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This study is aimed at exploring the potential mechanism of the PPAR signaling pathway in breast cancer (BRCA) and
constructing a novel prognostic-related risk model. We used various bioinformatics methods and databases to complete our
exploration in this research. Based on TCGA database, we use multiple extension packages based on the R language for data
conversion, processing, and statistics. We use LASSO regression analysis to establish a prognostic-related risk model in BRCA.
And we combined the data of multiple online websites, including GEPIA, ImmuCellAI, TIMER, GDSC, and the Human
Protein Atlas database to conduct a more in-depth exploration of the risk model. Based on the mRNA data in TCGA database,
we conducted a preliminary screening of genes related to the PPAR signaling pathway through univariate Cox analysis, then
used LASSO regression analysis to conduct a second screening, and successfully established a risk model consisting of ten
genes in BRCA. The results of ROC curve analysis show that the risk model has good prediction accuracy. We can successfully
divide breast cancer patients into high- and low-risk groups with significant prognostic differences (P = 1:92e − 05) based on
this risk model. Combined with the clinical data in TCGA database, there is a correlation between the risk model and the
patient’s N, T, gender, and fustat. The results of multivariate Cox regression show that the risk score of this risk model can be
used as an independent risk factor for BRCA patients. In particular, we draw a nomogram that can predict the 5-, 7-, and 10-
year survival rates of BRCA patients. Subsequently, we conducted a series of pancancer analyses of CNV, SNV, OS,
methylation, and immune infiltration for this risk model gene and used GDSC data to investigate drug sensitivity. Finally, to
gain insight into the predictive value and protein expression of these risk model genes in breast cancer, we used GEO and
HPA databases for validation. This study provides valuable clues for future research on the PPAR signaling pathway in BRCA.

1. Introduction

According to the latest global cancer burden data, there
are 2.26 million new breast cancer cases (BRCA), surpass-
ing lung cancer and becoming the world’s largest cancer
type [1]. The mortality rate of BRCA is also very high.
More than 600,000 deaths from BRCA seriously endanger
human beings’ physical and mental health [2]. As a het-
erogeneous disease, the pathogenesis of BRCA is complex,
and its occurrence and development are the results of the
joint action of multiple genes, and the specific etiology is
still unclear [3]. Some scholars believe that its occurrence
may be closely related to high-risk factors such as long

menstrual cycles and high primiparous age [4, 5]. Similar
to other solid malignant tumors, tumor invasion, metasta-
sis, and spread are undoubtedly the most common cause
of death in BRCA patients [6–8]. Common sites of BRCA
metastases include the liver, brain, bone, or lung [9–12].
Studies have shown that BRCA patients with distant
metastasis have a poor prognosis, high recurrence rate,
and short survival time [13–15]. With the application of
surgery, chemotherapy, radiotherapy, endocrine therapy,
immunotherapy, and a variety of combined treatment
strategies, the survival time of BRCA patients has been sig-
nificantly prolonged [16–18]. However, there are still
many BRCA patients who eventually develop recurrence,
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metastasis, and drug resistance. Therefore, the search for
effective biomarkers and new therapeutic targets will play
a vital role in the future treatment and prognosis of
BRCA.

Since it was first discovered in the 1990s, the peroxisome
proliferator-activated receptor (PPAR) signaling pathway
has received wide attention from researchers [19]. As
researchers continue to explore and research, it has been
determined that the PPAR signaling pathway plays a crucial
role in cell differentiation, inflammation, glucose and lipid
metabolism, immune regulation, and tumorigenesis [20,
21]. PPARs play an essential mediating role in the PPAR sig-
naling pathway. PPARs are nuclear hormone receptors acti-
vated by fatty acids and their derivatives and belong to the
ligand-activated receptors in the nuclear hormone receptor
family [22]. PPARs are composed of three subtypes: PPARα,
PPARβ, and PPARγ. PPARs, like other nuclear receptor
superfamilies, are essentially a type of ligand-dependent
transcriptional regulators. Many studies have shown that
the abnormal regulation of the PPAR signaling pathway is
usually accompanied by the occurrence and development
of various cancers, such as bladder cancer, astroglioma, renal
clear cell carcinoma, hepatocellular carcinoma, and colorec-
tal cancer [23–28]. In BRCA, studies have identified the
PPAR signaling pathway as a highly relevant biological pro-
cess [29–31]. Still, there is no research to screen the prognos-
tic markers of BRCA from the PPAR signaling pathway.

Based on the background of the above research, this
research is dedicated to exploring the genes related to the
PPAR signaling pathway to construct a novel prognostic risk
model in BRCA. Based on the gene expression and clinical
information data of 1,098 BRCA patients contained in TCGA
database, we used univariate Cox regression analysis and
LASSO regression analysis to select ten genes from 69 PPAR
signaling pathway-related genes (APOA2, APOA5, APOC3,
CPT1A, CYP27A1, MMP1, NR1H3, PLTP, SCD, and

SORBS1) to build a novel risk model. We successfully divided
BRCA patients into high- and low-risk groups with significant
prognostic differences based on this risk model. Next, we use
ROC curve to evaluate the predictive accuracy of the risk
model. At the same time, we analyze the correlation between
this risk model and clinicopathological characteristics and
draw the corresponding heat map. In addition, to improve
the possibility of clinical application of the risk model, we have
established a corresponding nomogram. Subsequently, we
conducted a series of pancancer analyses to explore this risk
model gene’s potential clinical application prospects. Finally,
we use the protein expression of risk model genes in BRCA
and normal breast tissues to verify our previous findings. In
particular, to make it easier for readers to understand this
research, we draw a flowchart of this research (Figure 1). In
future clinical diagnosis and treatment, we believe that the
prognostic-related risk model constructed by this research
may help doctors more accurately identify patients with poor
prognoses and provide more targeted treatment and examina-
tion. This research also provides valuable data support for
future research on the PPAR signaling pathway in BRCA.

2. Materials and Methods

2.1. Data Acquisition. TCGA, as the most prominent cancer
gene information database, covers 33 cancer types, more
than 30,000 tumor samples, and multiple omics data
(including gene expression data, miRNA expression data,
gene mutation, and DNA methylation) [32]. In this study,
we downloaded and compiled BRCA patient transcriptome
expression profile data and patient clinical data from TCGA
database in Chongqing in September 2021 (https://portal
.gdc.cancer.gov). In addition, we inquired and obtained a list
of genes related to the PPAR signaling pathway through
GSEA website (https://www.gsea-msigdb.org/gsea/index

TCGA database

LASSO regression analysis

Prognostic risk model

KM analysis COX analysis Pan -cancer analysisNomogram

APOA5, APOC3, CPT1A, 
MMP1, NR1H3, CYP27A1, 

APOA2, SCD, SORBS1, PLTP

GDSC analysis

GEO-HPA validation

Univariate cox analysis

PPAR signaling pathway-
related genes

Figure 1: The flow chart of this research.
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.jsp) [33, 34]. Its standard name is KEGG PPAR SIGNAL-
ING PATHWAY, and its systematic name is M13088.

2.2. Data Processing and Analysis. First, we downloaded
BRCA’s RNA-Seq transcriptome data and clinical informa-
tion through TCGA database and used Perl and R language
to process the data and draw the figure. Among them, we use
the mRNA expression data of TCGA to draw a heat map
showing the expression of genes related to the PPAR signal-
ing pathway in BRCA, “pheatmap” package is used to draw
the heat map, and “limma” package is used to analyze
mRNA expression differences. Subsequently, we performed
hazard ratio analysis of these molecules in BRCA to show
the relationship between these molecules and the progres-
sion of BRCA. After that, we use “glmnet” and “survival”
packages to draw the LASSO regression curve and the corre-
sponding survival curve. To verify the prediction accuracy of
this model, we used “survivalROC” extension package to
draw ROC curves for 5, 7, and 10 years. And then, we ana-
lyzed the correlation between the risk model and the patho-
logical characteristics of BRCA patients. In particular, we
combine the clinical data of BRCA patients with risk models
through “survival” and “forestplot” packages to perform uni-
variate and multivariate Cox analysis. Finally, to be more
convenient for future clinical applications, we use “rms”
software package to draw the corresponding nomogram.

2.3. GEPIA and GSCA Website. GEPIA website is a visual
website developed and researched by Peking University that
integrates database information (http://gepia2.cancer-pku

.cn/#index) [35]. We used the online tools of the website to
analyze the OS of the risk model genes in pancancer and
presented the corresponding results. In addition, GSCA
website is an integrated database for genomic and immuno-
genomic gene set cancer analysis. Cancer researchers often
use it for dynamic analysis and visualization of cancer
genomes and to determine the correlation with multiple
anticancer drugs (http://bioinfo.life.hust.edu.cn/GSCA/#/).
In this study, we used the online tools of the website to ana-
lyze the CNV and SNV of the risk model genes in pancancer
and presented the corresponding results.

2.4. ImmuCellAI Database. Immune Cell Abundance Identi-
fier (ImmuCellAI) database, as a network platform for com-
prehensive analysis of immune cell abundance, estimates the
infiltration abundance of 24 immune cells based on gene
expression data sets, including RNA-Seq and microarray
data (http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/). At the
same time, it can predict the patient’s response to immune
checkpoint inhibitor therapy [36, 37]. This study obtained
24 immune cell infiltration data through the ImmuCellAI
website. In addition, gene set variation analysis (GSVA)
score represents the comprehensive level of gene set expres-
sion and is positively correlated with gene set expression.
The “GSVA” package calculates the GSVA score in this
study in the R language. The correlation between immune
cell infiltration and the GSVA score of the risk model gene
set was expressed by the correlation coefficient, which was
evaluated by Spearman correlation analysis. FDR adjusted
the P value.
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Figure 2: The expression of genes related to the PPAR signaling pathway in BRCA and univariate Cox regression analysis. (a) The heat map
shows the expression of genes related to the PPAR signaling pathway in BRCA. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001. (b) The forest plot
shows the results of univariate Cox analysis of PPAR signaling pathway-related genes in BRCA. (c) PPAR signaling pathway-related
molecular interaction network diagram.
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Figure 3: Construct a prognostic-related risk model in BRCA through LASSO regression analysis. (a, b) LASSO coefficient values and
vertical dashed lines were calculated at the best log (lambda) value, and coefficients of prognostic-related genes were displayed. (c) Based
on the above risk model, the K-M curve in BRCA patients showed that the overall survival rate of the low-risk group was significantly
higher than that of the high-risk group (P = 1:92e − 05). It is worth noting that blue represents the low-risk group, and red represents the
high-risk group. (d–f) ROC curves were drawn based on the risk model, and their AUC value represented the 5-, 7-, and 10-year OS of
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2.5. TIMER Database. Tumor Immune Estimation Resource
(TIMER) database is an interactive web tool that can com-
prehensively and flexibly analyze and visualize tumor-
infiltrating immune cells and infer the abundance of multi-
ple tumor-infiltrating immune cells from the gene expres-
sion profiles of samples of different cancer types in TCGA,
such as B cells, CD4+ T cells, CD8+ T cells, neutrophils,
macrophages, and dendritic cells (https://cistrome
.shinyapps.io/timer/) [38, 39]. In this study, we used the
mRNA expression data of the risk model gene in TCGA,
combined the immune cell infiltration data in the TIMER
database, explored the concern between gene expression
and immunity in BRCA, and used the R language “pheat-
map” package to draw the corresponding heat map.

2.6. GDSC Database. GDSC database collects the sensitivity
and response of tumor cells to drugs (https://www
.cancerrxgene.org/). The data in the GDSC database comes
from 75,000 experiments, describing the reaction of about
200 anticancer agents in more than 1,000 tumor cells. We
collected IC50 of 265 small molecules in 860 cell lines and
its corresponding mRNA gene expression from GDSC. The
mRNA expression data and drug sensitivity data were
merged. Pearson correlation analysis was performed to cor-
relate gene mRNA expression and drug IC50. FDR adjusted
the P value.

2.7. The Human Protein Atlas Database. The Human Pro-
tein Atlas database provides information on the tissue and
cell distribution of all 24,000 human proteins (https://www
.proteinatlas.org/) [40–42]. The database uses immunohisto-
chemical technology to examine the distribution and expres-

sion of each protein in a variety of human normal tissues,
tumor tissues, and cell lines. The results are read and
indexed by professionals. We used immunohistochemical
data to explore the expression of these risk model genes in
BRCA tissues and normal breast tissues.

3. Results

3.1. The Expression of PPAR Signaling Pathway-Related
Genes in BRCA and Univariate Cox Analysis. To understand
the expression of genes related to the PPAR signaling path-
way in BRCA, based on the mRNA expression data in
TCGA database, we draw the corresponding heat map with
the help of “pheatmap” package in the R language. We can
see a significant difference in the expression of most genes
between BRCA tissue and normal breast tissue
(Figure 2(a)). We infer that the abnormality of the PPAR
signaling pathway may play an essential role in the occur-
rence and development of BRCA. Subsequently, the results
of univariate Cox analysis showed that APOA5, APOC3,
CPT1A, MMP1, APOA2, SCD, FABP1, and PLTP played
risk factors in BRCA progression, while NR1H3, CYP27A1,
and SORBS1 played protective factors in BRCA progression
(Figure 2(b)). So far, we have used univariate Cox analysis to
select eleven genes (including APOA5, APOC3, CPT1A,
MMP1, APOA2, SCD, FABP1, PLTP, NR1H3, CYP27A1,
and SORBS1) that play a crucial role in the occurrence and
development of BRCA among the genes related to the PPAR
signaling pathway. In addition, to explore the relationship
between these PPAR signaling pathway-related molecules,
we used the STRING database to draw the interaction net-
work map between these molecules (Figure 2(c)).
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Figure 4: The comprehensive analysis is based on the clinical information of BRCA patients. (a) The heat map shows the correlation
between the risk model and the clinicopathological characteristics of BRCA patients. (b) The forest plot shows the results of univariate
Cox analysis. (c) The forest plot shows the results of multivariate Cox analysis. (d) Based on this risk model, draw a nomogram that can
predict the 5-, 7-, and 10-year OS of BRCA patients.

8 Journal of Immunology Research

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/


D
LB

C

LU
A

D

ST
A

D

O
V

U
V

M

U
CS

U
CE

C

RE
A

D

CO
A

D

PA
A

D

LA
M

L

ES
CA

KI
RP

LI
H

C

KI
RC

M
ES

O

TH
CA

LG
G

TH
YM

CH
O

L

A
CC

PR
A

D

LU
SC

BR
CA

BL
CA

PC
PG

CE
SC

SA
RC

SK
CM

G
BM

KI
CH

TG
CT

SORBS1

SCD

None

Copy number variation across cancer types

APOA5

APOC3

MMP1

NR1H3

CYP27A1

CPT1A

APOA2
PLTP

H
N

SC

Hete. Amp.
Homo. Amp.
Hete. Del.

Homo. Del.

(a)

Hetezygous amplification Hetezygous deletion

CYP27A1

CPT1A

NR1H3

MMP1

APOC3

APOA5

SORBS1

SCD

APOA2

PLTP

Cancer type

Sy
m

bo
l

CNV (%)

1

44

88

SCNA type

Deletion

Amplification

Heterozygous CNV in each cancer

U
CS

TG
CT O

V
KI

CH
SK

CM
LU

SC
ES

CA
BL

CA
SA

RC
BR

CA
LU

A
D

CE
SC

H
N

SC
RE

A
D

A
CC

ST
A

D
CH

O
L

G
BM

LI
H

C
CO

A
D

M
ES

O
U

CE
C

D
LB

C
PA

A
D

PC
PG

KI
RC

LG
G

KI
RP

PR
A

D
U

V
M

TH
YM

TH
CA

LA
M

L

U
CS

TG
CT O

V
KI

CH
SK

CM
LU

SC
ES

CA
BL

CA
SA

RC
BR

CA
LU

A
D

CE
SC

H
N

SC
RE

A
D

A
CC

ST
A

D
CH

O
L

G
BM

LI
H

C
CO

A
D

M
ES

O
U

CE
C

D
LB

C
PA

A
D

PC
PG

KI
RC

LG
G

KI
RP

PR
A

D
U

V
M

TH
YM

TH
CA

LA
M

L
(b)

Figure 5: Continued.

9Journal of Immunology Research



Homozygous amplification Homozygous deletion

SCD

NR1H3

SORBS1

CYP27A1

APOA5

APOC3

MMP1

PLTP

CPT1A

APOA2

Cancer type

Sy
m

bo
l

1

10

20

Homozygous CNV in each cancer

CNV (%) SCNA type
Deletion

Amplification

ES
CA

BL
CA O

V
BR

CA
CE

SC
U

CS
H

N
SC

ST
A

D
SA

RC
LU

A
D

LU
SC

SK
CM

PR
A

D
CH

O
L

LI
H

C
U

CE
C

TG
CT

D
LB

C
CO

A
D

RE
A

D
U

V
M

PA
A

D
KI

RP
PC

PG
A

CC LG
G

G
BM

LA
M

L
KI

CH
KI

RC
M

ES
O

TH
YM

TH
CA

ES
CA

BL
CA O

V
BR

CA
CE

SC
U

CS
H

N
SC

ST
A

D
SA

RC
LU

A
D

LU
SC

SK
CM

PR
A

D
CH

O
L

LI
H

C
U

CE
C

TG
CT

D
LB

C
CO

A
D

RE
A

D
U

V
M

PA
A

D
KI

RP
PC

PG
A

CC LG
G

G
BM

LA
M

L
KI

CH
KI

RC
M

ES
O

TH
YM

TH
CA

(c)

Single nucleotide variant across cancer types

0

0

3

4

1

7

7

4

3

6

1

9

1

1

1

8

3

2

2

2

2

10

1

6

4

5

0

1

1

7 1

1

7

14

4

5

8

10

5

11

1

1

1

1

0

0

2

0

2

1

1

1

4

1

3

2

2

2

5

2

0

6

2

5

2

2

1

6

1

1

2

1

0

1

1

1

3

0

0

0

2

3

1

1

0

3

1

1

1

2

2

1

3

4

1

3

0

10

2

10

6

10

5

6

2

14

3

5

9

7

4

3

3

1

12

0

1

1

1

6

3

1

3

5

1

0

1

1

1

1

1

1

1 2

1

0

2

0

3

0

2

2

1

4

0

2

1

4

1

1

3

2

2

1

1

2

2

9

3

28

9

26

6

12

8

34

0

6

0

12

6

3

4

5

1

13

0

13

1

0

3

13

1

29

18

13

19

18

16

38

1

1

1

1

APOA2

APOC3

SCD

NR1H3

APOA5

CYP27A1

PLTP

MMP1

CPT1A

SORBS1

M
ut

at
io

n 
fre

q.
 (%

)

10

8

6

4

2

0

U
CE

C 
(n

 =
 5

31
)

SK
CM

 (n
 =

 4
68

)

CO
A

D
 (n

 =
 4

07
)

LU
A

D
 (n

 =
 5

67
)

ST
A

D
 (n

 =
 4

39
)

BL
CA

 (n
 =

 4
11

)

LU
SC

 (n
 =

 4
85

)

CE
SC

 (n
 =

 2
91

)

RE
A

D
 (n

 =
 1

49
)

U
CS

 (n
 =

 5
7)

G
BM

 (n
 =

 4
03

)

SA
RC

 (n
 =

 2
39

)

H
N

SC
 (n

 =
 5

09
)

O
V

 (n
 =

 4
12

)

LI
H

C 
(n

 =
 3

65
)

PA
A

D
 (n

 =
 1

78
)

ES
CA

 (n
 =

 1
85

)

BR
CA

 (n
 =

 1
02

6)

KI
CH

 (n
 =

 6
6)

KI
RP

 (n
 =

 2
82

)

CH
O

L 
(n

 =
 3

6)

PR
A

D
 (n

 =
 4

98
)

KI
RC

 (n
 =

 3
70

)

LG
G

 (n
 =

 5
26

)

M
ES

O
 (n

 =
 8

2)

PC
PG

 (n
 =

 1
84

)

TH
CA

 (n
 =

 5
00

)

TG
CT

 (n
 =

 1
51

)

A
CC

 (n
 =

 9
2)

TH
YM

 (n
 =

 1
23

)
(d)

Figure 5: Continued.

10 Journal of Immunology Research



In_frame_del

Frame_shift_ins

Frame_shift_del

Splice_site

Nonsense_mutation

Missense_mutation

0

20
0

40
0

60
0

80
0

10
00

Variant Classification

DEL

INS

SNP

0

20
0

40
0

60
0

80
0

10
00

Variant Type

C>A

C>G

C>T

T>C

T>A

T>G

0.
00

0.
25

0.
50

0.
75

1.
00

SNV Class

227

76

450

59

27

36

227227

6677

450450

5959

7722

33

0

5

10

16

Variants per sample
Median: 1

0

1

Variant Classification 
summary

APOA2
APOC3

SCD
NR1H3
APOA5

PLTP
CYP27A1

MMP1
CPT1A

SORBS1

0 75 15
1

22
7

Top 10
mutated genes

2%
3%

8%
11%
11%
13%
13%
14%

26%
31%

2%2%
%%

8%8%
11%11%
11%11%

3%3%
3%3%

14%14%
26%26%

3131

%%

3333

(e)

Figure 5: Continued.

11Journal of Immunology Research



3.2. Construct a Novel Prognostic-Related Survival Model in
BRCA. To further explore the potential role of PPAR signal-

ing pathway-related genes in BRCA, we used LASSO regres-
sion analysis to establish a PPAR signaling pathway-related
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Figure 5: Variation analysis and overall survival analysis of this risk model gene in pancancer. (a–c) CNV of the risk model genes in
pancancer. The light red Hete Amp represents heterozygous amplification, the light green Hete Del means heterozygous deletion, the
dark red Homo Amp represents homozygous amplification, the dark green Homo Del represents homozygous deletion, and the gray
represents no CNV occurrence. (d–f) SNV of the risk model genes in pancancer. The redder the color, the higher the mutation rate. (g)
Survival landscape of the risk model genes in pancancer.
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Figure 6: Immune infiltration analysis, methylation analysis, and drug sensitivity analysis of this risk model gene in pancancer. (a) The heat
map shows the correlation between the risk model gene and immune cell infiltration in pancancer. It is worth noting that red represents
positive correlation and purple represents negative correlation. ∗P ≤ 0:05 and #FDR ≤ 0:05. (b) The heat map shows the correlation
between the risk model gene and immune cell infiltration in BRCA. Blue represents positive correlation, and pink represents negative
correlation. ∗P < 0:05 and ∗∗P < 0:01. (c) This shows the difference in methylation of these risk model genes in multiple tumor types. (d)
This shows the correlation between the risk model genes and the sensitivity of multiple anticancer drugs. Blue bubbles represent negative
correlations, and red bubbles represent positive correlations; the deeper of color, the higher the correlation. There is a positive
correlation between bubble size and FDR significance. The black outline frame indicates FDR ≤ 0:05.
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Figure 8: The results of immunohistochemistry. (a–f) The immunohistochemistry results showed the protein expression of CPT1A,
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Figure 7: Overall survival curves based on risk model genes in BRCA. (a–j) APOA2, APOA5, APOC3, CPT1A, CYP27A1, MMP1, NR1H3,
PLTP, SCD, and SORBS1.
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risk model in BRCA (including APOA5, APOC3, CPT1A,
MMP1, NR1H3, CYP27A1, APOA2, SCD, SORBS1, and
PLTP) (Figures 3(a) and 3(b)). Subsequently, based on this
risk model, we divided BRCA patients into high- and low-
risk groups and combined the survival information of the
patients to draw a corresponding survival curve
(Figure 3(c)). The results of the survival curve showed that
the prognosis of patients in the high-risk group was signifi-
cantly worse than that of the patients in the low-risk group
(P = 1:92e − 05). We have drawn five-year, seven-year, and
ten-year ROC curves based on this risk model to test this
risk model’s prediction accuracy. The five-year, seven-year,
and ten-year AUC values are 0.68, 0.743, and 0.7, respec-
tively (Figures 3(d) and 3(f)). The results show that the
prognostic-related risk model has good predictive accuracy.

3.3. The Relationship between the Risk Model and
Clinicopathological Characteristics Draws the Corresponding
Nomogram in BRCA. To better understand the correlation
between the risk model and clinical information, we draw
a heat map reflecting the correlation between the risk model
and the clinicopathological characteristics of BRCA patients.
This heat map shows a significant correlation between the
risk model and the N, T, gender, and fustat of BRCA patients
(Figure 4(a)). Subsequently, the results of univariate Cox
analysis showed that age, stage, T, M, N, and risk score
played risk factors in BRCA progression (Figure 4(b)). In
addition, the results of multivariate Cox analysis showed
that age, stage, and risk score played independent risk fac-
tors in BRCA progression (Figure 4(c)). In particular, based
on the risk model, we draw a nomogram that can predict the
overall survival rates of BRCA patients at five, seven, and ten
years (Figure 4(d)). We believe this will facilitate the clinical
application of this risk model in the future.

3.4. Variation and OS of Model Genes in Pancancer. To gain
a deeper understanding of the potential role of these risk
model genes in tumorigenesis, we conducted a series of pan-
cancer analyses. First, we explored the CNV of these risk
model genes in 33 different cancers. This heat map shows
that these risk model genes have a wide range of CNV in
UCS, LUSC, and BRCA, while APOA2, PLTP, and CPT1A
have a wide range of CNV in pancancer (Figures 5(a)–
5(c)). Subsequently, we investigated the SNV status of these
risk model genes in pancancer. SORBS1 and CPT1A genes
have high SNV in UCEC and SKCM tumors
(Figures 5(d)–5(f)). Finally, we conducted OS analysis for
these risk model genes in pancancer and drew the corre-
sponding heat map. It can be seen that CYP27A1 plays a
protective factor in ACC, BRCA, KIRC, LIHC, LUAD, and
MESO (Figure 5(g)). We believe that these results can pro-
vide some clues for future scientific research.

3.5. Immune Infiltration, Methylation, and Drug Sensitivity
of Model Genes in Pancancer. Since previous studies have
shown that the PPAR signaling pathway is closely related
to tumor immunity [43, 44], we aimed at this PPAR signal-
ing pathway-related risk model to explore the immune cor-
relation in pancancer. Combined with the immune cell

infiltration data in the ImmuCellAI database, we have drawn
a heat map reflecting the correlation of this risk model with a
variety of immune cell infiltration in pancancer. By reading
the heat map, we can find that this risk model has a signifi-
cant positive correlation with the infiltration score of most
tumors. The risk model has a significant positive correlation
with macrophage, DC, and NK cell infiltration. On the con-
trary, it has a significant negative correlation with neutro-
phil, CD8-naive, and Th17 cell infiltration (Figure 6(a)).
To further understand the correlation between these risk
model genes and immune cell infiltration in BRCA, we used
the data in the TIMER database to draw a corresponding
heat map. We can see that SORBS1, PLTP, and NR1H3
are significantly positively correlated with various immune
cell infiltration in BRCA. At the same time, SCD, APOC3,
and APOA5 are significantly negatively associated with mul-
tiple immune cell infiltration in BRCA (Figure 6(b)). In
addition, we used TCGA data to explore the differences in
methylation of these risk model genes in a variety of tumors.
The results show that these risk model genes have extensive
methylation differences in BRCA, PRAD, HNSC, and LIHC
(Figure 6(c)). Because the mutation of the cancer genome
will affect the effect of clinical treatment, the response of dif-
ferent targets to drugs is also very different. Therefore, this
data is essential for discovering potential tumor treatment
targets. Consequently, we use the data in the GDSC database
to explore the sensitivity of these risk model genes to differ-
ent anticancer drugs. The results show a significant negative
correlation between APOA2 and erlotinib sensitivity, while a
significant positive correlation exists between APOA5 and
lapatinib sensitivity (Figure 6(d)). We believe that our
research provides ideas for future drug target development.

3.6. Verify the Predictive Value and Protein Expression of
Model Genes between BRCA and Normal Breast Tissues. To
verify the prognostic value of this risk model gene in BRCA,
we used the GEO database (GSE9893 and GSE1456) to draw
survival curves in BRCA for APOA2, APOA5, APOC3,
CPT1A, CYP27A1, MMP1, NR1H3, PLTP, SCD, and
SORBS1 (Figures 7(a)–7(j)). The results showed that BRCA
patients with high expression of APOA2, APOA5, APOC3,
CYP27A1, and SORBS1 had a higher overall survival rate.
In contrast, BRCA patients with high expression of CPT1A,
MMP1, NR1H3, PLTP, and SCD had a lower overall survival
rate. In addition, to validate our previous findings, we used
the immunohistochemical data in the HPA database to
explore the expression of these model molecules in BRCA
tissues and normal breast tissues. Since some model mole-
cules have not yet been included in the HPA database, we
show the immunohistochemistry results of CPT1A,
NR1H3, CYP27A1, SCD, SORBS1, and PLTP. The results
showed that the expression of CPT1A, SCD, and PLTP mol-
ecules in BRCA tissues was significantly higher than that in
normal breast tissues, and the expressions of NR1H3,
CYP27A1, and SORBS1 molecules in BRCA tissues were sig-
nificantly lower than those in normal breast tissues
(Figures 8(a)–8(f)). These results prove that our previous
findings are correct.
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4. Discussion

Globally, cancer is the leading cause of human death [45,
46]. Previous studies have shown that cancer cells are char-
acterized by their ability to increase indefinitely and grow
out of control, evade the body’s immune surveillance, per-
form energy metabolism in the form of glycolytic metabo-
lism, exhibit dedifferentiation, and grow in a dominant
clonal manner for invasion and migration [47]. It is precisely
because these biological characteristics of cancer cells have
been separated from the essential characteristics and evolu-
tionary processes inherent in the body’s normal cells.
Researchers speculate that there must be decisive factors
and a genetic basis. The earliest molecular understanding
of tumors came from David Paul von Hansemann and
Theodor Boveri [48]. They found that cancer cell division
is accompanied by abnormal chromosomes, speculating that
the formation of cancer and abnormal cell clones is caused
by abnormal genetic material. With the in-depth exploration
of cancer by modern researchers, it has been shown that dis-
eases such as cancer are genetic diseases, and the occurrence
and development of cancer are not the results of one or sev-
eral uncontrolled cancer/tumor suppressor genes. Its devel-
opment often involves biological pathways and multiple
gene clusters with specific functions. Therefore, current sci-
entific research is increasingly observing cancer progress at
the level of biological pathways [49–51].

In response to the urgency and complexity of cancer
research, TCGA project came into being. The primary
research purpose of this project is to discover the informa-
tion and technical tools needed to decode the molecular
structure of cancer cells and enhance human understanding
of the genetic basis of cancer. Through genome analysis
technology, including the application of large-scale gene
sequencing technology, we are fully committed to research-
ing the molecular genetic basis of cancer. The ultimate goal
is to improve the ability of humans to diagnose, treat, and
prevent tumors. In this study, with the help of the precious
data in TCGA database, we have the opportunity to explore
above the level of a biological pathway. Based on TCGA
database, this study focused on cancer-related PPAR signal-
ing pathways. We used various biological information anal-
ysis methods to explore and successfully establish a
prognostic-related risk model using PPAR signaling
pathway-related genes in BRCA. This risk model comprises
ten genes APOA2, APOA5, APOC3, CPT1A, CYP27A1,
MMP1, NR1H3, PLTP, SCD, and SORBS1. These risk model
genes all play essential roles in the malignant progression of
BRCA. Among them, APOA5 has the most significant coef-
ficient in the risk model, indicating that APOA5 is a critical
prognostic factor in BRCA and has an important reference
value for judging the prognosis of patients. In particular,
we also used the immunohistochemical data in the HPA
database to verify our previous findings. The verification
results also show that our previous findings are correct.

MMP1, as a member of the matrix metalloproteinase
family (MMPs), is an enzyme involved in extracellular
matrix remodeling and plays an essential regulatory role in
the interaction between tumor cells and the tumor microen-

vironment [52]. Previously, Hu et al. reported that BMP-6
plays a role in inhibiting BRCA metastasis by regulating
the secretion of MMP1 in the tumor microenvironment
[53]. Juncker-Jensen et al. said that MMP1 stimulates
PAR1 to promote vascular growth and primary tumor
metastasis [54]. The study by Langenskiöld et al. showed
that MMP1 is an independent prognostic factor affecting
the survival rate of patients with colorectal cancer [55]. In
a study of East Asian breast patients, researchers found that
lower expressions of APOA5 and APOC3 were associated
with higher ESTIMATE immune scores, which means a
large number of tumor-infiltrating immune cells [56].
CPT1A is a protein-coding gene, and its encoded protein is
the key enzyme of the carnitine-dependent transport across
the mitochondrial inner membrane. Its overexpression will
increase the rate of fatty acid β-oxidation, thereby providing
the cell with more ATP to maintain the various physiological
activities. In breast cancer, a previous study has shown that
miR-328-3p regulates tumor cell stemness by affecting the
CPT1A-FAO axis in BRCA cells, thereby playing a pivotal
role in BRCA metastasis [57]. In addition, inhibiting the
expression of CPT1A in prostate cancer, nasopharyngeal
carcinoma, breast cancer, or lung adenocarcinoma cells can
increase the sensitivity of cancer cells to hormone-blocking
chemotherapy or radiotherapy [58–62].

NR1H3, also known as LXRα, plays an essential role in
cholesterol and lipid homeostasis. It can also interact with
the ubiquitin E3-ligase protein complex containing the
BRCA1-associated RING domain 1 (BARD1) effect [63]. In
breast cancer, NR1H3 was identified as an antiproliferative
and adipogenic factor in breast cancer cells and proved that
the antiproliferative effect of NR1H3 is independent of lipid
biosynthesis [64, 65]. CYP27A1 is mainly involved in choles-
terol metabolism, fat synthesis and metabolism, steroid syn-
thesis and metabolism, sterol metabolism, and other
biological processes. It converts cholesterol into 27-hydroxy-
cholesterol, maintains cholesterol homeostasis in the body,
and catalyzes the biological activation of vitamin D3. The
biologically active form of VD3 can induce cancer cell apo-
ptosis and inhibit tumor growth [66, 67]. The results of pre-
vious studies indicate that the abnormal expression of
CYP27A1 is closely related to the prognosis of a variety of
tumors [68–70]. Alfaqih et al. found that the low expression
of the CYP27A1 gene in prostate cancer is associated with
survival rate and high tumor stage. Silencing the expression
of the CYP27A1 gene can slow down the growth rate of
prostate cancer cells in vitro and transplanted tumors [68].
Liang et al. showed that by downregulating the expression
of CYP27A1 in bladder cancer and further achieving rapid
proliferation of bladder cancer cells [71]. In addition, in a
study of premenopausal estrogen receptor-positive primary
BRCA patients, researchers found that the abnormal expres-
sion of CYP27A1 can be used as a prognostic indicator for
such BRCA patients [72]. In breast cancer, Song et al. found
that knocking down the expression of SORBS1 promotes the
EMT process and reduces the sensitivity to chemicals, espe-
cially cisplatin, by inhibiting p53 in BRCA cells [73]. In addi-
tion, another study showed that miR-142-5p could regulate
BRCA progression by targeting SORBS1 [74]. Up to now,
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APOA2, SCD, and PLTP molecules have not been deeply
explored in BRCA. Therefore, in subsequent scientific
research, we should explore the potential mechanisms of
APOA2, SCD, and PLTP molecules in BRCA. In addition,
in future clinical diagnosis and treatment, we can use the
PPAR signaling pathway-related risk model to calculate the
risk value of each patient. For BRCA patients in the high-
risk group, we should give more intensive treatment, more
detailed examinations, and more frequent reexaminations
to prolong the survival time of BRCA patients in the high-
risk group as much as possible.

5. Conclusion

In short, our study may still have some obvious shortcom-
ings, such as the lack of single-center or multicenter clinical
data verification. Therefore, we look forward to more large-
sample, multicenter clinical studies to support this study in
the future. However, based on TCGA database, we have
established a prognostic-related risk model for BRCA
patients using genes related to the PPAR signaling pathway
and established a nomogram that can predict the overall sur-
vival of BRCA patients in five, seven, and ten years. In par-
ticular, for this risk model, we conducted a series of
pancancer analyses and verified it with GEO and HPA data-
bases. Therefore, this research can provide valuable data for
future studies of the PPAR signaling pathway in BRCA.
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