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Objective. To investigate the potential diagnostic and predictive significance of immune-related genes in IgA nephropathy (IgAN)
and discover the abnormal glomerular inflammation in IgAN.Methods. GSE116626 was used as a training set to identify different
immune-related genes (DIRGs) and establish machine learning models for the diagnosis of IgAN; then, a nomogram model was
generated based on GSE116626, and GSE115857 was used as a test set to evaluate its clinical value. Short Time-Series Expression
Miner (STEM) analysis was also performed to explore the changing trend of DIRGs with the progression of IgAN lesions.
GSE141344 was used with DIRGs to establish the ceRNA network associated with IgAN progression. Finally, ssGSEA analysis
was performed on the GSE141295 dataset to discover the abnormal inflammation in IgAN. Results. Machine learning (ML)
performed excellently in diagnosing IgAN using six DIRGs. A nomogram model was constructed to predict IgAN based on the
six DIRGs. Three trends related to IgAN lesions were identified using STEM analysis. A ceRNA network associated with IgAN
progression which contained 8 miRNAs, 14 lncRNAs, and 3 mRNAs was established. A higher macrophage ratio and lower
CD4+ T cell ratio in IgAN compared to controls were observed, and the correlation between macrophages and monocytes in
the glomeruli of IgAN patients was inverse compared to controls. Conclusion. This study reveals the diagnostic and predictive
significance of DIRGs in IgAN and finds that the imbalance between macrophages and CD4+ immune cells may be an
important pathomechanism of IgAN. These results provide potential directions for the treatment and prevention of IgAN.

1. Introduction

IgA nephropathy (IgAN) is inflammatory nephropathy
characterized by IgA deposition in the mesangial area of
the glomeruli [1]. It represents the most common primary
glomerular disease globally [2], and its prevalence varies
geographically, more frequent in Asian populations (45 mil-

lion people/year in Japan) than in Caucasians (31 million
people/year in France) [3]. Also, IgAN owns a higher inci-
dence in young adults [4], with 20-40% of patients subject
to end-stage renal disease within 10-20 years [5]. Worse still,
IgAN is a lifelong disease with severe signs and symptoms
closely associated with poor prognosis, posing a heavy men-
tal and financial burden to patients [6].
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It is crucial to make an early diagnosis of IgAN since
delayed diagnosis would contribute to a poor prognosis [7].
Nowadays, pathological biopsy represents the golden standard
in IgAN diagnosis, but the results are changeable with the
stage of the disease [8]. Besides, the pathological results are
sometimes uncertain, making IgAN diagnosis and evaluation
tricky. As such, an effective and reliable diagnostic method
for IgAN is all the more important. Currently, it has been doc-
umented that the occurrence and development of IgA are
closely related to genetic [9, 10]. As the microarray technique
plus bioinformatics advances, it is a good approach to utilize
genes to make a diagnosis and risk assessment for IgAN.
Marker genes can not only help us diagnose, but also help us
explore the molecular mechanism, signaling pathway, and
pathological progress of IgAN.

This study is aimed at exploring the role of genes in the
occurrence and progression of IgAN, using integrated gene
expression profiling data downloaded from the Gene
Expression Omnibus (GEO) database, and at further identi-
fying immune-related genes as diagnostic biomarkers for
IgAN patients, which may contribute to the diagnosis and
treatment of IgAN. Additionally, abnormal immune infiltra-
tion in the glomerulus was studied in patients with IgAN.
These results will contribute to better diagnosis, prevention,
and treatment of IgAN. In this study, we first identified
genes for constructing models and then further explored
the gene network related to IgAN progression. Finally, we
analyzed the immune infiltration of IgAN glomerulus.

2. Materials and Methods

2.1. Data Collection

2.1.1. GEO Dataset Download and Process.We used the key-
word “IgA nephropathy” to search IgAN gene expression
profiles in the GEO database. The following steps to obtain

dataset: first, screen datasets for constructing a diagnostic
model, whose organization used for sequencing must be
the kidney and have cases and controls. Second, search the
noncoding RNA profiling dataset used for exploring the
ceRNA network of IgAN. Third, as IgAN features glomeru-
lar disease and the proportion of differentially expressed
genes detected by RNA-SEQ was higher than that by CHIP,
the RNA-SEQ dataset of glomerular tissue was selected.
Fourth, the datasets must be published within the last five
years. Finally, the GEO datasets numbered GSE116626,
GSE115857, GSE141344, and GSE141295 were selected.
The summary of those four GEO datasets is shown in
Table 1.

With more evenly distributed data and more detailed
records of the IgAN lesions, GSE116626 was employed for
the training set and used for differential expression analysis,
and the characteristics of samples are shown in Table 2.
Moreover, GSE115857 was utilized as the test set. We then
performed log2 transformed for gene expression profiling
and gene symbol conversion; in addition, quality control
was performed on each dataset to improve the efficiency of
subsequent analysis.

2.1.2. Immune-Related Gene Download. We downloaded
immune-related genes (IRGs) data from the import database
(https://www.immport.org/shared/) [11]. After eliminating
duplicate genes, we finally obtained 1793 immune-related
genes (Supplementary Table 1). The schematic of the
research is shown in Figure 1.

2.2. Differential Expression Analysis and Enrichment
Analysis. Differentially expressed genes (DEGs) between
IgAN and healthy control in GSE116626 were achieved by
the package “limma” [12] in R software with a criterion of
P < 0:05 and ∣log2fold change ∣ >1. Afterwards, a comparison
was made between 245 DEGs and 1793 immune-related
genes (IRGs) to obtain different immune-related genes
(DIRGs). Furthermore, for deep insight into the gene func-
tions, the package “clusterProfiler” [13] in R was employed
for the Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis. Finally, we visualized
the results by bubble map in R software.

2.3. Construction and Assessment of RF, GBM, and Treebag
Model. There are 83 samples in our test set, which contains
52 IgAN patients, 22 non-IgAN patients (non-IgAN GN),
and 7 healthy people; although artificial neural networks
(ANN) or deep neural networks (DNN) are effective learn-
ing models in the prediction process, they are poorly

Table 1: The summary of those four GEO datasets.

GSE number Samples Organization Purpose

GSE116626 52 IgAN patients, 22 non-IgAN GN, and 7 controls Kidney Training set

GSE115857 55 IgAN patients, 7 controls Kidney Test set

GSE141344 6 IgANp patients and 6 IgANnp patients Kidney ceRNA network

GSE141295 14 IgAN patients and 10 controls Glomeruli ssGSEA

Abbreviation: IgAN: IgA nephropathy; non-IgAN GN: non-IgA nephropathy glomerulonephritis; IgANp: IgA nephropathy with progression; IgANp: IgA
nephropathy with no progression.

Table 2: The characteristics of samples in the GSE116626 dataset.

Group Number MEST-C classification

Minimal lesion IgAN 22 (M0,1; E0; S0,1; T0; C0)

Active lesion IgAN 8 (M0,1; S0,1; T0; E1 and/or C,1,2)

Chronic lesion IgAN 12 (M0,1; E0; S0,1; T1,2; C0)

Mixed lesion IgAN 10 (M0,1; E0,1; S0,1; T1,2; C0,1,2)

Non-IgAN GN 7 —

Healthy control 22 —

Abbreviation: IgAN: IgA nephropathy; non-IgAN GN: non-IgA
nephropathy glomerulonephritis.
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interpretable and require more samples [14]; thus, machine
learning (ML) will be more advantageous in this study.
Firstly, as elastic net [15] has less prediction error than lasso
and ridge regression in our test, it was employed for gene
screening in 34 DIRGs using the “glmnet” package in R;
the alpha = 1 and lamda = 6 (CV.Glmnet function automat-
ically produces the most appropriate value). Besides, we
divided the samples of GSE116626 into three types, random
forest (RF), Gradient Boosting Machine (GBM), and treebag
model as they could achieve the optimal effect in the ML of
the three classification samples. After which, we used
GSE116626, with IgAN as the response variable, and DIRGs
as explanatory variables, to establish RF, GBM, and treebag
model. What is more, we employed the package “DALEX”
in R software to analyze the above three models and plot
the residual distribution.

2.4. Construction and Validation of a Nomogram Model for
IgAN Diagnosis. A nomogram model was established to pre-
dict the occurrence of IgAN using the “rms” package after
three ML models verified the accuracy of the DIRGs.
“Points” indicates the score of the corresponding factors
below, and “total points” indicates the sum of all the scores
of factors above used to estimate the risk of IgAN. In addi-
tion, a calibration curve was used to evaluate the predictive
performance of the nomogram model, while decision curve
analysis and clinical impact curve were further used to eval-
uate the clinical value of the model.

2.5. Short Time-Series Expression Miner (STEM) Analysis.
We used STEM software [16] to cluster the 34 DIRGs in 4

different lesions of IgAN patients and healthy controls in
the GSE116626 datasets; α < 0:05 was considered statistically
significant clustering. This method can help us to simulate
and estimate the spatiotemporal variation of DIRGs in
IgAN. The significantly clustered genes showed a gradual
up- or downregulation trend with the change of IgAN lesion.

2.6. Identification of miRNA Related to IgAN Progression.
The package “DESeq2” [17] in R was used to seek for differ-
ently expressed miRNAs (DE-miRNAs) between IgAN pro-
gression (IgAp) and IgAN nonprogression (IgAnp) with
P < 0:05 and ∣log2fold change ∣ >1 criterion in GSE141344.
Samples were classified as IgANnp if the serum creatinine
had changed by <10% over the 10 years since diagnosis,
while samples whose serum creatinine had at least doubled
or the patient had developed end-stage renal disease(ESRD)
in the same time period were classified as IgANp. After-
wards, mRNAs targeted by MiRNAs with experimental sup-
port were identified using miRDB [18], miRWalk [19], and
miRanda [20] databases. To make our results more convinc-
ing, we first incorporated the common genes from the three
databases and then compared them with the 34 DIRGs for
the final target mRNAs. Also, starBase v 3.0 [21] was used
to predict the lncRNAs of miRNAs with final target RNAs,
with search parameters set at “CLIP-Data ≥ 5”. Finally, we
built the ceRNA network based on the above data, and the
ggalluvial (version 0.9.1) package [22] was used to visualize
the network.

2.7. Immune Signatures of the Glomeruli in IgAN. The
ssGSEA was applied to explore the different infiltrations of

Download datasets GSE116626, GSE115857, GSE141344 and GSE141295 from GEO database

Identify 245 DEGs
from GSE116626

Download 1793 IRG
from immport database

Identify 20 DE–miRNAs
from GSE141344

ssGSEA analysis of
GSE141295

Identidy 34 DIRGs Common mRNAs Glomerular immune
infiltration in lgAN

Correlations between
immune cells

ceRNA network related
to lgAN progressionSTEM analysis

GSE115857
as test set

Construction and validation of a
nomogram model

Construction and assessment of
RF, GBM and Treebag model

Figure 1: Workflow of the research. Abbreviations are defined as follows: Gene Expression Omnibus database (GEO), differentially
expressed gene (DEG), immune-related gene (IRG), different immune-related gene (DIRG), differentially expressed miRNA (DE-
miRNA), random forest (RF), Gradient Boosting Machine (GBM), Short Time-Series Expression Miner (STEM).
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Figure 2: Continued.
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immune cells in GSE141295 using the R package “GSVA”
[23]. Afterwards, we compared the ratio of 24 immune cells
between the IgAN and control groups and the correlation
change of 10 main immune cells between the two groups.

3. Results

3.1. Differential Expression Analysis and Enrichment
Analysis. 245 DEGs between IgAN and control groups in
GSE116626 were identified with P < 0:05 and ∣log2fold
change ∣ >1, including 160 upregulated and 85 downregu-
lated genes (Figure 2(a)). Also, 34 DIRGs were obtained
from 245 DEGs and 1793 IRGs (Figure 2(b)), whose
enriched pathways and functions were further understood
by GO and KEGG enrichment analysis (Supplementary
Table 2 and 3). GO analysis showed that the 34 DIRGs
were mainly associated with MHC class II protein
complex, peptide antigen binding, and interferon-gamma-

associated pathway, interferon-gamma-mediated signaling,
and pathway positive regulation of I-kappaB kinase/NF-
kappaB signaling (Figure 2(c)). Meanwhile, KEGG analysis
showed that these 34 DIRGs were closely related to
autoimmune diseases, differentiation of T cell helper, and
intestinal immune network for IgA production. It suggested
that these 34 DIRGs were bound up with autoimmune
diseases (Figure 2(d)).

3.2. Construction and Assessment of RF, GBM, and Treebag
Model. The elastic net revealed six genes (PPIA, CCL3L3,
CXCL2, TFRC, IL6, and LIF) (Figure 3(a)), based on alpha
= 1 and lamda = 6, which were taken into the ML, namely,
RF, GBM, and treebag models. There were 100 trees in the
RF models; besides, the final values used for the GBM model
were n:trees = 50, interaction:depth = 2, shrinkage = 0:1, and
n:minobsinnode = 10; what is more, the bagging regression
trees of the treebag model have 25 bootstrap replications.
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Figure 2: Differential expression analysis and enrichment analysis in GSE116626. (a) Volcano map of all DEGs of GSE116626: 245 DEGs
were identified with P < 0:05 and ∣log2fold change ∣ >1, including 160 upregulated and 85 downregulated genes. (b) Venn diagram of DEGs
and IRGs: 34 DIRGs were identified. (c) Top 30 GO functional enrichment of 34 DIRGs. Biological process (BP, circle), cellular component
(CC, square), and molecular function (MF, triangle) analysis results of 34 DIRGs. (d) Top 30 KEGG functional enrichment of 34 DIRGs.
The size of the graph represents the number of genes, and the x-axis represents the enrichment score.
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The three models were then analyzed using the explanatory
features of the “DALEX” package in R, and the residual dis-
tributions were plotted to obtain the optimal model at the
bottom of the test set (Figures 3(b) and 3(c)); additionally,

Figure 3(d) shows us the importance of six genes. The results
showed that the three machine learning models enjoy a good
performance; ML was successfully used to identify six genes
that could be applied to clinical diagnosis and prediction.

Reverse cumulative distribution of residual

0.0 0.5 1.0

Residual

1.5 2.0

LIF
IL6
TFRC
CXCL2
Group
CCL3L3
PPIA
LIF
IL6
TFRC
CXCL2
Group
CCL3L3
PPIA
LIF
IL6
TFRC
CXCL2
Group
CCL3L3
PPIA

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Rf
Treebag

Gbm

Model

(c)

Feature importance
Created for the gbm, rf and treebag model

Rf

Treebag

Gbm

1.0 1.1

(d)

Figure 3: Construction and assessment of RF, GBM, and treebag model. (a) Elastic net of 34 DIRGs in GSE116626. The main parameters
are alpha = 1 and lamda = 6 (CV.Glmnet function automatically produces the most appropriate value.). (b) Cumulative residual distribution
map of the sample. (c) Boxplots of the residuals of the sample. Red dot stands for root mean square of residuals. The residual distributions
were very close in the three models. (d) Importance of the variables in RF, GBM, and treebag model. The six DIRGs have different
importance in three models.
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Figure 4: Construction and validation of a nomogram model for IgAN diagnosis. (a) Nomogram model for IgAN diagnosis, based on the 6
DIRGs (PPIA, CCL3L3, CXCL2, TFRC, IL6, and LIF). (b) Calibration curve to evaluate the nomogram model. The actual IgAN risk and the
predicted risk are very close. (c) DCA curve to assess the nomogram model. Different colors represent different combinations of variables,
and the nomogram model has better benefits than other models in most risk thresholds. (d) The clinical impact curve based on the DCA
curve to evaluate the nomogram model, and the nomogram model has a better clinical effect when the risk threshold exceeded 0.6.
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3.3. Construction and Assessment of a Nomogram Model for
IgAN Diagnosis. The “rms” package was used to establish the
nomogram model for IgAN diagnosis based on the 6 DIRGs
(PPIA, CCL3L3, CXCL2, TFRC, IL6, and LIF) (Figure 4(a)).

The calibration curve which was used to evaluate the predic-
tive power of the nomogram model indicated that the actual
IgAN risk and the predicted risk are very close, suggesting
that the nomogram model owns high accuracy to predict
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Figure 5: Short Time-Series Expression Miner (STEM) analysis. (a) Heatmap of six gene expressions in trend 1, including 6 DIRGs, ITGAL,
TUBB3, ADRB2, SLP1, CCL19, and CTSG. (b) Line chart of six gene expressions in trend 1, FDR = 0:00017. (c) Heatmap of seven gene
expressions in trend 2, including 7 DIRGs, HLA-C, NOD1, PLAU, HLA-DRB1, HLA-DRB5, HLA-DMA, and SERPINA3. (d) Line chart
of seven gene expressions in trend 2, FDR = 0:002. (e) Heatmap of six gene expressions in trend 3, including 6 DIRGs, CXCL2, NR4A1,
NR4A2, CCL3, CCL3L3, and IL6. (f) Line chart of six gene expressions in trend 3, FDR = 0:0085.
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IgAN (Figure 4(b)). Furthermore, decision curve analysis
(DCA) indicated that the “nomogram” curve had the highest
benefits in most risk threshold ranges, especially if the risk
threshold exceeds 0.6, indicating that the nomogram model
boosts good predictions (Figure 4(c)), and the clinical
impact curve on the ground of the DCA curve was con-
ducted to evaluate the clinical effects of the nomogram
model more visually (Figure 4(d)), which indicated that the
prediction of the nomogram model is very close to the actual

event when the risk threshold exceeds 0.6. The results indi-
cated that the nomogram model owns great potential in pre-
dicting the risk of IgAN.

3.4. Short Time-Series Expression Miner (STEM) Analysis.
STEM software was used to determine the alteration in 34
DIRGs during the progression from healthy controls to dif-
ferent IgAN lesions. These genes were divided into three sig-
nificant clusters (Figures 5(a)–5(f)). Among them, ITGAL,
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TUBB3, ADRB2, SLP1, CCL9, and CTSG showed a trend of
gradual increase with different IgAN stages, with a peak at
the mixed lesion, suggesting that these six genes may be
associated with different pathological types of IgAN alter-
ations. These genes in the three significant clusters may rep-
resent biomarkers of IgAN lesions.

3.5. Identification of ceRNA Related to IgAN Progression. We
first detected 10 upregulated and 10 downregulated DE-
miRNAs in IgAp using the package “DESq2” at P < 0:05
and ∣log2fold change ∣ >1 (Figure 6(a)), after which miRDB,
miRWalk, and miRanda databases were employed for target
predictions of these 20 DE-miRNAs (Supplementary
Tables 4–6). Surprisingly, PPIA, ADRB2, and TFRC were
obtained in comparison to 34 DIRGs of IgAN in the
GSE116626 (Figure 6(b)). Also, lncRNAs, which target the
DE-miRNA related to PPIA, ADRB2, and TFRC, were
explored by the starBase v 3.0 database (Supplementary
Table 7). Finally, we established a ceRNA network with 8
miRNAs, 14 lncRNAs, and 3 mRNAs (Figure 6(c)).

3.6. Immune Signatures of the Glomeruli in IgAN. ssGSEA
analysis was first applied to explore the abnormal glomerular
immune infiltration in IgAN. Afterwards, 24 types of
immune cells in IgAN patients and controls were generated
and compared, as shown in Figure 7(a). Clearly, IgAN
patients showed a significant increase in macrophages and
NKT cells, and a significant decrease in B cells, CD4+ T cells,
Tr1, Treg, and Th1 cells in the glomeruli (Figures 7(b) and
7(c)). Besides, by comparing correlations between 10 main
immune cells, correlation changes were detected between
IgAN patients (Figure 7(d)) and controls (Figure 7(e)),
among which changes between macrophages and monocytes
are the most obvious (Figure 7(f)). As such, the occurrence
of IgAN is closely related to abnormal immune cell infiltra-
tion, and the correlation change between immune cells may
be implicated in the occurrence and progression of IgAN.

4. Discussion

With the increase in kidney biopsy, the underestimated prev-
alence of IgANwill be revealed [24]. Many studies have shown
that IgAN involves not only young adults but also the elderly
[25]. The existing diagnosis owns some limitations for early
diagnosis of IgAN, and the pathogenesis of IgAN is extremely
complicated, involving biochemical, immunological, and
genetic [26], which brings challenges to the prevention and
therapy of IgAN. As such, new biomarkers and diagnostic
models are needed urgently. Recent genetic findings have con-
firmed the strong role of genetics and suggested geographical
and ethnic differences in IgAN susceptibility, among which
Asians are more inclined to genetic risks [10].

4.1. The Function of the DIRGs. The enrichment analysis
indicated that 34 DIRGs not only represent an important
player in IgAN but also serve as a bridge between IgAN
and other immune diseases. GO analysis showed that the
interferon-γ-mediated signaling pathway is closely associ-
ated with IgAN, and the production of IFN-γ in IgAN was
positively correlated with total IgA levels [27]. Meanwhile,
altered ERK1/2 expression, which has been shown to highly
influence mesangial cell proliferation [28], positively regu-
lates the ERK1 and ERK2 cascades that may be involved in
IgAN development. Positive regulation of the I-kappaB
kinase/NF-kappaB signaling pathway would promote IgAN
[29], and many studies have shown that drugs could treat
IgAN by inhibiting this pathway [30]. Regulation of related
gene expression may have a positive effect on IgAN.

What is more, KEGG enrichment analysis showed that T
cell helper (Th) differentiation, TNF signaling pathway, and
IgA-generating intestinal immune network are involved in
the pathogenesis of IgAN. IgAN is regulated by Th [31].
Interestingly, it has been shown that the use of antitumor
necrosis factor- (TNF-) alpha agents in rheumatoid arthritis
(RA) could lead to the development of IgAN and diabetes
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Figure 7: Immune signatures of the glomeruli in IgAN. (a) Heatmap of 24 immune cells calculated with ssGSEA in IgAN and healthy
controls. (b) Boxplot of 24 immune cells in IgAN and healthy controls. Macrophages and NKT cells were significantly increased, while B
cells, CD4+ T cells, Tr1, Treg, and Th1 cells were significantly decreased in IgAN. (c) Correlation heatmap of 10 main immune cells in
IgAN. (d) Correlation heatmap of 10 main immune cells in healthy controls. (e) Line regression of monocytes and macrophages in IgAN
and healthy controls. The proportion of monocytes and macrophages was negatively correlated in IgAN (R2 = 0:52, P = 0:003) but
negatively correlated in the control group (R2 = 0:59, P = 0:009).
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[32, 33], which may be interrelated because of similar abnor-
mal gene expression and thus have some signaling pathways
running through many diseases, such as inflammatory bowel
disease (IBD) [34]. Notably, intestinal immunity is a major
player in IgAN [35], and it has become an important foot-
hold for IgAN treatment and exploration, but the mecha-
nisms involved are complex [36]. The discovery of DIRGs
may help us to further uncover their underlying pathogene-
sis. The results of our enrichment analysis for 34 DIRGs are
parallel to the current study, and exploring the pathogenesis
from a genetic perspective may provide new ideas for treat-
ment of IgAN.

4.2. The Models Used for Diagnosis and Prediction of IgAN.
We first employed elastic net to screen six genes (PPIA,
CCL3L3, CXCL2, TFRC, IL6, and LIF) from 34 DIRGs,
which were used for model construction, including RF, tree-
bag, and GBM models. It turned out that three models per-
formed excellently, the residuals of the sample in three
models are small and close, which indicated that the six
DIRGs were used to diagnose and predict IgAN with credi-
ble precision and accuracy. We managed to narrow down
the number of IRGs to six, which is of great significance
for clinical practice. Afterwards, the six genes were utilized
for the construction of the nomogram model, which owns
great prediction performance from the nomogram model
at a high-risk threshold from 0 to 1; the calibration curve,
DCA curve, and clinical impact curve indicated that the
nomogram model boosts good predictions. With growing
renal biopsies in patients with kidney disease, patients can
benefit from the nomogram model.

4.3. STEM Analysis and ceRNA Network for Exploring the
Progression of IgAN. The possible space-time variations of
the 34 DIRGs in different IgAN lesions were discovered
through STEM analysis, which could help find potential
biomarkers related to disease progression. One of the most
interesting changes was in ITGAL TUBB3, ADRB2, SLP1,
and CCL19 CTSG, with slightly lower expression of the
minimal lesion and active lesion and significantly higher
than the chronic and mixed lesion. ITGAL is involved in var-
ious immune phenomena including leukocyte-endothelial
cell interactions, cytotoxic T cell-mediated killing, and
antibody-dependent killing by granulocytes and monocytes
[37]. CCL19 plays an important role in the trafficking of T
cells in the thymus and T cell and B cell migration to second-
ary lymphoid organs [38]; CTSG regulates inflammation,
activating matrix metalloproteinases (MMPs) and coagula-
tion [39]. Besides, TUBB3 [40], ADRB2 [41], and SLP1 [42]
are also involved in the immune response, such as cytokine
network and antibacterial response. Furthermore, HLA-
DRB1, HLA-DRB5, and HLA-DMA are broadly expressed
in different lesions of IgAN, with the strongest correlation
between HLA and IgAN [43]. Studies have shown that
HLA-DB1 may be associated with IgAN progression [44].
These genes may serve as biomarkers for predicting IgAN
lesion and progression as IgA progression is closely related
to changes in gene expression.

Moreover, we further analyzed miRNAs associated with
IgAN progression and generated a ceRNA network of 8
miRNAs, 14 lncRNAs, and 3 mRNAs based on miRDB
miWALK and miRNADA and starBase v 3.0. miRNAs have
been associated with immune and pathological changes in
the kidney through regulating gene expression [45]. The
TFRC gene involved in ferroptosis and some other impor-
tant pathogenesis has been linked to a variety of diseases
[46] and may be linked to IgAN susceptibility; meanwhile,
NEAT1, MALAT1, and XIST which have the most degree
with miRNA in the ceRNA network were identified; NEAT1
may affect IgAN by regulating the TLR2/NF-κB signaling
pathway [47]. Besides, research once showed that IgAN
mesangial cells displayed increased expression of MALAT1
[48], and XIST could mediate inflammatory response via
NF-κB/NLRP3 inflammasome pathway, which may be the
potential pathomechanism by which it affects the IgAN
progression.

4.4. The Changes of Immune Landscape in the Glomeruli of
IgAN. IgAN is the most common primary glomerulonephri-
tis worldwide and is characterized by abnormal immune cell
infiltration [49]. ssGAEA analysis was applied to explore
the immunological signatures of IgAN in glomerular biopsy
tissue. Deposits of immune complexes containing galacto-
sylated IgA1 activate mesangial cells, leading to an overpro-
duction of local cytokines, chemokines, and complement
[50]. Macrophages, which are significantly higher in IgAN,
could amplify the effects of inflammatory factors and partic-
ipate in and contribute to the process of mesangial hyperpla-
sia and glomerulosclerosis [51]. The prolonged macrophage
infiltration may promote mesangial cell proliferation or
the development of extracapillary lesions that eventually
lead to the progression of IgAN [52]. Besides, activation
of NKT cells is associated with the production of mucosal
IgA [53] and an increased ratio of NKT is involved in
IgAN immunopathology [54].

Additionally, the ratio of CD4+ T cells is significantly
reduced in IgAN patients. Its reduction is mainly manifested
in regulatory T cell (Treg) and helper T cell (Th). Since the
reduction in Treg is associated with abnormal immune func-
tion in patients with IgAN [55], it is of great significance for
the prognosis of IgAN. Thus, increasing the ratio of Treg
may protect the renal function of patients [56, 57]. Mean-
while, the reduction of Th1 and Tfh in glomeruli is an inte-
gral part of IgAN and they play an active role in maintaining
a normal immune response to IgAN and stopping its pro-
gression [58, 59]. Although B cell infiltration also increased
in IgAN, it owns an insignificant effect. Finally, by analyzing
the correlation between immune cells, we found that the cor-
relation between macrophages and monocytes in the glo-
meruli of IgAN patients was inverse. The results may
indicate a significant increase in differentiation of monocytes
into macrophages, which would emerge as a potential mech-
anism and therapeutic target for IgAN.

Although lots of work have been done, there are some
limitations in our study. Firstly, the clinical information of
the samples is not rich enough, such as renal function, urine
protein, and blood pressure; more risk factors make more
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accurate model. Secondly, the expression level of DIRGs and
the immune landscape of IgAN may need further verifica-
tion. We will enrich and verify our conclusions on real clin-
ical cases in the following study.

5. Conclusion

The diagnostic model of IgAN is constructed using IRGs in
our study, and we find that the imbalance between macro-
phages and CD4+ immune cells may be an important patho-
mechanism of IgAN. These results provide potential
directions for the treatment and prevention of IgAN. Our
study draws on a wide range of data and methods to reach
rich conclusions that will be translated into clinical practice
in the future, and we will explore new directions for IgAN
treatment based on our findings in this study.
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