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With the huge therapeutic potential, cancer immunotherapy is expected to become the mainstream of cancer treatment. In the
current field of cancer immunotherapy, there are mainly five types. Immune checkpoint blockade therapy is one of the most
promising directions. Adoptive cell therapy is an important component of cancer immunotherapy. The therapy with the
cancer vaccine is promising cancer immunotherapy capable of cancer prevention. Cytokine therapy is one of the pillars of
cancer immunotherapy. Oncolytic immunotherapy is a promising novel component of cancer immunotherapy, which with
significantly lower incidence of serious adverse reactions. The recent positive results of many clinical trials with cancer
immunotherapy may herald good clinical prospects. But there are still many challenges in the broad implementation of
immunotherapy. Such as the immunotherapy cannot act on all tumors, and it has serious adverse effects including but not
limited to nonspecific and autoimmunity inflammation. Here, we center on recent progress made within the last 5 years in
cancer immunotherapy. And we discuss the theoretical background, as well as the opportunities and challenges of cancer
immunotherapy.

1. Introduction

Cancer is a devastating disease, which has been one of the
main threats to human health. Worldwide, nearly 10 million
people will die from cancer in 2020 [1]. Surgery, radiotherapy,
and chemotherapy are the three traditional treatments of can-
cer, but these methods have certain limitations, such as trau-
matic, low targeting, serious toxicity, and drug resistance [2].
Furthermore, they often fail to provide long-term survival
benefits for patients with advanced solid tumors, according
to clinical practice. Along with the deepening research of
tumor immunology, cell biology, and molecular technology,
scientists find that the tumor microenvironment (TME) is
immunosuppressive. Studies have shown that cancer develop-
ment and metastasis are highly positively correlated with
immunosuppression [3]. Cancer immunotherapy, which har-

nesses the body’s immune system to eradicate tumor cells, is
widely researched. The components and brief mechanisms of
cancer immunotherapy are shown in Figure 1. Thousands of
clinical trials have proved that cancer immunotherapy is
becoming a powerful new approach to cancer treatment.
Despite the promising prospects, the clinical application of
immunotherapy still faces some challenges in terms of effec-
tiveness and safety. In this review, the five cancer immuno-
therapies mentioned above are overviewed, and their clinical
status, advantages, and disadvantages are discussed.

2. Immune Checkpoint Blockade Therapy

Immune checkpoints refer to immunosuppressive mole-
cules. Physiologically, immune checkpoints are important
for maintaining immune tolerance regulating immune
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responses and preventing tissue damage. Nonetheless, the
high expression of checkpoints can mediate tumor immune
evasion by inhibiting immune cell function, in the develop-
ment and activation of tumors [4]. Fortunately, immune
checkpoint inhibitors can block the transmission of immu-
nosuppressive signals, then restore or enhance the body’s
antitumor immune response.

The main representatives of immune checkpoints are
cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed
cell death protein1 (PD-1), and programmed cell death
ligand1 (PD-L1). CTLA-4 is expressed on the activated
CD8+ and CD4+ T cells. During the early activation of T
cells, CTLA-4 competes with the costimulatory receptor
CD28 to bind to ligands B7-1 and B7-2 expressed on the
antigen-presenting cells (APCs). Then inducing the down-
stream negative regulation of immune response, which leads
to the suppression of T cell proliferation and the IL-2 secre-
tion [5, 6]. It ultimately inhibits the adequate immune
response to tumor cells. Like the CTLA-4, PD-1 is also a
transmembrane protein expressed on T cells. PD-L1 is one
of its ligands, which can be expressed on tumor cells, APCs,
and T cells themselves. When PD-1 binds to PD-L1, it
reduces the response of T cells to T cell receptor (TCR) stim-
ulation signals through PI3K-AKT and JAK-STAT signaling
pathways [7, 8]. Leading to the suppressive antitumor T cell
responses, the brief antitumor mechanism of CTLA-4 and
PD-1/PD-L1 blocking antibodies is shown in Figure 2.

Thus far, one anti-CTLA-4 antibody (ipilimumab), three
anti-PD-1 antibodies (pembrolizumab, nivolumab, and
cemiplimab), and three anti-PD-L1 antibodies (atezolizu-
mab, avelumab, and durvalumab) for the treatment of differ-
ent malignancies have been approved by the United States
Food and Drug Administration (FDA) [9]. Ipilimumab, a
monoclonal antibody directed against CTLA-4, was
approved by the FDA for patients with metastatic melanoma
in 2011 [10]. It is the first clinically approved immune
checkpoint inhibitor. When ipilimumab was used to treat
metastatic melanoma, 20% of patients survived more than
4 years, and a small percentage of patients survived for 10
years or more [11]. Ipilimumab is also widely used in the
treatment of tumors such as lung cancer, kidney cancer,
and prostate cancer [12]. But the effectiveness is less than
metastatic melanoma. Efficiencies below 10% are usually
unsatisfactory. Generally speaking, the antitumor treatment

efficiency of PD-1/PD-L1 blockers is better than CTLA-4
blockers. In patients with advanced melanoma, pembrolizu-
mab was found to be more effective than ipilimumab at
extending progression-free survival and overall survival
[13]. Nivolumab, for the patients with classic Hodgkin’s
lymphoma, the treatment response rate is more than 80%
[14]. And for many patients with cancer, the curative effect
of PD-1/PD-L1 blocking antibody is above 10%. In addition
to the antitumor efficacy, the adverse effects cannot be
ignored. The most common are immune-related adverse
events (irAEs), such as rash, colitis, diarrhea, hepatotoxicity,
and endocrinopathies. There are even occasional fatal
adverse events [15]. The clinical promotion of immune
checkpoint inhibitors is limited by relatively low response
rates and relatively high treatment-related toxicity. Some
biomarkers can predict the therapeutic effects and the
adverse reactions of immune checkpoint blockade therapy.
It brings hope to the widespread application of immune
checkpoint blocking therapy. Higher mutational load and
neoantigen loads are significantly associated with the clinical
benefit of anti-CTLA-4 antibodies [16]. Tumor PD-L1
expression was significantly associated with the overall
response rate (ORR) of PD-1/PD-L1 inhibitors. The ORR
of the PD-L1 positive group was 34.1% while the PD-L1 neg-
ative group was 19.9% [17]. These biomarkers will be helpful
in the identification of cancer patients who can benefit from
the immune checkpoint blockade therapy. Meanwhile, the
increase in expression of CD177 and CEACAM1 is closely
related to colitis after ipilimumab treatment [18]. That is
to say, for patients treated with ipilimumab, CD177 and
CEACAM1 can help to take countermeasures in advance
to reduce the damage caused by immune-related colitis. In
addition, many potential biomarkers are useful to predict
the side effects and therapeutic efficacy; for instance, mis-
match repair (MMR) deficiency, interferon-γ (IFN-γ)
related mRNA profile, and T-cell invigoration to tumor bur-
den ratio [19–21]. When the predictive effect of biomarkers
is verified in a larger patient cohort, precision medicine, and
immune checkpoint blockade therapy will take a new step.

3. Adoptive Cell Therapy

Adoptive cell therapy (ACT) extracts immune-competent
cells from cancer patients, genetically modifies or massively
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Figure 1: Components and brief mechanisms of cancer immunotherapy.
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expands immunecompetent cells in vitro to increase
immune activity, and then reinjects them into cancer
patients to enhance the body’s anti-tumor immune function
[22, 23]. Immunocompetent cells include lymphokine-
activated killer cells (LAK), chimeric antigen receptor-
modified T (CAR-T) cells, chimeric antigen receptor-
modified nature killer cells (CAR-NK), T cell receptor-
modified T (TCR-T) cells, cytokine activation killing (CIK)
cells, and tumor-infiltrating lymphocytes (TILs). The use of
TILs, TCR-T cells, and CAR-T cells is the most studied of
all ACT therapies. And the mechanisms of them are shown
in Figure 3.

Rosenberg et al. first reported that TILs could promote
tumor regression in patients with metastatic melanoma
[24]. In metastatic melanoma patients receiving ACT with
TILs, the objective response rate is 40-50%, including 10-
20% complete tumor regression has been reported many
times [25–27]. Whereas amplifiable antitumor TILs are only
found in a few types of tumors, and the expansion process of
TILs is complex [28]. The successful use of CD137 to sepa-
rate and select TILs gives us a good idea for enriching
tumor-reactive TILs [29]. The key to the ACT with TILs is
to improve the quality and characterization of T cells, and
how to simplify the method for obtaining tumor-specific T
cells will be the focus of the next research.

The genome-editing method that won the 2020 Nobel
Prize in Chemistry also promotes the development of adop-
tive cell therapy. Being frequently exposed to foreign nucleic
acids, bacteria and archaea have developed an ingenious
adaptive defense system, called CRISPR-Cas [30]. ACT with
genetically modified T cells can recognize tumor antigens
through related tumor-reactive TCR or CAR. A study of 20
patients with advanced myeloma confirmed that NY-ESO-
1-specific TCR-T cells mediate sustained antigen-specific
antitumor effects [31]. In a pilot trial, after NY-ESO-1 treat-
ment, the 3-year and 5-year overall survival rates of patients
with synovial cell sarcoma were estimated to be 38% and
14%, respectively, while the corresponding estimated sur-
vival rates for melanoma patients were 33%. But two patients
developed cardiogenic shock after an infusion of TCR-T

cells and died within a few days [32]. ACT with TCR-T
shows some efficacy against the tumor. But it has certain
individual differences, which not only lead to differences in
antitumor efficacy but may even threaten the lives of
patients. In order to reduce toxicity, it is extremely beneficial
to identify personalized targetable antigens that can be
expressed on tumors but not on healthy tissues. Neoantigens
due to tumor-specific mutations will surely become a hot
spot for the future. Besides, MHC class I complexes are usu-
ally downregulated in cancer cells [33]. TILs and TCR mod-
ified T cells recognize antigen in an MHC-dependent
manner also limit their clinical application. The antigen rec-
ognition ability of CAR-T cells is based on tumor surface
proteins and can eliminate the limitations of the MHC to
present antigens.

ACT with CAR-T cells makes use of transgenic technol-
ogy to express CAR in T cells, which usually consists of an
extracellular antigen binding moiety (such as antibody scFv)
fused to an intracellular signaling domain for T cell activa-
tion [34, 35]. The transformation of the signal domain in
the CAR structure enables CAR to play a variety of T cell
functions, such as amplification, cytokine secretion, and tis-
sue selectivity [36, 37]. It can further expand the scope and
efficacy of ACT. Extracellular glycoprotein CD19 is the most
common cellular target for ACT with CAR-T cells, which is
a marker of B cell tumors. CD19 CAR-T has been success-
fully used to treat patients with refractory chronic lym-
phoma. The efficacy of the three patients was more than
half a year, and 2 of them were completely relieved [38].
The CAR-T therapies (tisagenlecleucel and axicabtagene
ciloleucel) for adult and pediatric B cell malignancies are
approved by the FDA in 2017 [39, 40]. Besides, trials of
CAR-T treatment targeting CD22 [41] and CD30 [42] are
also underway. And the new cellular targets for ACT with
CAR-T cells bring new hope for reversing relapse. CAR-T
cell therapy is not only a promising therapy to overcome
hematological tumors but also a method with great thera-
peutic potential in solid tumors. Although previous studies
have shown poor results and varying degrees of toxicity. A
recent CAR-T cell targeting IL-13Rα2 has induced complete
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regression of metastatic glioblastoma in patients [43]. But
the adverse effects like cytokine release syndrome (CRS)
and on-target, off-tumor toxicity cannot be ignored [40,
44]. In an attempt to reduce the toxicity, many methods
are researched, such as enhancing the targeting of T cells
to tumor-specific antigens, inhibiting the immunity nonspe-
cifically, and developing novel drug delivery systems [45,
46]. But the overall effect is not very satisfactory, and further
researches are necessary.

4. Cytokines

Cytokines are polypeptides, proteins, or glycoproteins with a
molecular weight usually under 30 kDa, which are involved
in transmitting the signals of cell proliferation, differentia-
tion, inflammation, or anti-inflammatory [47, 48]. The main
feature of cytokine therapy is that it can directly promote the
growth and immune activity of immune cells.

Interleukin-2 (IL-2) is critical to the activation, growth,
and survival of T cells and NK cells and maintains the deli-
cate balance between autoimmunity and antineoplasm 3
surveillance. It has been proved that the high-dose IL-2
(HDIL-2) has the superior antitumor effect while the low
doses of IL-2 can induce the proliferation of suppressor T
cells (Tregs), which suppress the activation of the immune
system, weakening the antitumor efficacy. The FDA
approved HDIL-2 for the therapy of metastatic renal cell
carcinoma (RCC) in 1992 and the therapy of metastatic mel-
anoma in 1998 [49, 50]. Nevertheless, the high dose of IL-2
can cause the capillary leak syndrome, which is featured by
multiorgan damage, such as hypotension, lung edema, and
renal failure resulting from extravasation of fluid into the
organs. According to the latest research, FSD13, produced
by a selective amino acid replacement, can selectively inhibit
the IL-2 mediated Treg proliferation and increase the IL-2
function of stimulating the antitumor immune cell [51]. It

provides a new method to reduce systemic toxicity and
improve the efficacy of IL-2-based immunotherapy.

Interferon-alpha (IFN-α) is another representative cyto-
kine that can play an important role in the body’s immune
regulation and antitumor immune response. IFN-α not only
activates immune cells directly but also effectively activates
the systemic immune response by reversing the immuno-
suppression of effector mesenchymal stromal cells (MSCs)
[52]. IFN-α was approved in 1986 for the therapy of hairy
cell leukemia and in 1995 for the therapy of melanoma
[53, 54]. However, the use of IFN-α can be quite toxic, espe-
cially at high doses. Elevated liver enzymes, neutropenia,
thrombocytopenia, and leukopenia are common toxicities.
Besides, many other cytokines like interleukin-8 (IL-8),
interleukin-10 (IL-10), interleukin-12 (IL-12), interleukin-
15 (IL-15), interleukin-21 (IL-21), granulocyte-macrophage
colony-stimulating factor (GM-CSF), transforming growth
factor-beta (TGF-β), and tumor necrosis factor-alpha
(TNF-α) are underinvestigated.

Of note, the short half-life, the relatively low objective
response rates, and high toxicity associated with high doses
of some cytokines administration have seriously limited the
widespread research and clinical application of cytokines
[55, 56]. To break the limitations, many methods are taken.
Cytokines injection into tumor lesions was tried, and cyto-
kine fusion proteins were engineered to enhance the antitu-
mor effect [57–59].

5. Cancer Vaccines

Cancer vaccine takes advantage of tumor-associated anti-
gens (TAAs) or tumor-specific antigens (TSAs) to stimulate
the immune system, especially a robust and long-lasting
immune response of CD8+ T cells to inhibit the growth,
metastasis, and recurrence of tumor cells [60]. There are
numerous different platforms of the cancer vaccine, mainly
including cell-based, RNA-based, DNA-based, and protein/
peptide-based preparations [61]. According to the clinical
use of cancer vaccines, they are divided into two categories:
preventive and therapeutic. The preventive cancer vaccine
aims to prevent tumor occurrence by inducing immune
response while the therapeutic cancer vaccines are designed
to eradicate tumor cells by inducing or enhancing the
tumor-specific immunoreactions [62]. Currently, the rela-
tively successful preventive cancer vaccines are cervical can-
cer vaccines by targeting human papillomavirus (HPV). The
approved cervical vaccines Gardasil and Cervarix resulted in
the reduction of the prevalence of cervical intraneoplasia in
young women with the administration of the vaccine during
adolescence [63, 64]. However, they are mostly invalid once
suffering from cancer or chronic infection with HPV. There-
fore, not only preventive cancer vaccines but also therapeutic
cancer vaccines are needed. It is inspiring that sipuleucel-T
(Provenge) can extend the overall viability of patients with
hormone-resistant prostate cancer by an average of 3
months [65]. And it is approved by the FDA for metastatic
castration-resistant prostate cancer. Although after using
cancer vaccines, many experiments have shown that some
patients with advanced cancer have good clinical effects,
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the partial remission (PR) or complete remission (CR) rate is
basically below 10%, or even below 5%. So far, in phase 3
randomized trials, there is no other therapeutic cancer vac-
cine has yet shown noteworthy clinical efficacy except the
sipuleucel-T [66–69].

The efficacy of the cancer vaccine is primarily dependent
on immunogenicity, host immunosuppression, preferential
expression of tumor antigen, and the delivery of cancer vac-
cine [70]. The tumor-specific antigens, also known as neoan-
tigens, are ideal cancer vaccine targets, due to the highly
immunogenic, lower risk of self-tolerance, less common
tumor antigen deletions, and lower risk of autoimmune
reactions [71, 72]. And next-generation sequencing (NGS)
brings a technological breakthrough to the screening of
neoantigens. In a study of 13 patients with melanoma who
had no clinically visible residual surgery after surgery, 8
patients had complete tumor disappearance and no recur-
rence after receiving the personalized RNA mutanome vac-
cine [73]. In 6 melanoma patients who had received
personal neoantigen vaccines, 4 patients had complete
tumor disappearance, no recurrence, and 2 patients had
tumor recurrence but were completely relieved after treat-
ment with the programmed death receptor 1 (PD1) mono-
clonal antibody (pembrolizumab) [74]. Based on these
studies, individualized cancer vaccines have strong theoreti-
cal support, and new approaches to individualized antican-
cer immunotherapy have been opened up. However, the
preparation process of personalized cancer vaccines is com-
plicated and the preparation time is long, which needs to be
further explored and solved. In detail, rapid screening of
highly immunogenic neoantigens, selection of appropriate
immune adjuvants, rapid verification of vaccine potency,
and shortening of preparation time will be the focus of
future cancer personalized vaccine research.

6. Oncolytic Immunotherapy

Oncolytic immunotherapy is based on oncolytic viruses
(OVs). OVs can lead to lysis of the tumor cells and the acti-
vation of the innate and adaptive immune response, by spe-
cifically replicating in cancer cells without damaging normal
cells [75, 76]. That is to say, oncolytic immunotherapy can
play the antitumor effect by directly lysing tumors and stim-
ulating the body’s immunity. It fights malignancies without
dependence on specific antigen expression, which makes it
superior to other immunotherapy approaches. In 2015, a
genetically engineered oncolytic herpes simplex virus
(HSV), talimogene laherparepvec (T-VEC), was approved
for the treatment of advanced melanoma by the United
States FDA [77, 78].

However, the immune response activated by OVs is a
double-edged sword, because it consists of the antitumor effect
and the viral immune response [79]. On the one hand, OVs
stimulate the immune system to recognize cancer cells and
activate antitumor immunity mainly by inducing immuno-
genic cell death (ICD) of them [80–82]. On the other hand,
OVs are identified by the immune system as causative agents.
The immune system generates the antiviral response, which
could diminish the efficacy of the antitumor by clearing the

virus prematurely [79, 83]. The intratumoral injection is
adopted for its safety in oncolytic immunotherapy. It can pre-
vent the humoral immunity from removing viruses and
repeated intratumoral injection can induce a strong immune
response against the tumor [84]. Whereas the majority of can-
cers are metastatic, intravenous injection is an ideal method of
delivery for the disseminated tumors [85, 86]. How to avoid
the early elimination of OVs caused by antiviral response
becomes especially important. Moreover, we cannot simply
remove the antiviral response, because it can help to reverse
the tumor-mediated suppression of immunity [87]. Perfect
oncolytic immunotherapy requires a desirable balance of
immune responses between antitumor and antiviral. Numer-
ous approaches have been studied to obtain the above balance
and the greatest therapeutic effect, such as way like genetic
modification [88–90], depleting antibodies [91], polymer coat-
ing [92], and carrier cells [93].

7. Conclusion and Prospects

The immune system can specifically attack cancer cells,
coupled with its ability to adapt to progressive tumors, and
its long-lasting memory function, making cancer immuno-
therapy the most promising therapy for durable control of
cancer. Remarkable success has been achieved in cancer
immunotherapy. Several cancer immunotherapy agents have
been approved for the treatment of many types of malignan-
cies with durable and impressive clinical responses. But the
toxic side effects, insufficient immune responses, and the
immunosuppressive environment of tumors create great
challenges to therapeutic efficiency. Our group has long been
committed to the research and development of antitumor
drugs such as immune evasion mechanism of tumor cells
[94], screening, and delivery of antitumor drugs [95]. And
developing a targeted drug delivery system to improve the
efficiency of the cancer immunotherapy agents in the next
direction of our efforts.

In addition, there are many promising research directions,
such as screening more suitable immunotherapy targets to
reduce toxic effects, finding reliable biomarkers to guide the
specific immunotherapy of cancer, and combining immuno-
therapy with other appropriate cancer therapies to expand
the scope of application. Clinical trials of cancer immunother-
apy continue to expand the indications for these therapies and
explore new ways to harness the immune system to treat can-
cer. The prospects of cancer immunotherapy research are
immeasurable, and its extensive development and rapid
advancement bring new dawn and hope to cure cancer.
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