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Thyroid cancer as the malignant tumor with the highest incidence in the endocrine system also shows a fast growth and
development. In this work, we developed a new method to identify copy number variation– (CNV–) driven differentially
expressed lncRNAs in thyroid cancer for predicting cancer prognosis. The data of RNA sequencing, CNV, methylation,
mutation, and clinical details of thyroid cancer were obtained from the Cancer Genome Atlas database (TCGA). Molecular
subtypes were clustered by iClusterPlus. Weighted gene co-expression network analysis (WGCNA) was employed to show co-
expression modules. DEseq2 was conducted to identify protein coding genes (PCGs) and differentially expressed lncRNAs.
CNV was detected using GISTIC 2.0. Three molecular subtypes were identified, and 68 differentially expressed lncRNAs
(DElncRNAs) related to cancer were found among different molecular subtypes. CNV of FOXD2-AS1, FAM181A-AS1, and
RNF157-AS1 was associated with overall survival and was involved in cancer-related pathways. These three DElncRNAs
discovered based on CNV could serve as prognostic biomarkers to predict prognosis for thyroid cancer and new targets to
explore molecular drugs.

1. Introduction

Thyroid cancer, which is a common thyroid malignancy, can
be classified into medullary cancer, papillary cancer, undif-
ferentiated cancer, and follicular cancer by pathological
classification. According to the statistics of cancer in 2018,
567,000 new cases of thyroid cancer occurred worldwide,
accounting for 3.1% of all new cancer cases of the year. Fol-
licular carcinoma and papillary thyroid carcinoma com-
posed the majority of all thyroid cancer [1, 2]. Although
most patients have a positive prognosis and survival after
treatment, lymph node metastasis is common as well, and
patients are prone to develop into advanced cancer and
recurrence. Therefore, it is important to study its specific
pathogenesis to guide new treatments [3]. Sufficient evi-
dence indicated that the development and progression of
papillary thyroid carcinoma is not only affected by environ-

mental and genetic susceptibility factors, but also by genetic
changes [4].

Long noncoding RNAs (lncRNAs), a group of RNAs
with a length over than 200 nucleotides, play a critical role
in gene expression regulation. In recent years, a number of
studies showed that lncRNAs are closely involved in the
development and progression of cancers [5–7]. LncRNAs
have been considered promising biomarkers for cancer
detection and prognosis follow-up [8–10]. For example, the
expression level of H19 is promoted in multiple cancers,
for example, cervical cancer, breast cancer, and bladder can-
cer. H19 expression is also higher in thyroid cancer tissue
than in normal tissue, which may promote the migration
of thyroid cancer cells [11, 12]. Abnormal expression of
lncRNA OIP5-AS1 in thyroid cancer tissues suggests its
potential of serving as a molecular biomarker for thyroid
cancer [13].

Hindawi
Journal of Immunology Research
Volume 2022, Article ID 9203796, 18 pages
https://doi.org/10.1155/2022/9203796

https://orcid.org/0000-0002-5336-1884
https://orcid.org/0000-0002-8721-4460
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9203796


As an important genetic variation, genome copy number
variation (CNV) has specific changes in progression of cer-
tain cancers and has become an important characteristic of
tumors. CNV refers to the submicroscopic mutation of
DNA fragments from KB to Mb, mainly including replica-
tion, deletion, embedding, and complex multisite variation
[14]. Redon et al. [15] filtered about 1500 CNVs regions in
270 samples, accounting for about 10% of the human
genome and included coding and noncoding regions. In
recent years, copy number variation has been found in
tumors, and some studies have made breakthrough discover-
ies. For example, Ye et al. reported that medullary thyroid
cancer is relevant to the changes in DNA copy number
[16]. One study found that DNA copy number variation is
a characteristic of malignant and benign thyroid tumors
and that the segmentary expansion of chromosomes (Ch)7
and 12 is less common in follicular variant papillary thyroid
cancers or typical papillary thyroid cancers than in follicular
adenomas. In addition, the deletion in Ch22 has been
detected in a subgroup of follicular adenoma and follicular
variant thyroid papillary carcinoma [17]. However, the role
of genome-level changes in the number of DNA copies in
the pathogenesis of tumors is still controversial and can only
explain the pathogenesis of certain patients [18], indicating
that the mechanism of CNVs for tumor genesis is not well
understood, especially the high-frequency genome variation
in the desert region of the tumor, which is less studied.
Therefore, the pathogenic mechanism of CNVs for abnor-
mal expression of noncoding RNA, especially lnc RNA,
requires further research.

Combining correlation analysis of CNV and lncRNA
expression, we found that lncRNAs showing a transcrip-
tional imbalance played a critical role in the biological pro-
cess of thyroid cancer. We identified three CNV-related
lncRNAs as prognostic biomarkers for predicting prognosis
of thyroid cancer. Moreover, these prognostic lncRNAs
could provide inspiration to discover novel molecular drugs
for thyroid cancer treatment.

2. Materials and Methods

2.1. Large-Scale Data Selection. A total of 500 thyroid cancer
samples were included in this study. 354 (70.8%) had thyroid
papillary-classical/usual carcinoma, 101 cases (20.2%) had
thyroid papillary carcinoma-follicular patterned (≥99.0%),
36 cases (7.2%) had thyroid papillary carcinoma-tall cell
(≥50.0% tall cell features) type, and 9 cases (1.8%) were diag-
nosed with other unknown tissue type.

From the Cancer Genome Atlas (TCGA) Genomic Data
Commons (GDC) database (https://gdc.cancer.gov/
developers/gdc-application-programming-interface-api)
CNV data, CpG data, RNA-seq data, clinical follow-up
information, and mutation data of thyroid cancer were col-
lected. Firstly, to process RNA-Seq data, counts data and
all fragments per kilobase million (FPKM) data were
obtained. FPKM was converted to transcripts per kilobase
millions (TPM). Messenger RNA of lncRNA, 3prime_over-
lapping_ncRNA, sense_overlapping, antisense, processed_
transcript, and sense_intronic were regarded as lncRNAs

according to the gene types in genecode.v22.gtf file. In this
way, the FPKM expression profile of lncRNAs was extracted.
Also, the FPKM expression profiling of protein-coding genes
(PCGs) was acquired. After obtaining the expression profile
of all 450 k samples, CpG probes with NA in the expression
of samples, CpG probes with cross-reactive site samples, and
CpG probes on sex chromosomes and single nucleotide sites
were removed from the CpG data. From TCGA GDC, the
CNVs of all samples without type differences were down-
loaded. MuTect [19] software processed-single nucleotide
mutation data were obtained from TCGA GDC (see
Figure 1 for the flow chart of this study).

2.2. Univariate Survival Analysis. The influence of CNV,
methylation, and coding genes on the cancer prognosis was
analyzed independently to better classify the samples. We
selected samples with a follow-up time longer than 30 days.
Based on univariate COX proportional hazard regression
(threshold: P = 0:05), a model was established. 3074 CNV
regions, 40,150 CpG sites, and 1447 coding genes were
finally screened.

2.3. Identification of Molecular Subtypes and Differential
Analysis of lncRNA and PCGs. The CNV, prognostic coding
genes and methylation sites were obtained by univariate sur-
vival analysis, and from the three common omics samples, a
total of 500 samples were obtained. Multi-cluster analysis in
R software package iClusterPlus [20] was conducted, and the
number of classification was selected to be 3. Next, differen-
tially expressed lncRNAs and PCGs in different subtypes
were analyzed using R software package DEseq2 [21]. In
the expression profile, the genes showing an average
Count<1 were removed. In each subtype, the threshold of
false discovery rate (FDR)<0.05 and fold change more than
twice was applied to identify PCGs and the differentially
expressed lncRNAs (DElncRNAs).

2.4. Weighted Gene Co-Expression Network Construction. To
mine the co-expression module based on lncRNA expres-
sion profiles and differentially expressed PCGs, WGCNA
co-expression algorithm in the R package WGCNA (http://
www.r-project.org/) was employed [22]. By approximate
scale-free topology criteria, we determined the soft thresh-
old. Adjacency matrix was converted to topological matrix
(TOM). Next, average-linkage hierarchical clustering was
employed to cluster genes. Finally, we used dynamic tree
cut method to determine module eigengenes with at least
30 co-expressed genes.

2.5. Identification of CNV-Driven lncRNAs. Visualization of
regions in the genome by the Genomic Identification of Sig-
nificant Targets in Cancer (GISTIC) [23] shows the deletion
or amplification in thousands of samples. Thus, the copy
number data of 505 TCGA thyroid cancer cases were ana-
lyzed by GISTIC 2.0 software. Firstly, the copy number spec-
trum of lncRNAs was developed. The copy number was
amplified when >1, and a copy number deletion was defined
when and the copy number≤ -1. The ratio of amplification
to deletion in the lncRNAs was determined, and the distri-
bution in genome was observed.
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2.6. Functional Pathway Enrichment Analysis in Module.
The functions of hub genes in the module were examined.
By loading “anRichment” package in R [20], the gene ontol-
ogy (GO) enrichment analysis was conducted. P < 0:05 was
the threshold.

2.7. Gene Set Enrichment Analysis. Gene set enrichment
analysis (GSEA) [24] was performed and mapped into path-
way enrichment database of Kyoto Encyclopedia of Genes
and Genomes (KEGG) to study mechanisms of DElncRNAs
in TCGA and GSE33630. Here, the cutoff was FDR < 0:05.

2.8. Statistical Analysis. Kaplan-Meier was used to plot sur-
vival curves using log-rank test. A significance was defined
as P < 0:05. ROC analysis was conducted by using pROC R
package [25]. Unless otherwise stated, all the analyses were
carried out in R 3.4.3 under default parameters.

3. Results

3.1. Identification of Three Molecular Subtypes Based on
Prognostic Methylation Sites, CNV, and PCGs. We identified
differentially expressed CNV, methylation sites, and PCGs

related to prognosis by comparing cancer samples to normal
samples, and they were used as a basis to construct molecu-
lar subtypes using iClusterPlus. Three molecular subtypes
were obtained (Table 1). From the Kaplan-Meier survival
curve, obvious prognostic differences among the three
molecular subtypes could be observed (Figure 2(a)). Further-
more, gene mutations in different subtypes were determined.
In each subtype, 20 genes showing the highest mutation
were selected, and a total of 42 genes were acquired. The
intersection between the 20 genes with the highest mutation
frequency was determined from the three subtype samples
(Figure 2(b)). Also, the mutations of these 42 genes in vari-
ous subtypes were visualized (Figure 2(c)). In addition, we
used the R software package estimate to evaluate the
immune microenvironment infiltration score of each
patient. By analyzing the difference of the immune microen-
vironment infiltration scores of the three subtypes, we can
observe that cluster2 has the significantly highest immune
infiltration (Figure 2(d)). Using the R software package
cibersort to evaluate the score of immune cell infiltration
in 22, it can be observed that T_cells_regulatory_(Tregs)
and Macrophages_M0 in cluster2 have the significantly
highest infiltration score and cluster2 has the significantly
lowest immune infiltration score in T_cells_CD4_memory_
resting and Macrophages_M2. These results show that these
three molecular subtypes have different immune microenvi-
ronment characteristics.

3.2. DElncRNAs and PCGs Were Identified from the Three
Molecular Subtypes. We obtained 3254 PCGs and 2396

Validation

TCGA dataset

RNA-seq data (N = 500) CNV data (N = 500) Methylation data (N = 500)

Survival analysis

GSE33630

Mutation characteristic analysis

C3
(N = 131)

C2
(N = 175)

C1
(N = 194)

Differential expression analysis

Weight co expression analysis

CNV-related lncRNA

LncRNA-based prognostic biomarkers

iClusterplus analysis

KEGG pathway analysis

Figure 1: The flow chart of this study.

Table 1: Number of samples of three subtypes.

Cluster Sample count

C1 194

C2 175

C3 131
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Figure 2: Continued.
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DElncRNAs in the molecular subtypes using DEseq2.
(Table 2) and constructed a volcano map based on DElncR-
NAs screened from the three subtypes (Figures 3(a)–3(d)).
In each subtype, the number of lncRNA and PCGs differ-
ences was counted, and we found that lncRNAs differences
were generally smaller than PCGs differences (Figure 3(e)).
Also, lncRNAs associated with the cancer were downloaded
from Lnc2Cancer and LncRNADisease. 611 lncRNAs were
acquired and compared with 2396 lncRNAs in different sub-
types. There are 68 shared lncRNAs (Figure 3(f)). Further-
more, we performed GSEA analysis according to the
absolute value of the difference multiple of lncRNA in each
subtype as the rank. The data indicated that the differentially
expressed lncRNA was clustered in the gene concentration

with large difference multiple (Figures 3(g)–3(j)). Finally,
between the tumorous and healthy samples, the intersection
of the three subtypes and DElncRNAs was analyzed; here,
the two showed a large intersection (Figure 3(k)).

3.3. Identification of Co-Expression Modules Base on
Differentially Expressed PCGs and lncRNAs. Firstly, hierar-
chical clustering on the samples was performed. Samples
with a distance of more than 100,000 were screened as out-
liers, and 560 samples were obtained (Figure 4(a)). The co-
expression network conformed to the scale-free network, as
shown by the current data. To further ensure a scale-free
nature of the network, ꞵ = 4 was selected (Figures 4(b) and
4(c)). R package WGCNA showed 24 modules
(Figure 4(d), Table 3). Note that the grey module cannot
be aggregated into other modules. In 23 modules, the histo-
gram of relative multiples of lncRNA ratio to PCG showed
no significant difference between lncRNA and genes in each
module (Figure 4(e)). Further, the relationship of clinical
status with modules was analyzed, and the modules are
related to at least one phenotype, except dark red, cyan,
tan, black, royal blue, and light yellow (Figure 4(f)). Modules
related to at least three phenotypes were selected, yellow and
purple, for subsequent analysis. Next, the unctional enrich-
ment analysis was conducted on yellow and purple modules.
In the yellow module, the top 20 GO terms enriched were
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Figure 2: Molecular subtypes were identified by multi-omics analysis. (a) KM curves for disease-free survival of 3 molecular subtypes. (b) A
Venn diagram for the top 20 genes showing the highest mutations in each molecular subtype. (c) Heat maps of the top 20 genes with the
highest mutations in each molecular subtype. (d) The distribution of immune infiltration microenvironment scores of the three subtypes was
different. (e) Distribution difference of three subtypes in 22 immune cell infiltration scores.

Table 2: Differential expression of PCG and lncRNA.

Type C1 C2 C3 All

PCG_Down 1290 1165 817 898

PCG_Up 988 1179 859 1032

PCG_All 2278 2344 1676 1930

Lnc_Down 922 887 614 667

Lnc_Up 734 860 620 740

Lnc_All 1656 1747 1234 1407
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Figure 3: Continued.

6 Journal of Immunology Research



mainly associated with cell proliferation and vascular system
(Figure S1A). The top 20 pathways were mainly related to
ligand-receptor interaction, PI3K−Akt, MAPK, and other
pathways (Figure S1B). In the purple module, the top 20
GO terms enriched were mainly correlated with
extracellular matrix and cell differentiation (Figure S1C).
Among the top 20 pathways enriched, the most significant
pathways were ECM-receptor interaction, PI3K-Akt, and
Wnt signaling pathways (Figure S1D).

3.4. Identification of lncRNAs Driven by CNV. A sum of 505
TCGA thyroid cancer copy number were analyzed by GIS-
TIC. The distribution of copy numbers across the genome
were observed and found that the proportion of copy num-
ber amplification on chromosomes 1, 7, 12, 12, 16, and 17
was larger and the copy number deletion was the highest
on chromosomes 9, 13, and 22 (Figure 5(a)). Furthermore,
the correlation distribution of copy number and lncRNA
expression profile was calculated. An overall positive corre-
lation trend of the copy number and lncRNA expression
and a significantly higher distribution than random were
observed (Figure 5(b)). We identified frequently changing
regions in the genome of thyroid cancer. Many lncRNAs

showed significant multiple copies or significant deletions,
while compared with copy amplification regions, lncRNA
deletions were more frequent (Figures 5(c) and 5(d)). To
further reveal the correlation of copy number with lncRNA
expression, in each sample, 119 lncRNAs showing a copy
number ratio of more than 7% were selected. Differences
in expression of lncRNAs in the copy-amplified or copy-
deficient samples as well as in the samples with normal cop-
ies were explored. LncRNAs whose expression was greater
than 0 in at least 50% of the samples were selected, and
finally 50 lncRNAs that met the conditions were retained.
Among them, 20 lncRNAs were copy-amplified
(Figure 6(a)), most of which were high-expressed in the
copy-amplified samples. 30 lncRNAs were copy-deleted
(Figure 6(b)), a great majority of which were significantly
low-expressed in the copy-deleted samples. These results
suggested that lncRNA copy changes were positively corre-
lated with lncRNA expression.

3.5. Three lncRNAs Were Associated with Prognostic in
Thyroid Cancer Were Determined. In order to systematically
identify the prognostic markers of lncRNA, the criteria for
inclusion were that lncRNAs showing a copy number
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Figure 3: Identification of differentially expressed in lncRNAs and PCGs of different subtypes. (a–c) Volcano map of differentially expressed
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change of more than 0.1% in each sample, differential
lncRNAs in at least three subtypes and positive correlation
of expression of lncRNAs with the copy number. Here, 8
lncRNAs significantly associated with prognosis were
screened (Table 4).

Further, the effectiveness of the 8 lncRNAs in prognostic
classification was analyzed, according to their expression in
each sample, and then we screened a total of 3 lncRNAs with
AUC greater than 0.55 (Figures 7(a)–7(c)). KM survival
curve showed that only FOXD2-AS1 neatly grouped the
samples into two risk groups (high, low) (Figures 7(d)–7(f
)). ssGSEA was used to perform enrichment analysis on
KEGG pathway of each sample and screened the top 20
KEGG pathway showing the highest correlation with
lncRNA expression. The top 20 KEGG pathway correlation
coefficients of the three lncRNAs were higher than 0.23,
0.34, and 0.47, respectively (Figures 7(g)–7(i)). There were
4 positive correlations with FOXD2-AS1, including P53 sig-
naling pathway, cell cycle, and other cancer-related path-
ways, and 16 negative correlation pathways mainly related
to metabolism. In FAM181A-AS1 and RNF157-AS1 and
P53 signaling pathway, cell adhesion molecules functioning
similar to cancer-related pathways were all negatively corre-
lated. In addition, there were significant differences in the
expression of the three lncrnas among the three subtypes.
ENSG00000267128 (RNF157-AS1) and ENSG00000258584
(FAM181A-AS1) were significantly overexpressed in clus-
ter3, and ENSG00000237424 (FOXD2-AS1) was signifi-
cantly overexpressed in cluster1 (Figure 7(j)). In short, the
expression of these three lncRNAs was greatly involved in
the cancer initiation and progression.
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Figure 4: Identification of co-expression modules based on differentially expressed PCGs and lncRNAs. (a) Cluster analysis on the samples.
(b–c) Network topology analysis for different soft-thresholding powers. (d) Module colors and gene dendrogram. (e) Histogram of relative
multiples of lncRNA ratio to PCG ratio in 23 modules. The horizontal axis is the multiple of the lncRNA ratio to the PCG ratio in the
module, vertical axis is module, and the values on the right are significant P values. (f) Correlation between 24 modules and clinical
phenotype.

Table 3: PCGs and lncRNA in modules.

Module All Lnc PCG P value Fc

Blue 579 229 350 0.935 0.889

Light cyan 61 23 38 0.809 0.822

Black 162 74 88 0.219 1.142

Royal blue 44 18 26 0.636 0.940

Green yellow 90 30 60 0.970 0.679

Grey60 58 23 35 0.710 0.892

Grey 744 316 428 0.500 1.003

Turquoise 1832 790 1042 0.234 1.030

Green 239 105 134 0.336 1.064

Brown 562 256 306 0.061 1.136

Cyan 70 35 35 0.121 1.358

Red 188 83 105 0.338 1.074

Purple 105 47 58 0.346 1.101

Yellow 276 115 161 0.624 0.970

Salmon 77 36 41 0.253 1.192

Midnight blue 67 29 38 0.489 1.036

Magenta 106 43 63 0.685 0.927

Dark red 36 15 21 0.599 0.970

Dark green 35 12 23 0.875 0.709

Tan 78 33 45 0.551 0.996

Light yellow 50 21 29 0.577 0.983

Light green 51 13 38 0.996 0.465

Dark turquoise 33 13 20 0.699 0.883

Pink 107 37 70 0.961 0.718
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3.6. Validation of Three lncRNAs in GSE33630. For further
verifying the role of the three CNV-related lncRNAs in thy-
roid cancer, a dataset GSE33630 including 60 thyroid sam-
ples and 45 normal samples was downloaded from GEO.
The reannotation data revealed a significantly high expres-
sion of FOXD2-AS1 in thyroid cancer samples
(Figure 8(a)). FAM181A-AS1 and NF157-AS1 showed a
low expression in tumor samples (Figures 8(b)–8(c)). Mean-
while, functional enrichment analysis demonstrated that the
correlation coefficients of the top 20 KEGG pathway were
above 0.36, 0.24 and 0.71, respectively (Figures 8(d)–8(f)).
Among them, FOXD2-AS1 was positively correlated with
11 pathways, including ECM receptor interaction, MAPK
signaling pathway, and some other cancer-related pathways,
and negatively correlated with 9 pathways, mainly including

REGULATION_OF_AUTOPHAGY and metabolism-
related pathways. In FAM181A-AS1 and RNF157-AS1,
P53 signaling pathway and ECM receptor interaction were
negatively correlated with cancer-related pathways, which
further indicated that the expression levels of the three
lncRNAs were closely associated with cancer initiation and
progression.

3.7. Verification of the Relationship between the Three
lncRNAs and Prognosis. The overall survival rate of thyroid
cancer was noticeably high, and follow-up to the end of
the event was more than 10 years. Therefore, the cohort data
with survival information are rare at present. We also evalu-
ated the relationship between the lncRNAs and prognosis
from the clinical characteristics of the samples. We obtained

1

2

3

4

5

6

7

8

910

11

12
13

14

15

16
17

18
19

20
21

22
X Y

(a)

0
−1.0 −0.5 0.0

Persion correlation coefficients
0.5 1.0

20

40

p < 0.0001

Random LncRNA-CNV60

Fr
eq

ue
nc

y 80

100

120

(b)

1

2

3

4
5

6
7

8
9

10
11

12
13

14
15

161718
19202122

0.25 10−2 10−410−6 10−10

19q13.33

12q12

2p16.3

0.019

(c)

1

3

5

7

9

11

13
15
17
19
21

0.25 10−1 10−2 10−3

16q23.2
17p13.3
18q21.33

22q13.32

19p13.12
20p12.1

10q22.3
10q23.1

13q14.11

2q37.1
3p25.3

4q35.2

8p23.2

0.0088

2

4

6

8

10

12
14
16
18
20
22

(d)

Figure 5: Identification of lncRNAs driven by CNV. (a) Distribution of lncRNA copy deletions and amplification in the genome. (b)
Correlation distribution of CNV and expression of lncRNAs: light red represents the distribution under actual conditions, light blue
represents the distribution under random conditions, and the difference between the two distributions is assessed by the T-test. (c–d)
LincRNAs located in the focal CNA peaks are THCA-related. False-discovery rates (q values) and scores from GISTIC 2.0 for alterations
(x-axis) are plotted against genome positions (y-axis); the dotted lines show the centromeres. The deletions (right and blue) and
amplifications (left and red) of lincRNA genes are presented. The green line shows 0.25 q value cutoff point that determines significance.
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Figure 6: Different expression of lncRNA in copy amplified or deleted and normal copied samples. (a) 20 lncRNAs were copy-amplified,
most of which were highly expressed in the copy-amplified samples. (b) 30 lncRNAs were copy-deleted, and the vast majority of which
were significantly lowly expressed in the copy-deleted samples.
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a gene chip dataset GSE60542 from the GEO database,
matched the probe to the gene, extracted the expression pro-
file of the three lncRNAs, and evaluated the expression dif-
ference of the three lncRNAs in the early and late samples.
FOXD2-AS1 was found to be significantly overexpressed in
the late samples, and FAM181A-AS1 was significantly over-
expressed in the early samples (Figure S2A). In addition, a
significant negative correlation between FAM181A-AS1
and lymph node metastasis was observed (Figure S2B).
These results suggested that FOXD2-AS1 was a risk factor
and FAM181A-AS1 was a protective factor.

Furthermore, a set of TCGA sample exon quantification
dataset (https://xenabrowser.net/datapages/?dataset=TCGA
.THCA.sampleMap%2FHiSeqV2_exon&host=https%3A%
2F%2Ftcga.xenahubs.net&removeHub=https%3A%2F%
2Fxena.treehouse.gi.ucsc.edu%3A443) was supplemented.
The average expression level of the three lncRNA exons of
each sample was evaluated. Among them, only FAM181A-
AS1 and RNF157-AS1 were detected; therefore, the correla-
tion of the prognosis with expression of these two lncRNAs
was verified. The optimal truncation value of each lncRNA
expression was obtained using Maxstat, R software package.
We observed that the low expression group was associated
with poor prognosis (Figure S2C), which was consistent
with previous results.

4. Discussion

In this study, we provided a comprehensive set of dysregu-
lated lncRNAs driven by CNV in thyroid cancer. Three
molecular subtypes with differential prognosis of thyroid
cancer patients were categorized using multi-omic data.
These three subtypes have significantly different molecular
characteristics and prognosis. Cluster2 patients have the
highest immune microenvironment score, and cluster2 has
the lowest immune microenvironment score. These differ-
ences may lead to different benefits in immunotherapy and
may also be an important reason for the different prognosis
of these patients. 2396 DElncRNAs from the molecular sub-
types were obtained. There were many regions in the thyroid
cancer genome with multiple copies or significant deletions
of lncRNAs. Furthermore, three CNV-driven lncRNAs
showed a significant correlation to overall survival, and the
dysregulated lncRNAs driven by CNV were involved in

some critical biological functions in thyroid cancer, such as
cell cycle, metabolism pathways, and P53 signaling pathway,
indicating that they may be potential clinical biomarkers of
prognosis.

As a common structural variation in human genome,
CNV has been regarded as an important contributing factor
to caner development [26, 27]. Panebianco et al. found a
higher TERT promoter CNV in advanced thyroid cancer
[28]. Five CNV-related genes (VEZT, NDUFA12, GDF3,
FGD6, and NR2C1) have been identified as the most effec-
tive genes to distinguish FAs from PTCs/FVPTCs, as they
could correctly classify 90% of the cases [17]. CNV loss on
the FMN2 gene promotes lymph node metastasis in medul-
lary thyroid carcinoma family [29]. However, no studies
have been performed on lncRNA CVA in thyroid cancer.
In ovarian cancer prognosis-correlated, lncRNAs as novel
biomolecular markers have been discovered for based CNV
analysis [30]. In this study, for the first time, the prognostic
indicators of thyroid cancer were identified based on
lncRNA CNV. CNV-driven lncRNAs may contribute to thy-
roid cancer development and have the potential of serving as
biomarker for thyroid cancer diagnosis.

Three copy number-related lncRNAs (FOXD2-AS1,
FAM181A-AS1, and RNF157-AS1) significantly correlated
with thyroid cancer survival were identified. FOXD2-AS1
was high-expressed in thyroid cancer tissues and cell lines,
and this was related to tumor progression and metastasis
[31–33]. This was consistent with our findings that high-
expressed FOXD2-AS1 could predict a poor survival and that
tumor related pathways such as P53 signaling pathway and
cell cycle were mainly the KEGG enrichment pathways of tar-
get genes regulated by FOXD2-AS1, indicating that the analy-
sis of whole genome lncRNA CNV to identify prognosis of
thyroid cancer was an effective and reliable approach. How-
ever, no previous study investigated FAM181A-AS1 and
RNF157-AS1. Based on the current literature review and the
current findings, we hypothesized that CNV caused changes
in the three lncRNA expressions and affected the progression
of thyroid cancer through the regulatory mechanism of
ceRNA. We inversely searched the miRNAs targeting these
three lncRNAs from the Starbase database and observed that
there were 16 miRNAs targeting ENSG000000237424
(FOXD2-AS1). Further, we matched the protein coding genes
targeted by these 16 miRNAs. According to the Cerna

Table 4: LncRNAs with significant prognosis.

Symbol P value HR Low 95% CI High 95% CI CNV Rate DECount Pcc GPL570 Probe

FOXD2-AS1 0.007 0.454 0.261 0.790 0.008 4 0.01 224457_at

PGM5P3-AS1 0.033 2.043 1.081 3.859 0.020 3 0.01 239287_at

LOC102724714 0.013 2.141 1.201 3.817 0.022 4 0.03 NA

HAND2-AS1 0.015 2.158 1.195 3.896 0.016 4 0.02 239708_at

LOC100507144 0.032 1.861 1.069 3.240 0.026 3 0.12 NA

FAM181A-AS1 0.037 1.895 1.056 3.400 0.026 3 0.08 1557211_a_at

FENDRR 0.017 2.033 1.168 3.540 0.044 3 0.06 243059_at

RNF157-AS1 0.046 1.784 1.025 3.106 0.051 3 0.10 230776_at
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Figure 7: Continued.
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hypothesis, we constructed a statistical model to evaluate the
significance of the competition between lncRNA-mRNAs
and selected FDR<0.01 to obtain 50 genes, Further, we also
screened lncRNA-mRNA with significant positive correlation
and finally obtained 18 ceRNAs (Figure S2D). It can be
observed that FOXD2-AS1 and TEX22 share the most
miRNAs and high positive correlation. Those data suggested
that the three lncRNAs may be important marker for
thyroid cancer. Based on the above analysis, FAM181A-AS1
and RNF157-AS1 showed potential to help further reveal the
mechanisms of thyroid cancer.

However, our study still has the following limitations.
Clinical data and large datasets on thyroid cancer were

insufficient. A lack of basic research was another limitation.
Though the present analysis may not be the optimal, it
should be sufficient to conclude that CNV leading to
lncRNA dysregulation contributed to a poor prognosis of
thyroid cancer. Basic experimental research and more in-
depth functional research will be our future research
direction.

5. Conclusions

At present, no studies have reported the relation of thyroid
cancer with changes of lncRNA CNV. This study opened a
new methodology to discover prognostic biomarkers for
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Figure 7: Three lncRNAs were associated with prognosis in thyroid cancer. (a–c) ROC curve of FOXD2-AS1, FAM181A-AS1, and RNF157-
AS1 in the TCGA dataset. (d–f) KM survival curve of FOXD2-AS1, FAM181A-AS1, and RNF157-AS1 in the TCGA dataset. (g–i) KEGG
pathway analysis of FOXD2-AS1, FAM181A-AS1, and RNF157-AS1 in the TCGA dataset. (j) The expression and distribution of three
lncrnas were different in three molecular subtypes.
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Figure 8: Continued.
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thyroid cancer through combining lncRNA expression pro-
files with CNV data. FOXD2-AS1, FAM181A-AS1, and
RNF157-AS1 with abnormal CNV showed a difference on
thyroid cancer survival and may promote the cancer devel-
opment. Overall, this study identified three lncRNAs that
could serve as prognostic biomarkers and provided a new
insight into the possible mechanism of thyroid cancer
development.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that they have no competing interest.

Acknowledgments

This work was supported by Beijing Tsinghua Changgung
Hospital Fund under grant No.12017C1024.

Supplementary Materials

Supplementary 1. Figure S1: functional enrichment analysis.
(a) Top 20 GO term in the yellow module. (b) Top 20 KEGG
pathways in the yellow module. (c) Top 20 GO term in the
purple module. (d) Top 20 KEGG pathways in the purple
module.

Supplementary 2. Figure S2: verification of the relationship
between three lncRNAs and prognosis. (a) The expression
differences of the three lncRNAs in the early and late sam-
ples in the GSE60542 dataset. (b) Correlation between
FAM181A-AS1 expression and lymph node metastasis in
GSE60542 dataset. (c) The KM curve of FAM181A-AS1
and RNF157-AS1 expression and prognosis in the TCGA
exon dataset. (d) ceRNA network of 18 mRNAs associated
with FOXD2-AS1.
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