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Long-term survivals of patients with hepatocellular carcinoma (HCC) remain unfavorable, which is largely attributed to active
carcinogenesis. Growing studies have suggested that the reliable gene signature could act as an independent prognosis factor for
HCC patients. We tried to screen the survival-related genes and develop a prognostic prediction model for HCC patients based
on the expression profiles of the critical survival-related genes. In this study, we analyzed TCGA datasets and identified 280
genes with differential expressions (125 increased genes and 155 reduced genes). We analyzed the prognosis value of the top 10
dysregulated genes in HCC patients and identified three critical genes, including FCN3, CDC20, and E2F1, which were
confirmed to be associated with long-term survival in both TCGA and ICGC datasets. The results of the LASSO model screened
CDC20 and FCN3 for the development of the prognostic model. The CDC20 expression was distinctly increased in HCC
specimens, while the FCN3 expression was distinctly decreased in HCC. At a suitable cutoff, patients were divided into low-risk
and high-risk groups. Survival assays revealed that patients in high-risk groups exhibited a shorter overall survival than those in
low-risk groups. Finally, we examine the relationships between risk score and immune infiltration abundance in HCC and
observed that risk score was positively correlated with infiltration degree of B cells, T cell CD4+ cells, neutrophil, macrophage,
and myeloid dendritic cells. Overall, we identified three critical survival-related genes and used CDC20 and FCN3 to develop a
novel model for predicting outcomes and immune landscapes for patients with HCC. The above three genes also have a high
potential for targeted cancer therapy of patients with HCC.

1. Introduction

Hepatocellular carcinoma (abbreviated as HCC) refers to the
third most significant cause of deaths associated with cancer
in the world [1]. The primary risk factors driving hepatocel-
lular carcinoma have included hepatitis B and C viral
infections, alcoholic liver disease, and nonalcoholic fatty
liver disease [2, 3]. Patients suffering from the advanced
stage of HCC, receiving the molecularly targeted drug soraf-

enib, were found with a greater median survival as compared
with those administrated with the placebo, as demonstrated
by existing research [4, 5]. However, the targeted therapy of
HCC still has numerous limitations. For the improvement of
HCC patients’ prognosis, it is particularly necessary to
develop and identify the novel key biomarkers for
treatments of the patients with HCC.

Numerous genetic alternations influence HCC progres-
sion and indicate HCC prognosis [6, 7]. Many cellular
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Figure 1: DEGs identified from TCGA datasets. (a) Heatmap of the all DEGs. (b) Volcano map of DEGs between HCC specimens and
nontumor specimens.
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Figure 2: Continued.
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Figure 2: Functional investigation in accordance with the DEGs between normal and tumor groups in the TCGA group. (a) Barplot graph
in terms of KEGG pathways. (b) Bubble graph in terms of GO enrichment using 125 increased genes. (c) Barplot graph in terms of KEGG
pathways. (d) Bubble graph in terms of GO enrichment using 155 reduced genes.
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Figure 3: Identification of total genes having a correlation with survival in HCC using the top 10 overexpressed genes. (a, b) UBE2C,
CDC20, SFN, AKR1B10, and E2F1 were identified to be high risk factors via Kaplan-Meier tests. (c) Univariate Cox regression analyses.
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genetic and molecular aberrations have been identified,
which form the basis of classification and risk stratification
for HCC [8, 9]. Due to differences in treatment regimens
and survival, it is important for existing studies to identify
molecular biomarkers that are critical for the development
and progression of HCC [10, 11]. In addition, the identifica-
tion of biomarkers and subsequent development of targeted
therapies may improve clinical outcomes. Over the past few
years, RNA sequencing has become a powerful method for
screening transcripts [12, 13]. The gene expression profile
involved in HCC has been extensively studied, providing
useful ideas of the molecular mechanism of HCC [14, 15].
The present study is aimed at exploring the possible progno-
sis biomarkers for HCC patients via analyzing TCGA and
ICGC datasets.

2. Materials and Methods

2.1. Evidence from TCGA and ICGC Database. In this study,
the TCGA database was utilized in terms of HCC for the

acquisition of information relating to relevant clinical data
(data types: clinical supplement), gene expressions (work-
flow type: HTSeq-FPKM), and immune system infiltrates.
The present study followed TCGA’s publication guidelines.
In addition, we collected the microarray data of 240 HCC
samples and 202 nontumor samples from ICGC datasets.

2.2. Identification of mRNA with Differential Expressions in
HCC. Based on transcripts per million approaches, the data
of raw count were first normalized and then received a
log2 transformation. Subsequently, we annotated 19654
protein-coding genes. With the use of the limma version
3.36.2 R package, the genes with differential expressions
(DEGs) were determined. DEGs with an adjusted p value
of<0.05 and an absolute log2 fold change ðFCÞ > 4 were
screened to perform the following investigation.

2.3. Survival Investigation. Kaplan-Meier survivals were
applied to examine the survival differences between the
low-/high-risk groups used the above datasets. The ‘survival’
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Figure 4: Identification of disease-free genes having a correlation with survival in HCC using the top 10 overexpressed genes. (a) E2F1,
CDC20, and UBE2C were identified to be high risk factors via Kaplan-Meier tests. (b) Univariate Cox regression analyses.
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package in R (http://cran.r-project.org/package=survival)
was applied to carry out a log-rank test and univariate
assays.

2.4. Establishment of the Prognosis Gene Signature. We
collected the sequencing data and clinical data from TCGA
datasets. All patients with a follow-up period <60 days were
excluded for survival tests. LASSO methods were carried out
to construct a prognosis signature. Cox regression model
coefficients (M) multiplied with the levels of genes: the risk
scores = ðM gene 1 × levels of gene 1Þ + ðM gene 2 × levels of
gene 2Þ + ðM gene 3 × levels of gene 3Þ +⋯+ðM gene n ×
levels of gene nÞ. The optimal cut-off values were determined
by the use of survminer R package. Finally, Kaplan-Meier
tests were carried out to study the prognosis value of risk
score in HCC patients.

2.5. Functional Enrichment Investigation. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment investigation were performed
between HCC specimens and nontumor specimens by the
use of the “clusterProfiler” R package [16]. GO terms and
KEGG pathways with p values <0.05 had statistical
significance.

2.6. Tumor IMmune Estimation Resource (TIMER) Database
Investigation. We analyzed risk score and the correlation of
risk score with the abundance of infiltrating immune cells
in HCC patients via the TIMER algorithm databases [17].
As an important element, tumor purity influenced the inves-
tigations of immune infiltration in HCC specimens via
genomic approaches.

2.7. Statistical Investigation. Statistical assays were carried
out by the use of R (version 4.0.2, RStudio Inc., Boston,
MA, USA) software packages. Student’s t-test was carried
out to compare whether genes exhibited a dysregulated level
between HCC specimens and nontumor specimens. Log-
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Figure 5: Identification of total genes having a correlation with survival in HCC using the top 10 reduced genes.(a) Patients with high
expression of CYP3A4 and FCN3 showed a longer total survival as compared with those having low expressions of CYP3A4 and FCN3.
(b) Univariate Cox regression analyses.
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rank tests were carried out to compare the possible
differences between low and high-risk groups. Kaplan-
Meier curve was carried out for the visualization the
survivals. Receiver operating characteristic (ROC) tests were
carried out for the determination of the accuracy of the
prognosis signature applying the R “timeROC” package.
The value of p < 0:05 and FDR < 0:05 had statistical
significance.

3. Results

3.1. Identification of Genes with Differential Expressions in
HCC. To analyze genes with differential expressions in
HCC, we analyzed TCGA datasets and identified 280 genes
with differential expressions (125 increased genes and 155
reduced genes) in HCC using log2 ðFCÞ > 4 and p < 0:05.

Heat map (Figure 1(a)(and Volcanic map (Figure 1(b))
showed the expressing pattern of the genes with differential
expressions in HCC. Then, we performed GO and KEGG
tests using the above 280 genes. As shown Figure 2(a),
KEGG tests revealed that 125 increased genes were mainly
enriched in p53 signaling pathway, viral carcinogenesis,
pyrimidine metabolism, and microRNAs in cancer. 155
reduced genes were mainly enriched in tyrosine metabolism,
tryptophan metabolism, steroid hormone biosynthesis, and
retinol metabolism (Figure 2(b)). GO tests revealed that
the 125 increased genes were mainly involved in spindle
organization, spindle assembly, sister chromatid segregation,
and regulation of nuclear division (Figure 2(c)), and 155
reduced genes were mainly involved in xenobiotic metabolic
process, stress response to metal ion, stress response to cop-
per ion, and steroid metabolic process (Figure 2(d)).
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Figure 6: Identification of disease-free genes having a correlation with survival in HCC using the top 10 reduced genes. (a) Low expression
of FCN3 had a correlation with poor prognosis of HCC patients. (b) Univariate Cox regression analyses.
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3.2. The Prognosis Value of the Top 10 Dysregulated Genes in
HCC Patients. To screen possible prognosis biomarkers in
HCC patients, we analyzed the association between the top
10 dysregulated gene and total survivals of HCC patients
using TCGA datasets. All HCC patients were divided into
two groups (high and low) based on the mean expression
of FCN3, CDC20, and E2F1. We observed that the high
expression of UBE2C, CDC20, SFN, AKR1B10, and E2F1
had a correlation with a shorter total survival (Figures 3(a)
and 3(b)), which was also confirmed by the use of univariate
Cox regression analyses (Figure 3(c)). In addition, we found
that the high expression of E2FF1, CDC20, and UBE2C had
a correlation with a shorter disease-free survival in HCC
patients (Figure 4(a)), which was also confirmed by the use
of univariate Cox regression analyses (Figure 4(b)). Then,
we analyzed the top 10 highly expressed genes in HCC and

observed that the high expression of CYP3A4 and FCN3 in
HCC specimens predicted a longer total survival
(Figure 5(a)), which was also confirmed by the use of univar-
iate Cox regression analyses (Figure 5(b)). Moreover, we
found that just the FCN3 expression had a correlation with
disease-free survival of HCC patients, which was also con-
firmed by the use of univariate Cox regression analyses
(Figures 6(a) and 6(b)). In order to further demonstrate their
prognosis value in HCC, we further downloaded ICGC data-
sets, including 240 HCC patients. The results of survival
tests revealed that the high expression of GPC3, UBE2C,
E2F1, and CDC20 had a correlation with a shorter total
survival in HCC patients (Figures 7(a) and 7(b)). In addi-
tion, the high expression of FCN2, CYP1A2, FCN3,
MT1G, and CYP3A4 had a correlation with a longer total
survival in HCC patients (Figures 8(a) and 8(b)).
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Figure 7: The prognosis value of the top 10 overexpressed genes in HCC from ICGC datasets. (a, b) CPC3, UBE2C, E2F1, and CDC20 were
identified as OS-related genes.
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3.3. The Expression of the Critical Genes in HCC. We ana-
lyzed the prognosis value of the top 10 dysregulated genes
in HCC patients and identified three critical genes, including
FCN3, CDC20, and E2F1, which were confirmed to be asso-
ciated with long-term survival in both TCGA and ICGC
datasets. As shown in Figure 9(a), we found that the FCN3
expression was reduced in HCC specimens, while the
expression of CDC20 and E2F1 was upregulated in HCC
specimens. The above findings were further demonstrated
by the use of ICGC datasets (Figure 9(b)).

3.4. Establishment of the Two-Gene-Based Prognosis Gene
Signature in HCC Patients. The LASSO model was applied
to screen the most useful prognosis genes from the above
three genes, including FCN3, CDC20, and E2F1. The opti-
mal gene signature consisting of two prognosis DEGs (i.e.,
CDC20 and FCN3) as well as the corresponding coefficients
were identified (Figures 10(a) and 10(b)). Among three sig-
nature genes, CDC20 was promotive, and FCN3 was protec-
tive. The expressions of CDC20 and FCN3 and
corresponding coefficients from the LASSO model were

applied to examine the individual-level risk scores for all
samples as following: risk score = −0:031 × expression of
FCN3 + 0:2477 × expression of CDC20. After collecting
two-gene-based risk scores, we further develop a prognosis
classifier to divide HCC patients into two groups (high and
low risk). The risk curve is plotted in Figure 10(c). Clinical
tests revealed that patients in high-risk groups exhibited a
shorter OS than those in low-risk groups (Figure 10(d)).
The diagnostic value was shown in Figure 10(e).

3.5. Pertinence of Risk Score and Immune Infiltration Level in
HCC. The distribution of tumor-infiltrating lymphocytes has
been demonstrated to be a critical predictor for tumor
metastasis and long-term survivals of HCC patients [18,
19]. We carried out TIMER databases to examine the
relationship between risk score and immune infiltration
abundance in HCC and observed that risk score was posi-
tively correlated with infiltration degree of B cells, T cell
CD4+ cells, neutrophil, macrophage, and myeloid dendritic
cells (Figure 11).
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Figure 8: The prognosis value of the top 10 reduced genes in HCC from ICGC datasets. (a, b) FCN2, CYP1A2, FCN3, MT1G, and CYP3A4
were identified as OS-related genes.
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4. Discussion

Cancer remains the major public health burden which
counts for one in four deaths in the United States [20, 21].
The etiology of HCC is associated with complex risk factors
including genetic factors, environmental factors, and virus
infections, which are responsible for lacking of sensitive
and robust biomarkers for the early detection of HCC [22,
23]. It is of great interest in identifying reliable and informa-
tive prognosis biomarkers for cancer patients to provide
valuable information for clinical decision-making.

Thanks to TCGA and ICGC datasets, we had the ability
to perform comprehensive investigation on many sequenc-
ing data of a large number of tumor samples. The present
study performed R and identified 1991 increased genes and
573 reduced genes. KEGG tests revealed that these dysregu-
lated genes were widely associated with tumor-related
pathway, such as p53 signaling pathway, human immunode-
ficiency virus 1 infection, and glycolysis [24, 25]. Then, we
focused on the top 20 abnormally expressed genes in HCC.
Via a series of survival tests, we identified three critical

genes, including CDC20, E2F1, and FCN3. The above three
genes not only exhibited a dysregulated level in HCC but
also had a correlation with total survival and disease-free
survival in both TCGA and ICGC datasets. Our findings
suggested them as novel prognosis biomarkers for HCC
patients.

Previously, several studies have reported the function of
the three genes in several tumors, including HCC. For
instance, CDC20 was reported to be highly increased and
served as an unfavorable prognosis marker in HCC samples.
Knockdown of CDC20 noticeably promoted the radiation
efficacies on the growth retardation in HCC cells via regulat-
ing Bcl-2/Bax signal, and the expressions of CDC20 were
noticeably reduced due to the overexpression of P53 through
radiation [26]. Yu et al. reported that E2F1, which was
highly expressed in HCC, mediated DDX11 transcriptional
activation facilitates HCC cells’ invasion, migration, and
proliferation via PI3K/AKT/mTOR pathway [27]. In addi-
tion, the potential of FCN3 acting as novel prognosis
biomarker was also reported in several tumors, including
HCC [28–30]. These findings indicated E2F1 and CDC20
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Figure 9: The expression of the critical genes having a correlation with survival in HCC. The FCN3 expression was noticeably reduced in
HCC specimens, while CDC20 and E2F1 showed a decreased expression based on (a) TCGA datasets and (b) ICGC datasets.
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Figure 11: Relationship of risk score to immune infiltration level in HCC. Risk score has a distinct positive association to infiltrating levels
of B cells, T cell CD4+ cells, neutrophil, macrophage, and myeloid dendritic cells in HCC.
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as tumor promoters in HCC, which was consistent with our
findings that they predicted a poor prognosis of HCC
patients. On the contrary, we observed that FCN3 expres-
sion was noticeably reduced in HCC in both TCGA and
ICGC datasets, and its downregulation predicted a poor
prognosis. Our findings suggested the above genes many
exhibited a different function on the progression HCC. Fur-
ther experiments were needed to further demonstrate our
findings.

Over the past few years, increasing studies found that the
prognosis model based on several critical genes displayed a
high sensitivity than a single gene. Several bioinformatic
investigations in HCC have previously been carried out in
accordance with wide perspectives. A four-gene signature
(CENPA, SPP1, MAGEB6, and HOXD9) and a six-gene sig-
nature (GLS, SRXN1, SMG5, VNN2, AHSA1, and SQSTM1)
were demonstrated to show an important value in predicting
the total survivals of HCC patients [31, 32]. The present
study performed LASSO regression model and identified
CDC20 and FCN3 for the factors of developing the progno-
sis model. We observed that patients with high risk showed a
shorter total survival as compared with those having a low
risk. Importantly, according to the results of ROC tests, we
found that the area under the curve (AUC) was 0.734 for
one-year survival and 0.663 for three-year survival in the
training group of TCGA, highlighting its potential used as
a novel prognosis model for HCC patients.

Ordinarily, the immune system possesses a strong ability
in eliminating tumor cells in tumor microenvironment [33].
Unfortunately, tumor cells have developed many powerful
methods to avoid the attack of immune system. Tumor
immunotherapy can enhance the ability of immune system
targeting tumor cells, such as cellular treatments, therapeutic
antibodies, and cancer vaccines [34, 35]. Tumor-infiltrating
immune cells (TIICs) exhibited a functional effect on the
clinical outcomes of patients in many types of tumors [36,
37]. In order to explore the associations between risk score
and TIICs, TIMER was carried out. Importantly, we
observed a distinct association between risk score and sev-
eral types of immune cells, including B cells, T cell CD4+
cells, neutrophil, macrophage, and myeloid dendritic cells.
Overall, our signature may be involved in immune responses
via modulating immune cells.

Nevertheless, several limitations here are worth men-
tioning. First of all, LASSO may ignore some important
factors affecting the prognosis of HCC in the process of
adjusting the weight of regression coefficients. Secondly,
the samples lacked some clinical follow-up information; so,
this study did not consider the presence of other health con-
ditions to distinguish prognostic biomarkers. Based on this,
we need further genetic and experimental studies, larger
samples, and experimental validation.

5. Conclusion

We identified three critical genes (FCN3, CDC20, and E2F1)
involved tumor prognosis in HCC patients. They were
demonstrated to exhibit a dysregulated level in HCC and
may be used a new biomarker. We further developed a novel

prognosis mode based on CDC20 and FCN3. The signature
provides a novel insight into immune-related genes in HCC
and identifies potential biomarkers for prognosis and
immunotherapy.
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