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Objective. Head and neck squamous cell carcinoma (HNSCC) is a highly heterotopic malignant tumor. Alternative splicing (AS)
and RNA modification have been reported to be involved in tumorigenesis. Therefore, we constructed RNA modification-
associated AS (RMA-AS) signature model to predict the prognosis of HNSCC. Methods. AS events and RNA-modified gene
expression information were downloaded from TCGA-HNSCC database. Univariate Cox regression analysis was employed for
analyzing prognosis-related AS events. RMA-AS events were obtained by constructing a coexpression network between RNA
modification-associated genes and AS events using WGCNA package. The prognostic signatures were analyzed by LASSO,
univariate Cox, and multivariate Cox regression. Kaplan-Meier survival analysis, proportional hazard model, and ROC curve
were performed to verify the prognostic value. “ESTIMATE” R package, ssGSEA algorithm, and CIBERSORT method were
used to detect immune microenvironment in HNSCC. Cytoscape was utilized to build a regulatory network of splicing factor-
regulated RMA-AS. Results. There were 16,574 prognostic AS events and 4 differentially expressed RNA modification-
associated genes in HNSCC. Based on RMA-AS events, we obtained a risk model consisting of 14 AS events, named RMA-AS_
Score. The samples were divided into RMA-AS_Score high- and RMA-AS_Score low-risk groups, according to the risk score.
The RMA-AS_Score high group was related to poor prognosis. Moreover, the RMA-AS_Score signature was an independent
prognostic predictor and was related to tumor grade. Meanwhile, the AUC value of RMA-AS_Score was 0.652, which is better
than other clinical characteristics. Besides, a nomogram prediction model of quantitative prognosis has also been developed,
which has robust effectiveness in predicting prognosis. In addition, the prognostic signature was observably related to immune
microenvironment and immune checkpoint. Finally, 14 splicing factors were identified and constructed into a network of
splicing factor-regulated RMA-AS. Conclusion. We identified the RMA-AS signature of HNSCC. This signature could be
treated as an independent prognostic predictor.

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is a het-
erogeneous malignant tumor with a high mortality rate [1],
of which the survival rate of patients with advanced cancer
is only 34.9% [2]. Although tumor, lymph node, and TNM
categories are widely used prognostic tools in cancer with

the progress of medical technology [3], they have little effect
on accurately predicting the prognosis of HNSCC. Further-
more, since the high heterogeneity of HNSCC is a great chal-
lenge to the treatment effect, there is an urgent need for
biomarkers to contribute to make an accurate early diagno-
sis of HNSCC in clinic, improve the prognosis, and provide
reference for the development of individualized drugs.
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Alternative splicing (AS) is an important modification
mechanism in gene expression regulation [4]. Abnormal
regulation of AS contributes to tumorigenesis and pathogen-
esis [5]. AS events can be utilized to predict the prognosis of
cancer, which has gradually attracted human attention. For
example, seven-AS event prognostic signature can indepen-
dently predict the overall survival (OS) of uveal melanoma
patients [6]. In colon cancer, systematic analysis of the rela-
tionship between AS events and tumor immune infiltration
significantly improves the ability of prognosis prediction
[7]. However, there are few studies on the prognosis of AS
events in HNSCC.

Chemical modification is a highly specific and effective
method to regulate the function of biological macromole-
cules, and the common modification methods are DNA
and protein modification [8]. However, as science advances,
RNA modification is a new frontier in this field. Human dis-
eases are associated with the disorder of RNA modification,
including cancer, cardiovascular diseases, and metabolic dis-
eases [9]. M6A is a common RNA modification, and it has
been proved that the change of m6A regulation gene is cor-
related with the occurrence and transfer of HNSCC [10]. In
addition, tRNA N7-methylguanosine (m7G) modification
also is involved in driving the progression of HNSCC. These
evidences suggest that RNA modification is deeply involved
in the occurrence and development of HNSCC. Considering
that RNA modification-associated AS (RMA-AS) regulates
mRNA attenuation and epigenetic changes exist in all
human cancers, the identification of RMA-AS events in can-
cer has an important impact on the understanding of tumor
pathogenesis and progression.

In this study, we utilized The Cancer Genome Atlas
(TCGA) data to focus on AS events and abnormally
expressed RNA modification-associated genes and corre-
lated them with HNSCC clinicopathological and prognostic
information to construct a prognostic model (RMA-AS_

Score). Next, the clinical application value of RMA-AS_
Score model in HNSCC was discussed by systematically ana-
lyzing the prognostic signatures of RMA-AS_Score. Then,
the correlation between prognostic signature and immune
microenvironment and immunotherapy was studied.
Finally, a regulatory network of splicing factor-regulated
RMA-AS was constructed to elucidate the underlying mech-
anisms involved in HNSCC development.

2. Materials and Methods

2.1. Data Download. We first acquired the transcriptome
and clinical information of the HNSCC patients
(normal = 44 and tumor = 502) from TCGA-HNSCC data-
base (https://portal.gdc.cancer.gov/) for subsequent analysis.
The AS data were obtained from TCGA SpliceSeq (https://
bioinformatics.mdanderson.org/TCGASpliceSeq/). The
downloaded AS data contains the following seven types of
AS events: alternate acceptors (AA), retained intron (RI),
alternate donors (AD), alternate promoters (AP), exon skip
(ES), alternate terminators (AT), and mutually exclusive
exons (ME). Samples were screened according to the percent
spliced in PSI value > 0:75 as the filtration cut-off point. The
analysis flow chart is referred to Figure 1.

2.2. Approach of AS Event Identification. In TCGA SpliceSeq,
the PSI value to quantify AS events was detected and then
calculated. By using the UpSet R package, the UpSet plot
showed the seven types of AS events. Subsequently, univari-
ate Cox regression analysis was performed to detect the cor-
relation between AS events and prognosis of HNSCC, which
was also represented by the UpSet plot.

2.3. Expression Analysis of Genes Associated with RNA
Modification. The expression of RNA modification-
associated genes was normalized by Limma package, and

TCGA splice seq
TCGA database

(N = 44, T = 502)

RNA-seq profiles

Splicing factors

Kaplan-meier survival analysis

Univariate Cox, Multivariate Cox regression

Receiver operating characteristic curve

LASSO Cox analysis

Construction of RMA-AS prognastic signature

Immune checkpoint

'ESTIMATE'R package
ssGSEA algorithm

CIBERSORT method

Characterization of
Tumor Immune environment

Network

Prognosis-related AS events

Univariate COX regression

RNA
modification-
related gene

RNA modification-associated AS (RMA-AS)

Alternative splicing (AS)

Figure 1: Flow chart of the comprehensive analysis process.

2 Journal of Immunology Research

https://portal.gdc.cancer.gov/
https://bioinformatics.mdanderson.org/TCGASpliceSeq/
https://bioinformatics.mdanderson.org/TCGASpliceSeq/


the abnormally expressed genes in tumor and normal sam-
ples were screened by difference analysis, where the expres-
sion differences were characterized by jlog2FCj ≥ 1 and
FDR < 0:05.

2.4. Analysis of AS Associated with RNA Modification. We
used the “WGCNA” (weighted gene coexpression network
analysis) software package to correlate AS events with RNA
modification-associated genes, referring to other reports
[11]. Next, we performed Spearman’s correlation and module

eigengenes analysis of RNA modification-related gene expres-
sion association with AS events to acquire RMA-AS events.

2.5. Construction of Prognostic Signature. Firstly, we used the
LASSO regression analysis for determining the candidate of
each splicing mode to obtain a risk model consisting of 14
AS events (RMA-AS_Score). According to the risk score of
each patient in different RMA-AS events, we divided the
patients into high- and low-risk groups with the median as
the critical value. Risk score = Σðαi ∗ ExpiÞ, where αi means
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Figure 2: AS events profiling in HNSCC. (a) UpSet plot of all AS events in HNSCC. (b) UpSet plot of prognosis-related AS events in
HNSCC.
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Figure 3: Continued.
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the weight of the each signature and Expi means the expres-
sion value. Also, we drew risk score distribution map, sur-
vival state map, and heatmap of PSI value to evaluate the
RMA-AS_Score signature. The “survminer” package was
used for Kaplan-Meier survival curve analysis (P < 0:05).
In addition, univariate and multivariate Cox regression anal-
yses were used to determine whether the RMA-AS_Score
signature can be regarded as an independent factor for pre-
dicting the prognosis of HNSCC.

2.6. Validation of Prognostic Signature. We used stratified
survival analysis to further verify the prognostic perfor-
mance independent from clinical characteristics such as gen-
der, tumor stage, and pathological grade. Next, we assessed
the prognostic value of the signature by conducting the
time-dependent receiver operating characteristic (ROC)
curves (area under the curve, AUC > 0:6).

2.7. Construction of Prognostic Nomogram. To quantitatively
predict the OS of HNSCC patients, we established a prog-
nostic nomogram including as RMA-AS_Score model and
other clinical variables to estimate the OS probability at 1,
2, and 3 years. Then, we drew the calibration curve of the
nomogram with predictive value. The calibration curve is
close to 45°, indicating that the model constructed has good
prediction ability.

2.8. Correlation between Risk Score and Characteristics of
Tumor-Infiltrating Immune Cells. Spearman’s correlation
was employed to analyze the correlation between tumor
immune cell infiltration and prognostic risk score. Single
sample gene set enrichment analysis (ssGSEA) was used to
clarify the enrichment information of immune function-

related genes in two different risk groups by the R package
“GSEAbase.” Then, R-package “ESTIMATE” was utilized
to evaluate the purity of tumor, the degree, and level of
immune cells and stromal cells. The CIBERSORT package
was used to analyze the immune infiltration of each sample.

2.9. Relationship between Risk Score and Immune
Checkpoint. To clarify the potential role of RMA-AS_Score
signature in the treatment of immune checkpoint in
HNSCC, we correlated the risk score and six immune check-
point key genes. Finally, the expression levels of 35 immune
checkpoint genes in two different risk groups were
compared.

2.10. Construction of Splicing Regulatory Network. First, we
download the RNA-seq profiles of splicing factors from
TCGA-HNSCC database. Spearman correlation analysis
was employed to assess the correlation between splicing fac-
tors and RMA-AS events. Set P < 0:05 and correlation
coefficient > 0:6 as a threshold. Finally, a regulatory network
of splicing factor-regulated RMA-AS was constructed using
Cytoscape (version 3.8.0).

3. Results

3.1. Identification of AS Events in HNSCC. We downloaded
AS data of HNSCC from TCGA SpliceSeq and obtained
42,849 mRNA AS events (Table S1). By comprehensively
analyzing the profiles of AS events, the gene crossover
among the seven types of AS events was shown in the
UpSet diagram. Among all these AS events of HNSCC, ES
was the most splicing pattern, while ME was the rarest
(Figure 2(a)). Subsequently, 16,574 AS events related with
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Figure 3: Identification of the prognosis-related AS events that are associated with the expression of RNA-modified genes. (a) Expression of
RNA-modified genes in cancer and normal tissues. (b) Hierarchical clustering tree of the RMA-AS events in TCGA-HNSCC. (c)
Hierarchical clustering tree of the RMA-AS events in TCGA-HNSCC. (d) Association of the AS events with RNA modified genes.
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prognosis were obtained by univariate Cox regression
analysis. We exhibited the UpSet plot of prognostic-related
AS events, and the results showed ES was the predominant
prognosis-associated AS event, and ME was the least
(Figure 2(b)).

3.2. Analysis of AS Events Associated with RNA Modification.
Firstly, the expression information of 55 genes related to
RNA modification was extracted from the TCGA-HNSCC
database (Table S2). A total of 4 differentially expressed
genes, including IGF2BP1, IGF2BP2, IGF2BP3, and
ADAR, were identified between HNSCC tissues and
normal tissues (Figure 3(a)). Subsequently, to obtain RMA-
AS events, we constructed a coexpression network between
these 4 differentially expressed genes related to RNA
modification and the above prognosis-associated AS events,
by WGCNA package (Figure 3(b)). A P value < 0.05 was
considered that there was a significant correlation between
genes and AS events. We found that 4 modules (including

blue, brown, turquoise, and yellow modules) of AS events
were significantly coexpressed with the 4 RNA
modification-related genes (Figure 3(c)). For example, the
AS events of brown module were negatively correlated
with IGF2BP2 and ADAR, while positively correlated with
IGF2BP1. Additionally, AS events of blue module were
positively correlated with IGF2BP3 and ADAR and
negatively correlated with IGF2BP1 and IGF2BP2.
Therefore, the AS events of the four modules that
coexpressed with modification-related genes, also defined
as RMA-AS events, were used for subsequent analysis.

3.3. Establishment of the Prognostic Risk Score Model of
RMA-AS Events. Based on the above RMA-AS events, we
constructed a risk score model for HNSCC (this model
termed as RMA-AS_Score). We first obtained the RMA-
AS_Score composed of 14 AS events by LASSO Cox regres-
sion analysis (Figure 4(a)). Then, according to the risk score,
the samples were divided into RMA-AS_Score high- and
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Figure 4: Confirmation of RMA-AS_Score prognostic signature. (a) LASSO regression analysis was performed for the RMA-AS events. (b)
Distribution of risk score in RMA-AS_Score signature. (c) The survival status of HNSCC patients. (d) The results of Kaplan-Meier curve. (e)
Heatmap of RMA-AS event PSI value. (f) The results of univariate Cox regression analysis. (g) The results of multivariate Cox regression
analysis.
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RMA-AS_Score low-risk groups. As shown in Figures 4(b)
and 4(c), the allocations of risk score and dot pot of survival
status revealed that the patients of the RMA-AS_Score high-
risk group have a shorter OS. Similarly, Kaplan-Meier curve
confirmed that patients of RMA-AS_Score-high have poorer
prognosis than patients in the RMA-AS_Score low group
(Figure 4(d)). We also drew a heatmap to display the expres-
sion profiles of these 14 AS events (Figure 4(e)). We found
that patients with RMA-AS_Score-low tended to express
high levels of protective AS events (ABCC4-26110-AT,
ABCE1-70753-ES, ABHD17A-46553-AP, ACTO8-19554-
ES, ADAM15-7894-AD, ADCY1-79595-AT, ADM-14343-
RI, AFTPH-53772-AA, and AGO3-1741-AT), whereas
patients with RMA-AS_Score-high exhibited a preference
for high levels of the other 5 AS events (ABCC4-26108-
AT, ABHD17A-46554-AP, ABI1-11032-ES, ADAD8-
19554-ES, and ADAMTS2-74891-AT). Moreover, univariate
Cox analysis revealed that the hazard ratio (HR) of risk score
was 1.070 (95% confidence interval (CI): 1.043−1.099;
Figure 4(f)). Multivariate Cox analysis further showed that
risk score (HR = 1:072, 95% CI: 1.044−1.100; Figure 4(g))
was an independent prognostic factor in HNSCC. Therefore,
RMA-AS events can be used as a prognostic risk model for
HNSCC.

3.4. Correlation of Prognostic Signature with Clinical
Features and Construction of RMA-AS-Clinicopathological
Nomogram. We previously used univariate and multivariate
regression analyses to evaluate whether our signature is

independent of clinical indicators, which confirmed that
the RMA-AS_Score model is an independent prognostic fac-
tor. Therefore, we further analyzed clinical significance of
the RMA-AS_Score. In addition to gender and clinicopatho-
logical stage, the RMA-AS_Score increased markedly with
advanced tumor grade (Figures 5(a)–5(c)). To explore
whether the RMA-AS_Score was the best prognostic index,
we selected age, gender, clinicopathological stage, and tumor
grade as candidate predictors of prognosis. As shown in
Figure 5(d), the RMA-AS_Score possessed the largest AUC
value (0.652). Furthermore, 1-, 2-, and 3-year AUC of the
RMA-AS_Score model was 0.652, 0.688, and 0.683, respec-
tively (Figure 5(e)). Finally, we constructed a nomogram plot
of the RMA-AS_Score (Figure 5(f)) and the calibration
curve (Figure 5(g)) to evaluate the accuracy of the nomo-
gram plot, suggesting our nomogram plot had wonderful
predictive power. In summary, the RMA-AS_Score can sig-
nificantly improve the prognostic ability of HNSCC.

3.5. Correlation between RMA-AS_Score and Immune
Microenvironment Characterization. Exploring the relation-
ship between the prognosis model and tumor immune
microenvironment can provide therapeutic benefits for the
development of immunotherapy and may contribute to the
clinical decision-making of cancer patients. Hence, we per-
formed the correlation analysis for prognostic risk score
and tumor immune environment characterization to con-
firm whether RMA-AS_Score can act as an immune indica-
tor [12]. Firstly, the RMA-AS_Score signature showed the
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evident negative association with T cell regulatory (Treg), T
cell follicular helper, and B cell naïve, while positive associa-
tion with macrophage M2 (Figure 6(a)), indicating the
RMA-AS_Score signature is related to the HNSCC immune
microenvironment. Likewise, RMA-AS_Score low patients
obtained higher estimate score and immune score, lower
tumor purity which represented more immune infiltration
(Figure 6(b)). Figure 6(c) exhibits the immune-related signa-
tures of each patient in the RMA-AS_Score high-/low-risk
groups, which suggested patients with a low risk score were
rich in stromal and immune cells and had fewer pure
tumors. Subsequently, we found the infiltration of Treg
expression level was observably decreased with advanced
risk score (Figure 6(d)). The CIBERSORT algorithm results
suggested that the proportion of B cells, CD8+ T cells,
checkpoint, cytolytic activity, HLA, inflammation promot-
ing, T cell coinhibition/simulation, T helper cells, Tfh, and
TIL was also declined with growth risk score (Figure 6(e)).
Combined with the above results, different risk groups of
HNSCC can accurately indicate the immune level, and the
overall immune response level of patients in the high-risk
group is lower than that in the low-risk group.

3.6. Correlation between RMA-AS_Score Signature and
Immune Checkpoint Key Molecules. To further investigate
the effect of our prognostic model on the immune system,
we analyzed the relationship between immune checkpoint
and RMA-AS_Score signature. Firstly, the correlation

between immune checkpoint key molecules and RMA-AS_
Score prognostic indicators was analyzed to reveal potential
participants of risk indicators in the immune detection point
treatment of HNSCC (Figure 7(a)). The results hinted that
RMA-AS_Score signature was notably negative related to
CTLA4, HAVCR2, IDO1, and PDCD1 (Figures 7(b)–7(e)).
Further correlation analysis showed that compared with
the RMA-AS_Score low group, the expression levels of
CD44, TNFSF9, and CD276 were upregulated in patients
in the RMA-AS_Score high group, while the others were
almost downregulated (Figure 7(f)). Taken together, in
HNSCC immunotherapy, we need to pay attention to the
adverse factors in RMA-AS_Score prognostic signature.

3.7. Correlation Analysis of RMA-AS and Splicing Factors. To
screen for splicing factor-regulated RMA-AS, we analyzed
differentially expressed splicing factors in tumor and normal
tissues. The results demonstrated a total of 14 differentially
expressed splicing factors were obtained (Figure 8(a)). In
addition, we also constructed a correlation network of splic-
ing factor-regulated RMA-AS (Figure S1). In our regulatory
network, we also found the six most important splicing
factors, including NOVA1, SNRPB, U2SURP, SRPK3,
TOP1MT, and RBM47 (Figure 8(b)). SRPK3, in particular,
regulated 11 high-risk and 5 low-risk AS events. Therefore,
these splicing factors indicated a great potential to act as
central regulators involving in the dysregulation of RMA-
AS in HNSCC.
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4. Discussion

HNSCC is a common heterogeneous tumor with high mor-
tality and poor prognosis [13]. Therefore, it is urgent to find
a tool to predict HNSCC prognosis, which contributes the
development of individualized treatment of HNSCC.
Increasing studies support that RNA modification and AS
events play a role in physiological and pathological processes
[8, 14]. However, little is known about the correlation
between RMA-AS events and HNSCC prognosis.

In this study, we found 42,849 AS events in HNSCC
from TCGA SpliceSeq database and obtained 16,574 AS
associated with prognosis and 4 differential RNA
modification-related genes. Subsequently, RMA-AS events
were acquired by constructing AS events coexpressed with
differentially expressed RNA modification-related genes.
According to the RMA-AS events, we constructed a risk
model composed of 14 AS events, termed as RMA-AS_
Score. Based on prognostic signatures of RMA-AS_Score,
HNSCC patients with high-risk had a shorter OS. Besides,
the RMA-AS_Score was an independent indicator in
HNSCC by univariate and multivariate response analyses.
We also built a nomogram to certify that the prediction
model is consistent with the actual results. By analyzing
the immune microenvironment, we found that the RMA-
AS_Score low group had stronger antitumor ability com-
pared with the RMA-AS_Score high group. Finally, we iden-
tified 6 splicing factors, which may be involved in the

dysregulation of RMA-AS in HNSCC as central regulatory
factors. Collectively, our prognostic model provides reliabil-
ity for improving the prognosis of HNSCC.

The abnormal AS patterns found in cancer can help
identify disorders in cell function. Some studies have
reported that the splicing changes of genes during tumori-
genesis directly affect the pathway of apoptosis and prolifer-
ation, resulting in regulating the development of tumors
[15]. In addition, it is of great value to predict the prognosis
of cancer by establishing the prediction model of AS events.
Xu et al. have found that 3,294 AS events were associated
with survival in hepatocellular carcinoma [16]. Similarly,
we screened 16,574 AS associated with prognosis in HNSCC,
which provides a basis for the later construction of prognosis
model.

With the rapid development of RNA research, it is grad-
ually found that the imbalance of RNA modification is
closely related to the pathological processes related to carci-
nogenesis [17]. Zhang et al. reported that YTHDF2, an m6A
reader, is abnormally expressed in hepatocellular carcinoma,
which promotes tumor metastasis by regulating the methyl-
ation of OCT4 mRNA m6A [18]. Furthermore, m6A-related
regulatory factors were abnormally expressed in osteosar-
coma, and HNRNPA2B1 may be an independent risk factor
for OS [19]. In our study, we found 4 differential expression
genes of RNA modification in HNSCC, indicating that these
genes are involved in HNSCC progression. Combined with
the signature of RMA-AS events, which can be used to
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predict the prognosis of tumors [20], we also established an
RMA-AS risk model of HNSCC, named RMA-AS_Score. In
the RMA-AS_Score, we divided patients into high- and low-
risk according to the risk score, among which the OS of
high-risk patients was obviously shorter than that of low-
risk patients. Moreover, we selected ABCC4, ABCE1,

ABHD17A, ABI1, ACAD8, ACTO8, ADAM15, ADAMTS2,
ADCY1, ADM, AFTPH, and AGO3 as RMA-AS event-
associated signatures for predictive prognosis in HNSCC.
Some literature have been reported reducing the expression
of ABBC4 in pancreatic cancer cells significantly inhibited
the proliferation and migration of cancer cells [21]. AFTPH
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17Journal of Immunology Research



(Aftiphilin) was highly expressed in diffuse large B cell lym-
phoma, pancreatic adenocarcinoma, breast cancer, and lung
squamous cell carcinoma and linked to poor prognosis [22].
Besides, high expression of ADAM15 was an independent
risk factor for the prognosis of hepatocellular carcinoma
[23]. Similarly with other risk models [24], we also deter-
mined that the prognostic risk model is an independent clin-
ical index through univariate and multivariate response
analyses, indicating that the RMA-AS_Score is an indepen-
dent prognostic factor. More importantly, the AUC of our
risk model was superior to other clinical indicators, which
reflects the application value of RMA-AS_Score in HNSCC.
In this regard, our RMA-AS_Score provided a guarantee for
predicting the prognosis of HNSCC, and the 14-RNA
modification-related AS events could act as potential prog-
nostic and therapeutic targets of HNSCC.

To reveal the role of RMA-AS events in the immune
microenvironment in HNSCC, we also performed ESTI-
MATE algorithm, ssGSEA method, and CIBERSORT analy-
sis. Similar to other reports [25], our estimated score and
immune score in the low-risk group were higher than those
in the high-risk group, suggesting the higher the number of
immune cells in the low-risk group, the lower the number of
tumor cells, and the stronger the immunity. In addition, we
found that M2 macrophages were negatively correlated with
a risk score. Since M2 macrophages are mainly involved in
the anti-inflammatory response [26], this explains why the
anti-immune ability is weakened in the high-risk group. Fur-
thermore, immune checkpoint detection proved that the
expression level of immune checkpoint was low in the
high-risk group [27]. Given that the immunotherapy against
immune checkpoints in HNSCC has not achieved satisfac-
tory results, we speculate that this may be related to the
low expression level of immune checkpoints in our RMA-
AS_Score high patients. In this case, our RMA-AS_Score
emphasized the value in tumor immune response of
HNSCC, and targeting immune detection proteins could
guide HNCC treatment.

The change of AS may originate from the change of
splicing factor expression, which affects the splicing of
cancer-related genes [28]. Splicing factors can be used as
tumor proteins or tumor suppressors and drug targets for
tumor therapy [29], among which the disorder of its level
will affect the pathogenesis of cancer [30]. In view of this,
it is important to find the regulatory network between
RMA-AS and related splicing factors. In this study, we con-
structed a network of splicing factor-regulated RMA-AS and
found several important splicing factors, such as NOVA1,
SNRPB, U2SURP, SRPK3, TOP1MT, and RBM47. Although
these genes regulate various AS events, their potential role in
the pathogenesis and development of HNCSS remains to be
studied.

5. Conclusion

We constructed RMA-AS_Score prognostic model to
strengthen the prognostic prediction of HNSCC. The 14-
RMA-AS signature demonstrated great potential of predic-
tive ability and independent from clinical characteristics. In

addition, we further analyzed the value of RMA-AS_Score
model in the immune microenvironment, providing a basis
for the development of personalized immunotherapy for
HNSCC. Besides, the regulatory network of splicing factor-
regulated RMA-AS indicated promising targets of the anti-
tumor therapy in HNSCC. Collectively, we established a
robust method to deeply study the etiology and progress of
HNSCC, which also provides a reference for the research
of other cancers.
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