
Research Article
Integrated Single-Cell and RNA Sequencing Analysis Identifies
Key Immune Cell and Dendritic Cells Associated Genes
Participated in Myocarditis

Qiang Gong , Jianfeng Huang , and Qicai Wu

Department of Cardiac Surgery, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University,
Nanchang, 330006 Jiangxi, China

Correspondence should be addressed to Qicai Wu; wuqicai13970012836@163.com

Received 11 August 2022; Accepted 17 September 2022; Published  October 2022

Academic Editor: Fu Wang

Copyright © 2022 Qiang Gong et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Myocarditis is a complex disease characterized by myocardial inflammatory cell infiltration. The purpose of our study was to
investigate the gene and single-cell signature to explore the involvement of immune cells in myocarditis. Gene expressions
merged from GSE35182 and GSE35182 datasets were subjected to differential expression gene (DEG) analysis and PPI network
construction. The correlation analysis of DEGs with immune cell infiltration was performed. Single-cell RNA sequencing
(scRNA-seq) was downloaded from GSE174458. A total of 58 DEGs were identified, including 51 DEGs upregulated and 7
DEGs downregulated in the myocarditis group compared with the control group. GO and KEGG enrichment analyses revealed
that myocarditis triggered DEGs mainly involved in immune-related processes and pathways. PPI network analysis identified
20 central hub genes. Occurrence of myocarditis induced significant enrichment of conventional dendritic cell 2 (cDC2),
plasmacytoid DC, and plasma cell in myocardial tissue. Mmp12, Gpnmb, and Atp6v0d2 expressions were positively correlated
with cDC abundance, of which only Mmp1 and Gpnmb were shared with hub gene list. A total of 20972 cells in scRNA-seq
yielded 26 cell clusters and annotated 9 cell types, including fibroblasts, neutrophils, stromal cells, monocytes, basophils, B
cells, natural killer T cells, innate lymphoid cells, and T cells, and only proportion of natural killer T cells and monocytes were
higher in the myocarditis than in control. Monocytes annotated 3 subclusters including DC, macrophage, and monocytes. Hub
genes of Ctss, Mpeg1, Cybb, H2-Ab1, Ly86, CD74, and Lgals3 were highly expressed in monocytes cluster. Among DC-
correlated DEGs, Mmp12 was mainly expressed in monocyte cluster, and Gpnmb was mainly expressed in fibroblast cluster,
whereas Atp6v0d2 expression has a weaker signal and weaker cell preference. In conclusion, DC infiltration and its associated
pivotal genes may be responsible for progression of myocarditis. Our study expands and provides novel information on the
immune cell engagement of myocarditis.

1. Introduction

Myocarditis is a widespread disease with cardiac dysfunction
in which complex inflammatory cell infiltration (may be
focal or diffuse) of myocardial tissue occurs with or without
myocardial cell damage [1]. Myocarditis affects people of all
ages, although its symptoms usually onset between the ages
of 20 and 50, and causes a wide range of clinical manifesta-
tions, which makes its diagnosis challenging [2]. Myocarditis
continues to threaten human health with a prevalence rang-
ing from 0.06% to 2.4%. In a possible underestimation

instance, just in England, myocarditis initial diagnosis occu-
pied 0.04% of all hospital admissions in the period 1998 to
2017 [3]. However, the diagnosis and treatment of myocar-
ditis still face great challenges. These challenges result from
a considerable knowledge blank between therapeutic man-
agement and alteration in the cardiac immune environment
from the autoimmune-induced acute inflammatory phase to
the myopathic phase.

Immune cell infiltration exerts a nonnegligible role in the
progression of myocarditis. Unlike other myocardial injury
mechanisms, the inflammatory state of myocarditis may be
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secondary to infection, autoimmune-mediated, toxic sub-
stance exposure, or maybe idiopathic [4]. According to the
type of cellular inflammatory infiltrate, myocarditis can be
classified into four types: lymphocytic, eosinophilic, giant-
cell myocarditis, and granulomatous. Numerous studies have
demonstrated the important role of different immune cells in
the prevention of myocarditis. For example, with CD28 super-
agonists, targeting Treg cells could be used to treat and prevent
autoimmune myocarditis [5]. Restraining autoreactive T cells
entered the peripheral tissues, and recognizing cardiac peptide
bymaintaining T cells in an anergic state through PD-1 signal-
ing may lead to cardiogenic shock in patients withmyocarditis
[6]. Mono-macrophage-derived neurotrophic factor could
alleviate bacterial myocarditis by increasing M1 macrophages
[7]. Therefore, a greater understanding of the immune cell
infiltration in the heart muscle can yield insight into the
molecular mechanisms of myocarditis.

In this study, we mined differentially expressed genes
(DEGs) by analyzing the RNA-seq and array expression pro-
file data of myocarditis mice and then analyzed the correla-
tion between DEGs and immune cell infiltration. Finally, we
obtained the immune cell landscape of myocarditis mice at a
single-cell resolution. These results will help reveal in detail
the distribution of immune cells in myocarditis and help
us understand the value of DEG-related immune cells in
the progression of myocarditis.

2. Materials and Methods

2.1. Gene Expression Omnibus (GEO) Dataset Processing.
The GSE35182 (3 + 3, only males included) and GSE53607
(5 + 5, only data in 60-day group included) datasets are
expression profile array data and are based on GPL6246
(MoGene-1_0-st) Affymetrix Mouse Gene 1.0 ST Array
(transcript (gene) version) platform. In the GSE35182 data-
set, mice were infected with coxsackievirus B3 to construct a
myocarditis model. In the GSE53607 dataset, C3H mice
were infected with TMEV intraperitoneally to construct a
myocarditis model. The GSE35182 and GSE35182 dataset
were downloaded from the GEO database (https://www
.ncbi.nlm.nih.gov/geo/). These two array data were merged
and standardized and corrected batch effects by using sva
package (3.20) in R. After that, genes were subjected to iden-
tify differentially expressed genes (DEGs) between the con-
trol group and the myocarditis group. The screening
criteria were set as ∣log 2FC ∣ >0:585 and adjust P < 0:05.
Next, DEGs were enriched by GO and KEGG databases to
explore the biological function of DEGs.

2.2. Protein-Protein Interaction (PPI) Network Construction.
All of the DEGs were subjected to the development of PPI
network construction using the STRING database (https://
string-db.org/). The interaction of a default comprehensive
score of more than 0.4 was set as significant. The gene hav-
ing a molecular complex detection (MCODE) score of more
than 3 and an edge number of more than 4 was identified as
hub gene. The PPI network between DEGs was visualized by
using the Cytoscape 3.6.1 software.

2.3. Infiltration of Immune Cells in Myocarditis. Infiltration
of immune cells and abundance of each immune cell in
myocarditis were accessed by ImmuCellAI database (http://
bioinfo.life.hust.edu.cn/ImmuCellAI-mouse/#!/). The corre-
lation of DEGs with immune cells was determined upon
the criteria P < 0:05. For the correlation between DEGs
and immune cells, the “BiocManager” R package was used
for analysis, and the correlation coefficient filter criterion
was 0.1.

2.4. The Single-Cell RNA Sequencing (scRNA-seq) Dataset
Processing. The GSE174458 (7 + 7) dataset is expression pro-
filing by high-throughput sequencing and is based on the
GPL21103 Illumina HiSeq 4000 platform. In the
GSE174458 dataset, mice were infected with coxsackievirus
B3 to construct a myocarditis model. R package Seurat (ver-
sion 4.1.1) was used to process the scRNA-seq dataset. After
GSE174458 data was imported into Seurat, quality control
was firstly carried out, and the criteria were as follows: (1)
genes expressed in less than 3 cells were removed; (2) cells
expressing fewer than 50 genes were removed; (3) cells with
more than 20% mitochondrial gene expression intensity
were removed. Next, scRNA-seq data was standardized by
using NormalizeData function, and then, the 1500 genes
with the most fluctuations in expression data were then
picked for subsequent cluster analysis. Cell annotation was
performed by SingR (version 1.8.1) and Celldex (version
1.4.0) package. DEGs were identified for each cell type using
the FindAllMarkers function.

3. Results

3.1. Identification and Functional Enrichment of DEGs in
Myocarditis. Gene expression from the merged GSE35182
and GSE35182 datasets was normalized and batch corrected
for DEG analysis. A total of 58 DEGs were identified upon
the criteria of ∣log 2FC ∣ >0:585 and adjust P < 0:05, among
which 51 DEGs were upregulated and 7 DEGs were down-
regulated in the myocarditis group compared with the con-
trol group (Figure 1(a)). Among the upregulated DEGs, the
top three DEGs with the largest fold change were Mmp12,
Gpnmb, and Atp6v0d2, respectively (Figure 1(a)). A dis-
tinctly different expression pattern was observed between
the myocarditis group and the control group in the heatmap
(Figure 1(b)). All of these 58 DEGs were enrolled for subse-
quent analysis.

To obtain insights into the biological functions of DEGs,
GO and KEGG enrichment analyses were performed. The
result of biological process in GO category revealed that
these DEGs were mainly against immune-related processes,
including positive regulation of T cell differentiation,
immune system process, positive regulation of leukocyte
apoptotic process, immune response, macrophage migration
inhibitory factor signaling pathway, and regulation of the
immune system, as well as antigen presentation-related pro-
cesses, including antigen processing and presentation of
peptide antigen, antigen processing and presentation of pep-
tide or polysaccharide antigen via MHC class II, antigen pro-
cessing and presentation of exogenous peptide antigen via
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MHC class II, and antigen processing and presentation
(Figure 1(c)). Among the top 15 biological process items, these
immune-related and antigen presentation-related processes
account for 60% (9/15), suggesting that the DEGs induced by
myocarditis were associated with the immune abnormalities
of myocarditis patients. Not unexpectedly, KEGG enrichment
revealed that immune-related pathways were enriched, such
as antigen processing and presentation, cell adhesion mole-
cules (CAMs), and intestinal immune network for IgA produc-
tion (Figure 1(d)). Collectively, myocarditis-triggered DEGs
may be involved in the progression of myocarditis through
immune regulation.

3.2. Identification of the Hub Genes in Myocarditis. To inves-
tigate the DEG “hub genes” associated with myocarditis, we
constructed a PPI network using all the DEGs based on the
STRING database. As shown in Figure 2(a), 32 nodes and
182 edges were identified in the PPI network. Moreover,
the DEGs with the number of edges > 4 and MCODE score
> 3 were selected, including Itgax, Mmp12, and Gpnmb
(Figure 2(b)). Therefore, these 20 central node genes were
considered hub genes for further analyses.

3.3. Dendritic Cell Was Enriched in the Myocardial Tissue. To
explore the possible effect of myocarditis on different immune
cell infiltration, the ImmuCellAI database was used to access
the ingredients of 36 immune cells at three layers [8] in the
myocardial tissue. Expectedly, myocardial tissue had signifi-
cantly higher immune infiltration scores than controls
(Figure 3(a)). In the first layer composed of 7 types of immune
cells, compared with the control group, only the abundance of
dendritic cell (DC) was significantly upregulated in the myocar-
ditis tissue, and the abundance of the other 6 types of immune
cells had no difference between the two groups (Figure 3(b)).
Furthermore, in the second layer composed of 20 types of
immune cells, we observed that the occurrence of myocarditis
induced significant enrichment of conventional DC2 (cDC2),
plasmacytoid DC (pDC), and plasma cells in myocardial tissue
(Figure 3(c)). Subsequently, we performed a correlation analysis
between DEGs with cDC2, pDC, and plasma cells. Only 22 of
the 58 DEGs were associated with these three immune cells
upon a filter criterion with an r value of less than 0.1
(Figure 3(d)). The expression levels of Mmp12, Gpnmb, and
Atp6v0d2 were positively correlated with the abundance of
cDC (Figure 3(d)). The expressions of Mmp12, Gpnmb, and
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Figure 1: Identification and functional enrichment of DEGs in myocarditis. (a) Volcano plot of DEGs. Red and blue represent upregulated
and downregulated DEGs in the myocarditis group relative to the control group. (b) Heatmap plot of DEGs. (c) Top 15 significant GO terms
of biological process. (d) Top 20 KEGG enrichment pathways of DEGs.
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Atp6v0d2 were all enhanced in the myocarditis group com-
pared to the control group (Figure 3(e)), of which only Mmp1
and Gpnmb were shared with the hub gene list (Figure 3(f)).
Taken together, cDC was enriched in the myocardial tissue
and positively correlated with the expression of Mmp12,
Gpnmb, and Atp6v0d2.

3.4. Quality Control of scRNA-seq Data. In the present study,
a total of 22,985 cells were obtained from the GSE174458
dataset, of which 9,734 cells were from healthy control and
13,251 cells were from myocarditic mice. After quality con-
trol using Seurat, the remaining 20,972 single-cell transcrip-
tomes were retained for subsequent analysis (Figure 4(a)).
Cells with more than 20% mitochondrial gene expression
intensity were removed thereby mitochondrial genes did
not affect the sequencing depth (Figure 4(b)). A total of
16,503 genes were analyzed, of which 1,500 genes with high

expression variation were selected for subsequent cluster
analysis (Figure 4(c)). Preliminary dimensionality reduction
was carried out by principal component analysis (PCA) for
scRNA-seq data, and we found no clear segregation among
cardiac muscle cells (Figure 4(d)); we then performed fur-
ther analysis for the top 20 significant difference principal
components (Figure 4(e)). These results indicated that
scRNA-seq data could be used in subsequent analysis.

3.5. Comprehensive Analysis of scRNA-seq Data of
Myocarditis. To visualize the distribution of the scRNA-seq
data, an unbiased nonlinear dimension reduction of uniform
manifold approximation and projection (UMAP) yielded 26
cell clusters (Figure 5(a)). Next, using canonical markers for
indicated cell types (Supplemental Table 1), we annotated 9
cell types, including fibroblasts, neutrophils, stromal cells,
monocytes, basophils, B cells, natural killer T cells, innate
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Figure 2: Identification of the hub genes in myocarditis. (a) PPI network of DEGs in STRING database. Red and green represent
upregulated and downregulated DEGs in the myocarditis group relative to the control group. Larger ellipse sizes indicate more
interacting proteins. (b) Identified the top 20 hub genes. The abscissa represents the number of edges.
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lymphoid cells, and T cells (Figure 5(b)). A total of 9,136
marker genes were recognized, and the expressions of the
top 5 marker genes in the 9 cell types were visualized as
heatmap (Figure 5(c)) and bubble plot (Figure 5(d)). As we
can see, fibroblasts mainly express Dcn, Gsn, Mgp, and Bgn,
and monocytes mainly express Ccl4, Plac8, Ctss, and Arg1.
Furthermore, the scatter UMAP plots presented the
distribution of the most abundantly expressed marker gene in
each cell type (Figure 5(e)). Intriguingly, the proportion of
monocytes and natural killer T cells in the myocarditis group
was clearly higher than that in the control group, and the
remaining cell types showed no significant difference
(Figure 5(f)). Taken together, the results of scRNA-seq
reemphasized the important role of immune cells in
myocarditis.

3.6. Integration Analysis of Monocyte Cluster and Hub Gene
Reveals DC-Related Mmp12 Is a Key Gene in Myocarditis.
Since the above analysis found that cDC was enriched in
myocarditis tissues (Figure 3), we focused on cluster 9 of

monocytes, which mainly expressed Ctss, Ccl9, and Tgfbi
(Figure 6(a)). In dissecting the monocyte complexity, we deter-
mined 3 subclusters including DC, macrophage, and mono-
cytes by using the above indicated markers (Figure 6(b)).
The abundance of these three cells was significantly higher
in the myocarditis group than in the control tissue
(Figure 6(c)). Furthermore, we characterized the single-cell
expression profiles of hub genes displayed in scatter UMAP
plots, as well as three DEGs significantly correlated with DC
(Supplemental Figure 1). The results showed that hub genes
of Ctss, Mpeg1, Cybb, H2-Ab1, Ly86, CD74, and Lgals3
were highly expressed in the monocytes cluster (Figure 6(d)).
In addition, among three DC-correlated DEGs, Mmp12 was
mainly expressed in monocyte cluster 9, and Gpnmb was
mainly expressed in fibroblast clusters 2, 8, and 17, whereas
the expression of Atp6v0d2 has a weaker signal and weaker
cell preference in the single-cell expression profile
(Figure 6(e) and Supplemental Figure 2). Taken together,
these results suggested that Mmp12 is a key gene involved in
the progression of myocarditis due to DC infiltration.
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Figure 3: Dendritic cell was enriched in the myocardial tissue. (a) Immune infiltration scores in the myocardial tissue and controls
according to the ImmuCellAI database. (b) The abundance of 7 types of immune cells. (c) The abundance of 20 types of immune cells.
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4. Discussion

Myocarditis is a complex inflammatory disease accompanied
by immune dysfunction that causes cardiogenic shock in
3.2% (11/337) of cases [9]. Myocarditis exhibited a wide
spectrum of clinical manifestations, with the vast majority
presenting with nonspecific systemic symptoms such as gas-
troenteritis, myalgia, fever, or respiratory symptoms [10], in
addition to the possibility of arrhythmias, palpitations, and
exertional dyspnea [11, 12] in patients with myocarditis.
This varies widely in clinical presentation leading to the
diagnosis being sometimes difficult to establish, and numer-
ous therapies for myocarditis have not demonstrated sur-
vival benefits [13]. Therefore, a lot of research is still
needed to deeply analyze the underlying mechanism of myo-
carditis infiltration to provide the basis for the diagnosis and
treatment of myocarditis. In this study, the combined analy-
sis of DEGs and immune cell infiltration in myocarditic tis-
sue found that Mmp12, Atp6v0d2, and Gpnmb were
significantly positively correlated with DC cell infiltration;
subsequently, scRNA-seq data analysis confirmed that the

enrichment of DC in myocarditic tissue was related to
Mmp12.

The scRNA-seq is a powerful and practical technique
that can characterize cell diversity and heterogeneity in
unprecedented detail to dissect the complexity of diseases.
Recently, scRNA-seq has uncovered the complexity of
tumor-infiltrating myeloid cells in several different cancers,
such as DC and tumor-associated macrophages [14–16].
However, the immune infiltration of myocardial tissue
under different physiological and pathological conditions is
rarely studied. In experimental autoimmune myocarditis
(EAM) model at different phases, scRNA-seq identified 26
cell subtypes among 34665 cells and found that Hif1a con-
tributes to the inflammatory response mainly through the
regulation of macrophage and T-helper 17 cells [17]. A
recent study revealed that myeloid cells, T cells, and fibro-
blasts play a critical role in the cytotoxic functions and
inflammation and immune response in viral myocarditis
[18]. Pathogenic immune cell subsets in checkpoint
inhibitor-induced myocarditis model [19] and peripheral
immune landscape in BNT162b2 mRNA vaccine-induced
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of which 1,500 genes with high expression variation were selected for subsequent cluster analysis. (d) Principal component analysis for
dimensionality reduction for scRNA-seq. (e) Analysis for the top 20 significant difference principal components.
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myocarditis model [20] were described by scRNA-seq. These
reports dissect the cellular landscape and transcriptome of
four myocarditis models and initially reveal the unique roles
of different immune cell types in inflammation and immune
responses in myocarditis. However, there are only four stud-
ies about scRNA-seq in myocarditis in the PubMed data-
base, and this huge blank urges the advancement of more
scRNA-seq work. In this context, we reanalyzed scRNA-
seq data (GSE174458) from the aforementioned viral myo-
carditis model combined with hub gene analysis. We found
that monocyte cluster 9 had signatures critical for immune
responses, particularly of DC, and Mmp12 contributes to
the DC infiltration in the pathogenesis of viral myocarditis.
Our research is not only a reuse of existing resources but also
a supplement to the original data.

DC originates from monocytes and is intermediate medi-
ator of adaptive immunity and can be subdivided into 4 sub-
types: cDC1, cDC2, pDC, and monocyte-derived DC [21]. In
recent years, the function of DC cells in myocarditis has grad-
ually been recognized. For example, the modulating DC func-
tion by targeting NLRP3 inflammasome through miR-223-3p
can ameliorate the EAM [22]. Inhibition of the accumulation
of DC in the inflamed myocardium by MCS-18 treatment
could mitigate the EAM [23]. Driving DC activation and
Th17 differentiation by tenascin-C aggravates EAM progres-
sion through Toll-like receptor 4 [24]. These results affirm
the contribution of DC function in the pathological progres-
sion of myocarditis. Our results are concordant with this,
and we disclose that DC is significantly enriched in myocardi-

tis tissue both in ImmuCellAI database and scRNA-seq data.
In conclusion, our study reemphasizes the abnormal enrich-
ment and promoting role of DC in myocarditis. Interestingly,
in the present study, KEGG enrichment revealed that DEGs
were mainly enriched in immune-related pathways, such as
antigen processing and presentation. It is well known that
DC is the most important antigen presenting cells [25]. A
study observed that infiltration of DC and monocyte in the
heart and self-antigen presentation by cDC2 is induced by
myocarditis [26]. Impaired antigen-presentation capacity of
DC was also observed in enterovirus myocarditis [27]. These
results suggest that DEG-involved antigen processing and pre-
sentation pathway may couple DC functions to participate in
myocarditis disease progression.

Moreover, KEGG enrichment also found that DEGs were
mainly enriched in the CAMs pathway, implicating that
CAMsmay have a potential role in the progression of myocar-
ditis. For example, the mediation role of CAMs in ventricular
pacing associated with myocardial inflammatory responses
has been uncovered [28]. Of note, vascular CAM-1 has been
shown to be a biomarker of experimental autoimmune myo-
carditis [29]. These studies support our results. DEGs are also
enriched in the intestinal immune network for IgA production
pathway. Interestingly, intravenous immunoglobulin may
effectively improve pediatric myocarditis [30], suggesting that
immunoglobulin has the possibility of becoming a medication
for myocarditis.

In this study, we identified 51 DEGs were upregulated in
the myocarditis group compared with the control group, and
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Figure 5: Comprehensive analysis of scRNA-seq data of myocarditis. (a) Mapping of cell clusters using an unbiased nonlinear dimension
reduction of UMAP cluster based on scRNA-seq data. (b) Annotating cell types. Nine major cell types were annotated based on the
canonical cell markers. (c) A total of 9136 marker genes were aggregated into 26 clusters, and the top 5 marker genes in each cell type
were exhibited. (d) The expression of the top 5 marker genes in each cell type was visualized by bubble plot. (e) The distribution of the
most abundantly expressed marker gene in each cell type was visualized on the UMAP plot. (f) Relative distribution of 9 cell types in the
myocarditis group and the control group.
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the top three DEGs with the largest fold change were
Mmp12, Gpnmb, and Atp6v0d2. All three genes were signif-
icantly positively correlated with the abundance of DC in
myocarditic tissues, but only Mmp12 and Gpnmb were
identified as hub genes. Furthermore, according to the
scRNA-seq data, only Mmp12 was expressed in monocyte
cluster 9, while Gpnmb was expressed in fibroblast clusters
2, 8, and 17. Therefore, we concluded that Mmp12 is a key
gene involved in the progression of myocarditis due to DC
infiltration. Mmp12 was the most abundant matrix metallo-
peptidase in the conditioned medium of DC revealed by pro-
teome profile [24]. Moreover, Mmp12 knockout mice lose
the immune surveillance ability characterized by immature
myeloid cells accumulated and cannot differentiate to DC,
macrophages, or neutrophils [31]. These results support
our conclusion that Mmp12 plays an important role in DC
function. MMPs also contributed to medication of myocar-
ditis; for example, inhibition of MMP activity contributed
to early clarithromycin treatment in rat autoimmune myo-
carditis [32] or nonbacterial myocarditis [33].

5. Conclusions

In conclusion, we profiled 58 DEGs and predicted immune
cell infiltration and characterized single-cell profile in myo-
carditic tissues. Based on integrated DEGs, DC infiltration,
and scRNA-seq data analysis, we revealed that the DC-
related gene such as Mmp12 expression signature is an
important clue for understanding the pathology of myocar-
ditis. Our study provides evidence for immunotherapy and
provides a research direction for the future DC-targeted
therapy of myocarditis.
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Figure 6: Integration analysis of monocyte cluster and hub gene reveals that DC-related Mmp12 is a key gene in myocarditis. (a) The
expression of top 10 marker genes of monocyte cluster 9 in 26 clusters was displayed on the heatmap. (b) UMAP of monocytes
identified in heart infiltrates was determined 3 subclusters. (c) Relative distribution of 3 monocyte subclusters in the myocarditis group
and the control group. (d) The expression and distribution of the hub genes in the 26 clusters were visualized on the bubble plot. (e)
The expression and distribution of Mmp12, Gpnmb, and Atp6v0d2 in the 26 clusters were visualized on the bubble plot.
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