that GPX8
was not a good prognostic indicator for the OS of all types
of gliomas. Instead, it is a valuable prognostic biomarker spe-
cific to primary glioma. Moreover, we firstly found that
knocking down GPX8 expression in U87MG and U118MG
cells led to cell cycle arrest, increased cell apoptosis, and
decreased colony formation capacity. Hence, we concluded
that GPX8 is a meaningful predictive biomarker for primary
glioma and a promising antiglioma therapeutic target.
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Figure 1: GPX8 expression in glioma and normal brain tissues. (a) GPX8 was highly expressed in gliomas tissues (n = 925) from CGGA
compared to normal brain tissues (n = 207) from GTEx. (b) GPX8 expression was increased in primary (n = 620), secondary (n = 275),
and recurrent (n = 30) gliomas. ∗∗∗P < 0:001.

Table 1: Characteristics of patients with primary glioma based on CGGA.

Characteristics Number of cases Percentages (%)

Gender
Male 294 58.5

Female 208 41.5

Age
≤41 223 45.79

>41 279 54.21

Histology

Astrocytoma 55 10.9

Anaplastic astrocytoma 39 7.7

Anaplastic oligodendroglioma 22 4.3

Anaplastic oligoastrocytoma 80 10.68

Glioblastoma 176 35

Oligodendroglioma 35 6.9

Oligoastrocytoma 95 15.9

IDH_mutation_status
Mutant 270 53.7

Wild type 232 46.3

1p19q_codeletion_status
Noncodel 389 22.6

Codel 113 77.4

Radio_status
Yes 426 84.8

No 76 15.2

Chemo_status
Yes 235 64.7

No 177 35.3

Grade

WHO II 185 36.8

WHO III 141 35

WHO IV 176 28
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Figure 2: The survival curves and the ROC curves. (a) High GPX8 expression in all types of gliomas was associated with shorter overall
survival. High : low = 374 : 375; HR 1.4-1.622; P < 0:001. (b) ROC curves showed that GPX8 as a prognostic marker was valuable for all
types of gliomas. (c) High GPX8 expression in primary gliomas was associated with shorter overall survival. High : low = 251 : 251; HR
1.6-1.847; P < 0:001. (d) ROC curves showed that GPX8 had a medium diagnostic accuracy in primary gliomas.

GPX8

Histology

Grade

Gender
Age

Radio

Chemo

IDH_mutation

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

0.832

0.828

1.699 (1.563 – 1.847)

5.482 (4.256 – 7.063)

2.033 (1.580 – 2.615)

1.040 (0.722 – 1.499)
1.784 (1.357 – 2.344)

0.218 (0.169 – 0.282)
1p19q_codeletion < 0.001 0.131 (0.081 – 0.212)

0 1 2 3
Hazard ratio

4 5 6 7

3.080 (2.612 – 3.631)

1.027 (0.805 – 1.311)

pvalue Hazard ratio

(a)

GPX8

Histology

Grade

Gender
Age

Radio

Chemo

IDH_mutation

< 0.008

< 0.073

< 0.001

0.041

0.036

0.073

0.185

0.556

1.169 (1.041 – 1.313)

0.586 (0.326 – 1.052)

1.283 (0.977 – 1.684)

0.770 (0.523 – 1.133)

0.719 (0.524 – 0.986)
0.691 (0.490 – 0.975)

0.263 (0.157 – 0.441)

0 1 2
Hazard ratio

3 4

1p19q_codeletion < 0.001

2.828 (1.922 – 4.161)

0.928 (0.723 – 1.190)

pvalue Hazard ratio

(b)

Figure 3: Relationship between clinical characteristics and prognosis of patients with primary glioma (n = 502) from CGGA database. (a)
Univariate analysis. (b) Multivariate analysis.
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Figure 4: Relationship between GPX8 gene expression and clinical features of primary gliomas (n = 502).
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Figure 5: Coexpression analysis. (a) Gene expression heat map and correlations for GPX8 coexpressed genes. (b) The coexpressed network
of 5 positively related and 5 negatively related genes for GPX8.
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2. Materials and Methods

2.1. Data Source. The clinical information and glioma RNA
sequencing data were extracted from the CGGA Data Portal
(http://www.cgga.org.cn/) and TCGA Data Portal (https://
tcga-data.nci.nih.gov/tcga/). The gene expression of normal
brain tissue was extracted from the Genotype-Tissue Expres-
sion (GTEx) Data Portal (https://xenabrowser.net/
datapages/) [16]. We downloaded clinical and RNA expres-
sion data of glioma patients from TCGA and glioma patients
(DataSet ID: mRNAseq_693 and mRNAseq_325) from
CGGA. The sva package and limma package in R language
were applied to combine gene expression and clinical data
for subsequent analysis. And 207 normal brain tissue
(Brain-Frontal Cortex and Brain-Cortex) mRNA expression
data were downloaded from GTEx.

2.2. Survival and ROC Curve Analysis. The correlation
between GPX8 expression and OS were analysed with the
Kaplan-Meier Plotter (https://kmplot.com/analysis/). Diag-
nosis and prognosis were determined with the calculation
of the area under the ROC curves.

2.3. Gene Set Enrichment Analysis (GSEA). GSEA is used to
analyse the signal pathways and functions of genes. The pri-
mary glioma samples from CGGA were divided into high
GPX8-expression group and low GPX8-expression group.
Nominal P values and normalized enrichment scores
(NES) were used to identify and sort enriched pathways.
The difference is significant when P value is less than 0.05
and the FDR value is less than 0.25.

2.4. Cell Culture and Transfection. U87MG and U118MG
cell lines were bought from Procell (Wuhan, China). Cells
were grown in DMEM medium with 10% FBS under ideal
circumstances (37°C; 5% CO2). siRNAs were obtained from
Tsingke Biotechnology Co., Ltd. (Beijing, China). The
sequences of siRNAs for GPX 8 are 5′-GGUCAAGUUGU
GAAGUUCUTT-3′ and 5′-AGAACUUCACAACUUG
ACCTT-3′. All siRNAs were transfected to cells by RNAi-
Mate (Genepharma, Shanghai, China).

2.5. Western Blot Assay (WB). Cells were lysed in RIPA
buffer (Fude, Hangzhou, China). Cell lysates weremixedwith
protein loading buffer and boiled for 5 minutes to make pro-
tein samples. Protein samples were separated with a sodium
dodecyl sulfate-polyacrylamide gel electrophoresis gel and
transferred to the polyvinylidene fluoridemembrane (PVDF).
With the use of a fast-blocking buffer (Beyotime, Shanghai,
China), the membrane containing proteins was blocked and
then incubated at 4°C overnight with primary antibodies
(GPX8, Abclonal, China; Actin, Beyotime, China). Horserad-
ish peroxidase- (HRP-) conjugated antibodies are secondary
antibodies. After washing, the substrate of HRP (Fude,
Hangzhou, China) was applied to detect the target protein.

2.6. Cell Viability. Cell Counting Kit-8 (CCK-8) (Topscience,
Shanghai, China) was applied to measure cell viability.
Exponentially growing cells were seeded into 96-well plates
at a concentration of 5000 cells per well. 36 hours after seed-

ing, CCK-8 solution was added and incubated at 37°C for
four hours. Then at 450nm, the optical density (OD) value
was measured.

2.7. Colony Formation Assay. 36 hours after siRNA transfec-
tion, cells were seeded at a density of 500 cells per well in six-
well plates with 2mL of DMEM medium containing 10%
FBS. Two weeks after incubation at 37°C, the culture media
was removed and the cells in plates were fixed with ice-
cold methanol and stained with crystal violet (Solarbio,
China) for twenty minutes. The numbers of colonies were
counted after staining.

2.8. Cell Apoptosis and Cycle Assay. 36 hours after siRNA
transfection, cells were plated into 24-well plates at the con-
centration of 50000 cells per well. 24 hours after seeding,
cells were collected and divided into two parts. One part
was used for cell apoptosis assay. Briefly, cells were stained
with propidium iodide (PI) and Annexin V-FITC following
the manufacturer’s instructions (KeyGEN, Jiangsu, China).
Flow cytometer was used to detect cell apoptosis. Another
part was used for cell cycle assay (Beyotime, Shanghai,
China). Collecting cells were rinsed in ice-cold PBS before
being fixed in 75% methanol over the night at 4°C. Following
that, cells were stained for 20 minutes with PI, RNase A, and
Triton X-100. Cell apoptosis assay and cell cycle assay were
performed using flow cytometry.

2.9. Wound Healing Assay. U87MG and U118MG cells were
cultured in 12-well plates to reach 100% confluence.
Wounds were made using sterilized and clean pipette tips.
Media were replaced with DMEM medium with 1% FBS.
After replacing the media, digital pictures were obtained
using an inverted microscope at 0, 12, and 24 hours. A rela-
tive migration rate was calculated by normalizing the
distance of the wound area at 0 hour.

2.10. Statistical Analysis. The gene expression data from the
public database were analysed using R (v.4.0.5) to get all sta-
tistical testing and graphing. All P values were two-sided,

Table 2: Description of ten coexpressed genes showed in
Figure 5(b).

Gene Cor. P value

GPX8 1 0

COL1A2 0.845 6:89E − 279
KDELR3 0.844 4:46E − 277
SERPINH1 0.841 7:55E − 273
TUBA1C 0.834 4:98E − 265
COL1A1 0.828 5:27E − 257
JPH3 -0.609 2:37E − 104
REPS2 -0.611 2:88E − 105
ARPP21 -0.614 1:92E − 106
DUSP26 -0.625 1:47E − 111
ELFN2 -0.643 7:22E − 120
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and significance was defined as a value below 0.05. The com-
parison of GPX8 expression between nonpaired samples was
evaluated using the Wilcoxon rank test. The correlation
between GPX8 expression levels and clinicopathological fac-
tors was examined using logistic regression analysis, Kruskal
Wallis, and Wilcoxon symbolic rank tests. Survival curves
plotted using the Kaplan–Meier method were compared to
the log-rank test to explore the prognostic value of GPX8
in primary glioma patients.

3. Results

3.1. GPX8 Was Highly Expressed in Glioma. RNA-sequenc-
ing data of WHO II-IV gliomas and normal brain tissues

were downloaded from CGGA, TCGA, and GTEx. Data
analysis was done by limma and sva package in R studio.
The result revealed that GPX8 was highly expressed in glio-
mas (see Figure 1(a) and Figure S1 in the Supplementary
Materials). Then, we further analysed the data of primary
gliomas after excluding recurrent and secondary gliomas
from CGGA [17]. The characteristics of patients with glioma
are summarized in Table 1. Further analysis indicated that
GPX was also highly expressed in primary gliomas
(Figure 1(b)). In brief, GPX8 is highly expressed in gliomas
tissue, including primary, recurrent, and secondary gliomas.

3.2. GPX8 Is a Potential Prognostic Biomarker in Gliomas.
The results of the survival analysis using the CGGA
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Figure 6: High GPX8 expression is significantly correlated with (a) pancreas beta pathway, (b) UV response, (c) kras signaling, (d)
hedgehog signaling pathway, and (e) merged four pathways.
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databases revealed that GPX8 expression significantly affects
prognosis in gliomas, including primary glioma (Figure 2).
Moreover, the diagnostic value of GPX8 level in glioma
was evaluated by exploring the receiver operating character-
istic (ROC) curve. As demonstrated in Figures 2(b) and 2(d),
GPX8 had a medium diagnostic accuracy in gliomas (AUCs
were above 0.7 and even 0.8). In short, results above
supported that GPX8 is a potential diagnostic biomarker in
glioma, including primary gliomas.

3.3. Correlation between GPX8 Expression and Clinical
Features. Though difference of RNA expression, survival,
and ROC curve has been explored, further analysis is needed

to do to confirm the potential role of GPX8 in gliomas. With
clinical information from CGGA, univariate and multivari-
ate analysis was done in this study (see Figure 3 and
Figure S2 in the Supplementary Materials). Surprisingly,
the correlation between GPX8 expression and OS was not
significant in mixed glioma type analysis (univariate
analysis, P < 0:001, HR 1.431-1.622; multivariate analysis, P
= 0:074, HR 0.991-1.174, Figure S2). Interestingly,
subgroup analysis showed that this correlation was
significant only in the primary glioma subgroup (univariate
analysis, P < 0:001, HR 1.563-1.847; multivariate analysis, P
= 0:008, HR 1.041-1.313) (Figure 3). So, next we focused
on analysing the correlation of GPX8 with clinical
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characteristics of primary gliomas. In primary gliomas, the
GPX8 was associated with age, WHO grade, chemo, IDH
mutation, histology, and 1p19q_codeletion (Figure 4).

3.4. Enrichment Analysis of GPX8 Gene Functional
Networks. Pearson correlation analysis was further applied
to identify GPX8-related genes to elucidate the role of
GPX8 in the pathophysiology of gliomas. The top 25 signif-
icant genes that correlated positively or negatively with
GPX8 were shown in the heat maps (Figure 5(a)), which
suggested a widespread impact of GPX8 in the transcription.
Top five positively correlated genes (COL1A2, KDELR3,
SERPINH1, TUBA1C, and COL1A1) and top five negatively
correlated genes (JPH3, REPS2, ARPP21, DUSP26, and
ELFN2) (Table 2) were selected to draw a coexpressed net-
work, as shown in Figure 5(b).

We next explored signaling pathways differentially
expressed in patients with primary glioma as a function of
GPX8 expression via GSEA. Table S1 in the
Supplementary Materials lists out all significantly enriched
signaling pathways based upon NES values. As shown in

Figure 6, hedgehog (HH) signaling pathway, kras pathway,
pancreas beta cells, and UV response were significantly
associated with high GPX8 expression in patients with
primary glioma; in contrast, interferon gamma response,
G2/M checkpoint, apoptosis, and reactive oxygen species
(ROS) pathway with low GPX8 expression (Figure 7).
Interestingly, these enriched pathways are closely related
to carcinogenesis.

3.5. Validation of GPX8 Function in Gliomas In Vitro. In
vitro experiments were performed to validate the GPX8
function in gliomas. The GPX8 expression in two glioma cell
lines (U87MG and U118MG) was successfully knocked
down by transfection of GPX8 siRNA, which was confirmed
by WB (Figure 8(a)). Comparing with scramble control,
GPX8 knockdown contributed to the inhibition of cell pro-
liferation (Figure 8(b)), the increase of apoptotic cells
(Figures 8(c) and 8(d)), and the decrease of wound healing
rate (Figures 8(e) and 8(f)). Meanwhile, inhibition of GPX8
expression resulted in cell cycle arrest at the G1 (2N) phase
and weakened colony formation capacity (Figure 9). Above

0h

24h

Scramble siRNA GPX8 siRNA Scramble siRNA GPX8 siRNA

U87MG U118MG

(e)

+ – + –
– + – +

Scramble siRNA
GPX8 siRNA

100

80

60

40

20

0

W
ou

nd
 h

ea
lin

g 
(%

)

⁎⁎⁎ ⁎⁎⁎

U87MG U118MG

(f)

Figure 8: Effects of GPX8 on cell proliferation, apoptosis, and migration. (a) The decreased protein level of GPX8 in U87MG and U118 cell
lines was proved by western blotting. (b) Cell proliferation assay (∗∗∗P < 0:001). (c, d) Apoptosis assay (∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P <
0:001). REA: the rate of early apoptotic cells; RTA: the rate of total apoptotic cells; RLA: the rate of late apoptotic cells. (e, f) Wound
healing assay (∗∗∗P < 0:001).
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Figure 9: Effects of GPX8 on cell cycle and colony formation capacity. (a, b) Cell cycle assay (∗P < 0:05, ∗∗∗P < 0:001). G1: 2N; G2: 4N. (c, d)
Colony formation capacity assay (∗∗∗P < 0:001).
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data suggested GPX8 plays an important role in the prolifer-
ation, cell cycle, apoptosis, migration, and colony formation
capacity of glioma cells, which would be beneficial for dis-
ease development.

4. Discussion

One of the most common malignant brain tumor in adults is
primary glioma [2]. Searching for new tumor biomarkers is
beneficial for the efficiency of glioma therapy [2]. Though
major favorable prognostic biomarkers have been reported,
novel biomarkers are continuously being explored. And
bioinformatics analysis is a powerful strategy to facilitate dis-
covery of new biomarkers. Hence, this study was performed
to look for novel prognostic factors.

Several novel prognostic and therapy targeted factors in
gliomas have been found based on public database [4, 8,
14, 15, 18, 19]. For example, GPX1 expression was a poten-
tial prognostic factor in low-grade glioma (LGG) and so was
GPX8 in GBM/LGG, based on bioinformatic analysis from
TCGA [14, 15, 18]. GPX7 is closely related to the malignant
clinical features of gliomas from CCGA [4]. While glioma
patients in TCGA are from western countries, CGGA is
another important public database which collected RNA
expression and clinical information of Chinese glioma
patients. And race and ethnicity could be important factors
that may affect prognosis in gliomas [20, 21]. Hence, these
prognostic genes proved based on TCGA are needed to
reconfirm in CGGA database. Surprisingly, although GPX8
is proved to be a potential prognostic factor in glioma based
on analysis of data from TCGA [14, 15], our analysis results
suggested that GPX8 is not a reliable prognostic factor in the
analysis of mixed-type gliomas from CGGA (Figure S2).
Further, by excluding recurrent and secondary gliomas, we
solely analysed the correlation between GPX8 expression
and the primary gliomas from CGGA by bioinformatics
tools. Our results favored that GPX8 is a promising
prognostic factor mainly in primary glioma rather than in
all types of gliomas. And GPX8 expression is significantly
correlated with grade, IDH1/2 mutation, and 1p/19q
codeletion in primary glioma from CGGA, which are
favorable prognostic factors in glioma.

In addition, coexpressed genes of GPX8 in primary
gliomas from CGGA were analysed. The top positively and
negatively correlated genes are displayed in Figure 5. Among
them, ATP1A3, COL1A1, COL1A2, LOX, FN1, and ANXA1
are involved in ferroptosis [22–26], which hints that GPX8
could be a cofactor in ferroptosis. TUBA1C, which is posi-
tively correlated with GPX8, has been reported to be a prog-
nostic marker in LGG and correlated with immune cell
infiltration in the tumor microenvironment [27]. DUSP26
is negatively correlated with GPX8, and low DUSP26 expres-
sion could lead to malignant behavior in glioblastoma cells
by deregulating MAPK and Akt signaling pathway [28].
NDRG2 expressed in astrocytes of the central nervous
system is negatively correlated with gpx8, which is involved
in cell proliferation and differentiation and generally consid-
ered as a tumor suppressor [29]. GPX8 could exert its carci-

nogenesis function in primary glioma accompanying the
dysfunction of these coexpressed genes.

In the present study, gene set enrichment analysis of
GPX8 in primary glioma was performed (Figures 6 and 7).
These enriched pathways play important roles in human
cancers. The HH signaling pathway regulates cell growth
and differentiation, but its dysfunction could promote the
development of human cancers including gliomas [30, 31].
Kras is the most frequent oncogenic gene involved in many
cancers [32]. Interferon γ (IFN-γ) has antitumor effect
through modulating the immunity within the tumor micro-
environment [33]. Low levels of ROS help glioma cells resist
therapy [34]. Low expression of GPX8 is positively corre-
lated with apoptosis and G2M checkpoint (Figure 7). Lots
of anticancer drugs exert their function by inducing cell apo-
ptosis and G2M checkpoint [35–37]. Meanwhile, GPX8
function in gliomas was validated by in vitro experiments
(Figures 8 and 9). Some research groups have proved that
GPX8 knockdown results in the suppression of the prolifer-
ation, colony formation capacity, and migration of glioma
cells [14, 15]. But they only used one glioma cell line and
did not fully study the role of GPX8 expression in glioma cell
apoptosis and cycle. In the present study, we firstly reported
that decreased GPX8 expression led to increased cell apopto-
sis and cell arrest at the G1 stage using two glioma cell lines.

5. Conclusions

In conclusion, the present study found that GPX8 is a favor-
able prognostic factor in primary glioma. And the interven-
tion of GPX8 in glioma tissue could be a promising therapy
treatment for primary glioma treatments and other brain-
related tumors.
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