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Aims. To explore the expression of circular RNA (circRNA) in gastrointestinal stromal tumors. Background. Gastrointestinal
stromal tumors (GIST) are mainly distributed in the stomach and small intestine. Recently, it has been verified that circular
RNA (circRNA) has an important function in the regulation of GIST. Nevertheless, detailed investigations of circRNA-
miRNA-mRNA regulatory networks in GIST are lacking. Objective. To analyze the gastrointestinal stromal tumor circRNA-
miRNA-mRNA network, assessing the effect of circle RNA in gastrointestinal stromal tumors. Method. All the differential
circRNAs and mRNAs were obtained from Gene Expression Omnibus (GEO) microarray data (GSE131481 and GSE147303,
GSE131481, and GSE13861). Furthermore, a circRNA-miRNA-mRNA network was established. Gene Ontology (GO) analysis
and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were used to reveal the correlation between the functions
of signaling pathways and target genes. The hub genes of protein-protein interaction (PPI) network and cytoHubba were also
defined. Quantitative real-time PCR (qRT-PCR) was used to measure the expression levels of hsa-circ-0002917 (circTBC1D4),
hsa-miR-590-5p (miR-590-5p), and PLN. Results. PPI network and Cytoscape showed that ATP1A2, PLN, KCNMA1, and
SCNN1B were four central DEGs. GO analysis results revealed that DEGs were involved in negative management of
myocardial contraction, regulation of myocardial cell contraction, ethanol oxidation, cellular potassium ion homeostasis, and
relaxation of cardiac muscle, and KEGG analysis showed that major DEGs were with cGMP-PKG signaling pathway.
Moreover, we obtained two pairs of axes, namely, hsa-circ-0039216/hsa-miR-338-3p/ATP1A2 and hsa-circ-0002917/hsa-miR-
590-5p/PLN. The target of TBC1D4 is miR-590-5p, and miR-590-5p increased after knocking down TBC1D4. Moreover, PLN
was the target of miR-590-5p, and miR-590-5p exerts antitumor effects by reducing PLN. Conclusions. In this study, we
constructed a circRNA-miRNA-mRNA management network interrelated with GIST and researched the potential roles of
circRNA. Moreover, we discovered a new molecular landmarker for the prediction, diagnosis, and therapy of patients.

1. Introduction

A gastrointestinal stromal tumor (gastrointestinal stromal
tumor (GIST)) is the general common gastrointestinal
tumor with an overall incidence of 0.68/100,000 [1]. GIST
is mainly distributed in the stomach (55.6%) and small intes-
tine (31.8%) [2]with phenotypes ranging from benign to
malignant [3]. Several main tumor biomarkers are applied
to the diagnosis and prediction of GIST. In particular, the
development of circulating biomarkers still has a significant

impact on the prognosis of gastrointestinal stromal tumors.
Abnormal molecules with changing progress may be used
to explore reliable biomarkers, which in turn could improve
the management of GIST [4]. Moreover, investigating the
underlying mechanisms of the occurrence and development
of GIST could lead to the achievement of early diagnosis,
effective treatment, and good prognosis of GIST.

circRNA is an endogenous noncoding RNA with a
covalently closed loop structure whose 3′ and 5′ ends are
noncollinearly connected by a procedure of “reverse splicing”
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[5]. The poverty of a 5′ cap and 3′ tail makes circRNA more
stable against exonuclease than linear RNA [6]. circRNAs are
widely expressed mainly as miRNA sponges in different spe-
cies, thus alleviating miRNA target inhibition [7]. They also
competitively impede the binding of miRNA and the mRNA
targets [8]. The biological function of a great majority of
circRNAs is still unclear. Some researchers found that circ-
PRKCI was significantly upregulated in esophageal can-
cer[9]. Li et al. shown that circSMARCA5 had a diagnostic
value for HCC[10]. Lu et al. found that the tumor volume

in the circ-FBXW7 overexpression group was significantly
lower in colorectal cancer[11]. Therefore, we created a
circRNA-miRNA-mRNA network to move forward a single
step to assess the role of circRNA and mRNA dysregulation
in GIST.

In this research, we found 7 differentially expressed cir-
cRNAs (DEcircRNAs) and 12 differentially expressed genes
(DEGs) by analyzing two groups of circRNAs and mRNA
expression profiles in the GEO dataset. We also performed
GO and KEGG analysis on key DEGs to research the role
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Figure 1: Differentially expressed circRNAs (DEcircRNAs). (a) Before the standardization of GSE 131481. (b) After the standardization of
GSE131481. (c) Volcano plot of GSE131481. (d) Heatmap of GSE131481. (e) Before the standardization of GSE147303. (f) After the
standardization of GSE147303. (g) Volcano plot of GSE147303. (h) Heatmap of GSE147303.
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of DEGs. Protein-protein interaction (PPI) network was cre-
ated, and four key DEGs and one eventful module of the net-
work were defined. The Circular RNA Interactome and
TargetScanHuman databases were used to predict miRNAs,
and the circRNA-miRNA-mRNA network was succeed in
building, which was used to further explore the role of
circTBC1D4/hsa-miR-590-5p/PLN axes in stromal tumors.

2. Materials and Methods

2.1. Microarray Data Source. The data applied in the report
were retrieved from the GEO database (https://www.ncbi
.nlm.nih.gov/geo/). Using the keyword “gastrointestinal
stromal tumor” to search on the GEO, two circRNA arrays
were obtained from GSE131481 and GSE147303 databases;
the platforms were GPL22120 and GPL21825. At the same
time, two mRNA expression sequences were obtained from
GSE131481 and GSE13861 databases; the platforms were
GPL22120 and GPL6884. Both circRNA databases included
3 GIST tissues and 3 normal gastric tissues. At the same
time, the mRNA databases of GSE131481 included 3 GIST
tissues and 3 normal tissues, and GSE13861 included 3 GIST
tissues and 19 normal tissues. Because the data in the GEO
database publicly available, no ethical approval or informed
consent was required for this study.

2.2. Differential Expression Analysis. The original data were
normalized and performed using log2 transformation. The
Bioconductor Limma package was useful for definitude of
differentially expressing circRNAs (DEcircRNAs) and
mRNAs in each dataset [12]. The edge R software package
was used for screening criterion for ∣log 2fold change ðFCÞ
∣ >1 and pvalue < 0.05 for the differential expression cir-
cRNAs (DEcircRNAs); the Venny 2.1.0 (https://bioinfogp
.cnb.csic.es/tools/venny/) was used for constructing a Venn
diagram to obtain differentially expressed DEcircRNAs
[13]. The mRNA dataset of GSE13861 (DEmRNAs) screen-
ing criterion for ∣log 2FC ∣ >2 and adjusted p value < 0.05; as
the |log2FC| of most DEmRNAs in GSE131481 was less than
2, we set the criterion ∣log 2FC ∣ >1 and adjusted p value of
<0.05 to be defined as statistically obvious; the intersections
of DEmRNAs were DEGs.

2.3. GO Functional Analysis and KEGG Pathway. In order to
evaluate the main functional pathways of DEGs, DAVID
(https://david.ncifcrf.gov/) was applied to annotate DEGs
for GO, and ggplot2 software package in R studio and R
scripting language was used to analyze the KEGG pathway.
The p value < 0.05 was considered the criterion.

2.4. PPI Network and Hub Genes. On the basis of the identify-
ingDEGs, thePPI networkwas created by using the Interaction
Gene Retrieval (STRING) database, and required confidence
ðcombined scoreÞ ≥ 0:4 was considered the cut-off criterion
for PPI extraction. Visualization was presented using Cytos-
cape 3.6.1. The cytoHubba plug-in was applied to reveal the
critical DEGs by a node level. The MCODE application was
used for screening hub gene modules from the PPI network,
where cut-off ≥ 2, node score cut-off = 0:2,k‐score ≥ 2,
andMax:depth = 100were cut-off criteria [14].

2.5. miRNA Binding Sites. The Circular RNA Interactome
(https://circinteractome.irp.nia.nih.gov/) was applied to pre-
dict miRNA-binding sites, where CSCD (https://gb.whu.edu
.cn/CSCD/) showed the binding sites (MRE) of circRNAs.
The TargetScanHuman (http://www.targetscan.org/) was
used to forecast the interaction between mRNA and miRNA.
Intersecting miRNAs in the two databases were thought in
target miRNAs.

2.6. circRNA-miRNA-mRNA Network. The circRNA-
miRNA-mRNA network was framed by combining
circRNA-miRNA and miRNA-mRNA. Finally, it was visible
using Cytoscape 3.6.1.
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Figure 2: (a) The intersection of DEcircRNAs. (b) The intersection of DEGs.

Table 1: The host gene symbol of DEcircRNAs.

circRNA ID circBase ID Gene symbol

hsa-circRNA-069236 hsa-circ-0069236 PROM1

hsa-circRNA-003333 hsa-circ-0003333 MCTP2

hsa-circRNA-089386 hsa-circ-0089386 VAV2

hsa-circRNA-100709 hsa-circ-0003570 FAM53B

hsa-circRNA-105055 hsa-circ-0001946 CDR1

hsa-circRNA-101273 hsa-circ-0002917 TBC1D4

hsa-circRNA-101802 hsa-circ-0039216 GPT2
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Figure 3: (a) GO analysis of DEGs in GIST. Thin blue bars represent biological processes (BP), and green bars represent cellular
components (CC). The orange line represents p value. (b) KEGG analysis of DEGs in GIST.
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2.7. Quantitative Real-Time PCR (qRT-PCR). The cell line
was GIST-882.After isolating total RNA from cells (Solarbio,
Beijing, China),quantitative real-time PCR (qRT-PCR)was
applied to find the expression of circTBC1D4, miR-590-5p,
and PLN (Hifair®). The primers in our study were as follows:
5′-GCCACCCACCTTCAAGCACAA-3′ (F) and 5′-CAGA
GTCAGCATTACCTCATCAACCT-3′ (R) for hsa-circ-
0002917, 5′-TCAGACTTCCTGTCCTGCTGGTATC-3′
(F) and 5′-GCAGAACTTCAGAGA AGCATCACGAT-3′
(R) for PLN, and 5′-GTGAAGGTCGGTGTGAACGGA
TT-3′ (F) and 5′-CGTGAGTGGAGTCATACTGGAACA
T-3′ (R) for GAPDH. Relative expression quantification
was compared using the 2-ΔΔCT method.

3. Results

3.1. DEcircRNAs and DEGs in Gastrointestinal Stromal
Tumors. The integrated analysis of GSE131481 and

GSE147303 datasets from GEO database, respectively, identi-
fied 1124 and 725 DEcircRNAs. The selection criteria of ∣log
2FC ∣ >1 and p value < 0.05 were the differential expression
circRNAs (DEcircRNAs) by R studio Limma packages; the
GSE131481 included 717 upregulated and 407 downregulated
circRNAs (Figures 1(a)–1(d)); the GSE147303 had 137 and
588 (Figures 1(e)–1(h)). Seven generating DEcircRNAs were
found (Figure 2(a)), including hsa-circRNA-069236, hsa-cir-
cRNA-003333, hsa-circRNA-089386, hsa-circRNA-100709,
hsa-circRNA-105055, hsa-circRNA-101273, and hsa-
circRNA-101802; the outcomes with the 7 DEcircRNAs are
shown in Table 1. Besides, we also used R studio Limma pack-
age analysis on GSE13861 and GSE131481 to obtain differen-
tially expressed genes (DEGs). GSE13861 generated 1062
DEGs with ∣log 2FC ∣ >2 and adjpvalue < 0:05, 528 of which
were upregulated and 534 of which were downregulated. Sim-
ilarly, GSE131481 generated 178 differentially expressed DEGs
with ∣log 2FC ∣ >1 and adjpvalue < 0:05, including 122 upreg-
ulated and 56 downregulated mRNAs. The DEGs obtained

(f) (g)

(h)

Figure 5: (a) The structure of DEcircRNAs. The red, blue, and green regions inside the circular RNA molecule, respectively, represent MRE
(microRNA response element), RBP (RNA-binding protein), and ORF (open reading frame). (b–h) The circRNA-miRNA network
diagrams. Pink represents upregulated DEcircRNAs, and blue represents downregulated DEcircRNAs.
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Figure 6: (a) The miRNA-binding of ATP1A2. (b) The miRNA-binding of KCNMA1. (c) The miRNA-binding of PLN. (d) The miRNA-
binding of SCNN1B.
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from the two datasets were intersected to get 12 DEGs
(Figure 2(b)), which were PTPRH, PLN, ATP1A2, CLDN23,
TSPAN2, CFD, ALDH1A1, MT1E, ADH1C, PHLDB2,
SCNN1B, and KCNMA1.

3.2. GO and KEGG Analysis of DEGs. In the GO result, the
functions of DEGs include biological processes (BP) and
cellular components (CC). GO enrichment demonstrated
that DEGs were consisted of negative regulation of heart
contraction, management in cardiac muscle cell contraction,
ethanol oxidation, cellular potassium ion homeostasis, relax-
ation of cardiac muscle, regulation of myocardial contrac-
tion by regulating the release of chelated calcium ions,
regulating myocardial contractility, and other components
(Figure 3(a)). KEGG result determined that major DEGs
were with cGMP-PKG signaling pathway (Figure 3(b)).

3.3. PPI Network and Hub Gene. The 12 DEGs were putted
into the STRING database to probe the interrelation
between the all kinds of genes. PPI network was estab-
lished using 12 DEGs. The PPI network involved 42 nodes
and 97 edges. In cytoHubba, the first four hub genes were
screened out according to the MCC algorithm, including
ATP1A2, PLN, KCNMA1, and SCNN1B (Figure 4(a)).
Two genes were screened out in MCODE, which were
PLN and ATP1A2. According to the importance degree,
a key module was selected from the PPI network by
MCODE plug-in (Figure 4(b)). Furthermore, the results
revealed that two of the four central DEGs (ATP1A2,
PLN, KCNMA1, and SCNN1B) of the PPI network were
created in this module, thus suggesting that PLN and

ATP1A1 may have a significant important role in gastro-
intestinal stromal tumors.

3.4. Prediction of miRNA Binding Sites. The structure of 7
DEcircRNAs was determined using the CSCD database,
and these DEcircRNAs have MREs (Figure 5(a)). There were
87 miRNAs by Circular RNA Interactome. For better visual-
ization, the circRNA-miRNA network diagram was
conducted using Cytoscape software (Figures 5(b)–5(h)).
The miRNA-binding of ATP1A2, PLN, KCNMA1, and
SCNN1B was predicted by the TargetScan database
(Figures 6(a)–6(d)). ATP1A2 has 63 targeted miRNA, PLN
has 44 targeted miRNA, KCNMA1 had 7 targeted miRNA,
and SCNN1B had 9 targeted miRNA. We intersected with
miRNAs and then identified 2 DEmiRNAs in two databases
(Circular RNA Interactome and TargetScan), namely, hsa-
miR-338-3p and hsa-miR-590-5p (Figure 7).

3.5. A Potential circRNA-miRNA-mRNA Regulatory
Network. A growing number of researches have suggested that
by competition for endogenous RNAs (ceRNAs), circRNAs
can contend with miRNAs to affect the stabilizing of mark
mRNAs or their transcription. In this study, 7 DEcircRNAs,
170 miRNAs, and 4 DEGs were obtained to compose the
circRNA-miRNA-mRNA network (Figure 8). There are
involved 87 interactions between DEcircRNAs and miRNAs.
The genes of the 4 chosen mRNAs were predicted 85
mRNA-related miRNAs. The circRNA-miRNA-mRNA net-
work was visible by Cytoscape software. Two circRNA/
miRNA/mRNA axes were formed. Then, we got hsa-circ-
0039216/hsa-miR-338-3p/ATP1A2 and hsa-circ-0002917/
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Figure 7: The intersection of miRNA. ATP1A2 had 63 targeted miRNA, PLN had 44 targeted miRNA, KCNMA1 had 7 targeted miRNA,
and SCNN1B had 9 targeted miRNA. circRNA identified 87 miRNAs.
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(a)

(b)

Figure 8: The circRNA-miRNA-mRNA regulatory network. (a) Overview of the entire network. (b) Specific relationship between circRNAs,
miRNAs, and mRNAs in the network. Red represents hsa-circ-0039216/hsa-miR-338-3p/ATP1A2. Pink represents hsa-circ-0002917/hsa-
miR-590/PLN. Purple represents DEGs. Green represents DEcircRNAs.
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hsa-miR-590-5p/PLN axes, which may provide perspectives
for the underlying mechanisms of GIST.

3.6. Validation of Hub Genes by qPCR. Our previous studies
showed that circTBC1D4 was evidently upregulated, sug-
gesting that circTBC1D4 was involved in the pathological
process of GIST. So circTBC1D4 was chosen to study the
physiological function of GIST by the qPCR method. After
the low expression of circ TBC1D4 was constructed by
siRNA, the miR-590 was significantly increased
(Figure 9(a)). However, the PLN was significantly reduced
(Figure 9(b)).

4. Discussion

GIST originates from the interstitial cells of Cajal [15]. Cur-
rent epidemiology shows that the total incidence of GIST has
been steadily increasing every year [16]. Recent studies have
shown that common mutations including KIT, PDGFRA,
and other DNA (e.g., BRAF and SDH) have become an
indispensable part of GIST treatment and management
[17]. It has been suggested that molecular biomarkers can
provide guidance for the postoperative treatment of GIST
and can improve the prognosis of GIST patients [18]. How-
ever, more researches were on the treatment of gastrointesti-
nal stromal tumors. In this study, we identified DEcircRNAs
and DEGs between GIST and adjacent normal gastric tissues
and took the intersection. The circRNA targeting miRNAs
intersected with the binding miRNAs of mRNAs, and two
DEmiRNAs were obtained. The targeted mRNAs corre-
sponding to the two DEmiRNAs were PLN and ATP1A2
that were exactly the same as the two mRNAs of the key
modules selected in MCODE. Therefore, we assumed that
hsa-circ-0039216/hsa-miR-338-3p/ATP1A2 and hsa-circ-
0002917/hsa-miR-590-5p/PLN may have an important role
in GIST.

circRNAs belong to competing endogenous RNAs (ceR-
NAs) [19] and as miRNA sponges to control gene expression
by adsorbing microRNAs (miRNAs) as miRNA response

elements (MRE) [12]. circRNAs, which are characterized
by inherent stability, high conservatism, and generality, are
an important biomarker for the screening, diagnosis, and
prediction of digestive system tumors. Patel et al. [16] found
that hsa-circ-0001013 was importantly increased in gastric
cancer tissues relative to paired nontumor tissues, discover-
ing as a new landmarker for gastric cancer diagnosis. Zhang
et al. [20] demonstrated that circRNA-100269 targeting
miR-100269 was decreased in gastric cancer and inhibited
tumor cell. Furthermore, Zhang and colleagues [21] reported
that circNrip1 promoted gastric cancer progression as a
microRNA-149-5p sponge through the Akt1/mTOR path-
way. More and more studies have confirmed the unusual
expression of circRNAs in various tumors and the regulatory
role of the circRNA-miRNA-mRNA network; nevertheless,
there are less reports on circRNA-miRNA-mRNA networks
in GIST. Contrasted to previous reports, we discovered that
hsa-circ-0039216 and hsa-circ-0002917 may have a central
role in regulating the progress of GIST. The mechanism
underlying molecular targeting in GIST needs to be further
elucidated. In this study, ATP1A2 and PLN were identified
as the key genes related to GIST in the PPI network.

ATP1A2 is a catalytic part of active enzymes, which
hydrolyzes ATP and promotes the exchange of sodium and
potassium ions on the plasma membrane. This function pro-
duces electrochemical gradients of sodium and potassium
that provide energy for the transport of various nutrients
belonging to the ATPase family of transporters. In a dose-
dependent manner, exogenous ATP depolarized the resting
membrane and generated a tonic inward pacing current.
An external sodium-free solution could inhibit the effect of
ATP on pacing current. Clearance of exogenous Ca(2+) or
thapsigargin, an inhibiting of endoplasmic reticulum Ca(2
+) uptake, inhibits the effect of ATP on pacing current.
The spontaneous [Ca(2+)] I oscillation can be enhanced by
exogenous ATP. These results suggest that exogenous ATP
regulates pacing cell activity by activating nonselective cat-
ionic channels through exogenous Ca(2+) influx and release
of the endoplasmic reticulum [Ca(2+)]. Gastrointestinal
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Figure 9: Validation of hub Genes by qRT-PCR. (a) The level of miR-590-5p expression. (b) The level of PLN expression. Black represents
control group. Light grey represents transfection hsa-circ-0002917 siRNA negative control of gastrointestinal stromal tumor cells. Dark grey
represents transfection hsa-circ-0002917 siRNA gastrointestinal stromal tumor cells. All data were expressed as the mean ± SD. ∗P < 0:05.
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stromal tumors arise from fusiform mesenchymal cells of
Cajal stromal cells (ICC) or stem cell precursors of these
cells [22]. Cajal interstitial cells exist in the stands and
peripheral nerve to the muscularis propria gastrointestinal
pacemaker cells. We hypothesized that ATP has an upregu-
lating role in gastrointestinal stromal tumors [23].

Phospholamban (PLN), a member of the phospholamban
family, regulates calcium reuptake during muscle relaxation.
Phosphorylation of phospholamban (PLN) by Ca(2+)/cal-
modulin-stimulated protein kinase II (CaMKI) accelerates
the sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA),
which increases the rate of sarcoplasmic Ca(2+) clearance
and intracellular calcium release. Inmost cancer cells, calcium
reservoir-operated calcium ion influx mediates the majority
of calcium ion influx and may be a factor in regulating intra-
cellular calcium in Cajal and gastrointestinal stromal tumors.
Therefore, blocking thismechanismmay affect the progress of
gastrointestinal stromal tumor [24]. Kurten et al. [25] found
that the gene expression of fibronectin and smooth muscle
actin was risen in eosinophilic esophagitis. The degree of
ATP2A2 inhibition was determined by PLN oligomeric state,
and phosphorylation of phosphatidylinositol could reduce the
inhibition of ATP2A2. Li et al. [26] found that multiple
expression of ATP2A2 was correlation with better prognostic
in patients with diffuse astrocyte tumors. Wang et al. [27]
found that phospholipid protein and inositol 1,4,5-triphos-
phate receptor 1 were upregulated and sarcoplasmic reticu-
lum calcium transporter ATPase 2a was downregulated by
sodiumdextran sulfate-induced rat colitis model.We hypoth-
esized that PLN has an upregulating role in GIST. Based on
the GSE13861 and GSE131481 datasets, we found that
ATP1A2 and PLN had significantly different expression pat-
terns in GIST tissues. Therefore, it was necessary to further
study the role of ATP1A2 and PLN in GIST to indicate the
mechanism of ATP1A2 and PLN in regulating the physiolog-
ical activity of GIST.

In recent years, studies found that miR-590-5p played an
important role in digestive system diseases. Chen et al. [28]
reported that miR-590-5p played an important effect in pan-
creatic adenocarcinoma cell lines. Zheng et al. [29] found that
miR-590-5p could play a role in eliminating gastric cancer.
Chen et al. [30] suggested that lncRNA FTX could promote
colorectal cancer cell migration and invasion through
miRNA-590-5p/RBPJ Axis. We found that circTBC1D4
affected the occurrence and development of GIST through
the hsa-miR-590-5p/PLN axis. Through qRT-PCR experi-
ments, the expression of miR-590-5p was high and the
expression of PLN was low after TBC1D4 knockout.

In conclusion, this study revealed a potential circRNA-
miRNA-mRNA network mediated by hsa-circ-0039216/
hsa-circ-0002917 in gastrointestinal stromal tumors through
total transcriptome analysis, cross-analysis, and correlation
analysis. We identified ATP1A2 and PLN as potential
inflammatory targets for the therapy of GIST. Our analysis
and further experimental verification show that circTBC1D4
promotes the progression of gastrointestinal stromal tumor
by regulating miR-590-5p/PLN axis in GIST, providing
new insights for GIST. We will conduct further experiments
to verify our conclusion.

Data Availability
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