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The hypoxic tumor microenvironment and long noncoding RNAs (lncRNAs) are pivotal in cancer progression and correlate with
the survival outcome of patients. However, the role of hypoxia-related lncRNAs (HRLs) in colorectal cancer (CRC) development
remains largely unknown. Herein, we developed a hypoxia-related lncRNA signature to predict patients’ survival and immune
infiltration. The RNA-sequencing data of 500 CRC patients were obtained from The Cancer Genome Atlas (TCGA) dataset,
and HRLs were selected using Pearson’s analysis. Next, the Cox regression analysis was applied to construct a risk signature
consisting of 9 HRLs. This signature could predict the overall survival (OS) of CRC patients with high accuracy in training,
validation, and entire cohort. This signature was an independent risk factor and exerted predictive ability in different
subgroups. Functional analysis revealed different molecular features between high- and low-risk groups. A series of drugs
including cisplatin showed different sensitivities between the two groups. The expression pattern of immune checkpoints was
also distinct between the two clusters in this model. Furthermore, the high-risk group had higher immune, stromal, and
ESTIMATE score and a more repressive immune microenvironment than the low-risk group. Moreover, MYOSLID, one of the
lncRNAs in this signature, could significantly regulate the proliferation, invasion, and metastasis of CRC.

1. Introduction

According to the latest epidemiological statistics, colorectal
cancer (CRC) is an important factor that threatens the sur-
vival of mankind [1]. In 2022, it has been predicted that
CRC will still be the third most common tumor and the sec-
ond leading cause of cancer-related death in the USA [1].
Although a high incidence and mortality rate exist in CRC,
effective treatments are still limited due to the complexity
of tumor biology and the tumor heterogeneity [2]. Tumor
microenvironment (TME) is a complex and heterogenous
population that is composed of cancer cells, stromal cells

such as cancer-associated fibroblasts, immune cells, cytokine
networks, and oxygen [3]. Hypoxia is a common event in
large amounts of solid tumors due to high consumption of
oxygen and disordered intratumor blood vessels [4, 5]. Thus,
cancer cells undergo metabolic reprogramming towards a
more glycolytic phenotype and adjust to such a hypoxic
environment, also known as the Warburg effect [6].
Enhanced glycolytic activity in cancer cells helps them
obtain enough intermediate to synthesize biomacromole-
cules and promotes lactate secretion, which leads to dysreg-
ulation of extracellular pH [4, 6]. Hypoxia-induced
pathophysiological processes could help cancer cells gain a
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survival advantage over other cells which leads to an immu-
nosuppressive tumor microenvironment, an unsatisfactory
chemotherapeutic effect, and poor patient survival [4, 7].

Long noncoding RNA (lncRNA) is widely involved in can-
cer progression but has no potential to code for protein [8].
Emerging studies have proved that extracellular oxygen levels
regulate the expression of lncRNA [9]. Moreover, the expres-
sion pattern of lncRNAs varies under hypoxia and normoxia
[9]. Huan et al. observed that the expression of lncRNA
LUCAT1 in CRC was upregulated under hypoxia, which can
promote the growth and drug resistance of CRC [10]. In addi-
tion, it has been demonstrated that dysregulated lncRNA
levels in cancer can regulate some key regulators related to
hypoxia such as HIF1A [11]. For example, lncRNA SNHG11
is upregulated and correlated with poor prognosis in CRC
patients. Mechanically, SNHG11 can bind to pVHL and pro-
tect HIF1A from the degradation, accumulating HIF1A in
the cancer cells [12]. Moreover, the accumulation of HIF1A
is essential for tumor metastasis because it is involved in a
lot of oncogenic processes such as epithelial-mesenchymal
transition (EMT) and metabolic reprogramming [13]. There-
fore, it has been established that hypoxia and lncRNA could
regulate each other and form a complex network which has
a strong impact on a series of cancer hallmarks [11].

Both lncRNAs and hypoxic TME contribute to tumor
malignancy. Hence, discerning a hypoxia-related lncRNA
(HRL) panel and establishing a relevant model could evaluate
patient’s clinical prognosis [14]. In addition, it has been
revealed that targeting certain HRL can be an effective method
in cancer treatment [10, 12]. Recently, several studies have
explored the possibility of developing a HRL signature to pre-
dict patients’ survival and tumor microenvironment in multi-
ple cancer types [14–16]. Nevertheless, application of the HRL
signature in CRC is still unknown. Therefore, this research
constructed a HRL signature in CRC using The Cancer
Genome Atlas (TCGA) database. This signature could not
only offer prognostic value but also describe the TME features
and estimate clinical treatments of each patient.

2. Methods and Materials

2.1. Data Acquisition and Processing. The expression matrix
(FPKM) of CRC patients was downloaded from TCGA data-
base (https://portal.gdc.cancer.gov/). Then, the FPKM value
was transformed into the TPM value. The study included a
total of 500 CRC patients with the following criteria: (1) over-
all survival (OS) time is more than 30 days. (2) Clinical data
includes T,M, N, and AJCC stages, age, and gender. R package
“caret” was applied to divide 500 CRC patients into training
and validation group with a ratio of 7 : 3. Subsequently, 31
hypoxia-related genes were collected based on previous studies
and listed in the Supplementary Table S1 [17, 18].

2.2. Identification of Hypoxia-Related lncRNAs. A total of
14048 RNAs were considered as lncRNA according to the
annotation file from GENCODE (https://www.gencodegenes
.org). Moreover, package “limma” was used to discover differ-
ently expressed lncRNAs (P < 0:05 and ∣logFC ∣ >1) between
tumorous and nontumorous samples. Further, differently

expressed lncRNAs whose expression was correlated with
the expression of at least 1 hypoxia-related gene (P < 0:01
and ∣R ∣ >0:4) were regarded as HRLs.

2.3. Construction of the Hypoxia-Related lncRNA Model. Uni-
variate Cox regression analysis was applied to select HRLs
related to the overall survival (OS) of CRC patients (P < 0:05).
Next, the associated lncRNAswere further selected by least abso-
lute shrinkage and selection operator (LASSO) Cox regression
analysis using the “glmnet” package. Finally, several lncRNAs
and their relevant coefficients were confirmed which were
applied to establish a HRL model. The risk score = coefficient ð
lncRNA1Þ × expression ðlncRNA1Þ + coefficient ðlncRNA2Þ ×
expression ðlncRNA2Þ +⋯ + coefficient ðnÞ × expression ðnÞ.
2.4. Prognostic Evaluation. The Kaplan-Meier survival analy-
sis was applied to find out the survival difference between dif-
ferent subgroups. The sensitivity and specificity of HRL
signature were calculated by ROC analysis. Further, univariate
and multivariate Cox regression analyses were used to validate
whether the HRL signature was an independent risk factor.

2.5. Nomogram. The 1-, 3-, 5-, and 7-year survival probabil-
ities of CRC patients in the training and total cohort were
predicted by nomogram. Nomogram construction included
risk score, AJCC stage, gender, and age for accurate predic-
tion. Moreover, the discrimination and accuracy of the
nomograms were evaluated by concordance index (C-index)
and calibration curves.

2.6. Functional Enrichment Analysis. The R package “limma”
was used to select differently expressed genes between high-
and low-score groups for Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses. Sub-
sequently, the gene symbols of these genes were converted
into ENTREZ ID. The gene set “h.all.v7.4.entrez.gmt” was
downloaded from the msigDB database (http://www.gsea-
msigdb.org/gsea/msigdb/collections.jsp#H) for Gene Set
Enrichment Analysis (GSEA) studies. Similarly, the gene
symbols were converted into ENTREZ ID and sorted by
descending log fold changes (logFC).

2.7. Drug Sensitivity and Immunotherapy Response
Prediction. Using package “pRRophetic,” predicted drug
sensitivity of CRC patients to certain drug was calculated
[19]. By entering patient’s RNA-sequencing data, this pack-
age could calculate relevant IC50 (half-maximal inhibitory
concentration) value based on its built-in dataset [19]. To
predict immunotherapy response, TIDE (Tumor Immune
Dysfunction and Exclusion) algorithm was applied [20].
The predicted efficiencies of the immune checkpoint block-
ade (ICB) treatment of each CRC patient could be obtained
after feeding their RNA-Seq data on the official website
(http://tide.dfci.harvard.edu/).

2.8. Mutation Analysis. The copy number variation (CNV)
data of the TCGA-COAD and TCGA-READ cohort was
downloaded from TCGA database (https://portal.gdc
.cancer.gov/). Further, to analyze the CNV data of high-
and low-score groups, R package “maftools” was used [21].
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Figure 1: Continued.
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The mutation landscape of both groups was visualized
through waterfall plot. Tumor mutation burden (TMB)
and differently mutated genes were further explored to
reveal the intrinsic mechanism that leads to the biological
difference between the two groups.

2.9. Immune Infiltration Evaluation. Immune, stromal, and
ESTIMATE scores of CRC patients were calculated using
ESTIMATE algorithm [22]. Further, the CIBSERSORT algo-

rithm analyzed the 22 immune cells proportion of each sam-
ple by simply inputting TPM values of the sequencing data
[23]. TIMER2.0 is a user-friendly web server that provides
a rounded analysis of tumor-infiltrating immune cells in
the TCGA cohorts [24]. The immune infiltration data
including XCELL, TIMER, QUANTISEQ, MCPCOUNTER,
and EPIC was downloaded from TIMER2.0 (http://timer
.cistrome.org/). Also, the expression of immune checkpoints
and cytokines was analyzed in two groups.

−7
11.0Pa

rt
ia

l l
ik

el
ih

oo
d 

de
vi

an
ce

11.5
12.0
12.5
13.0
13.5
14.0

−6 −5
Log (𝜆)

−4 −3

26 25 23 2322 2219 14 10 9 6 0

(d)

LINC00702
LINC02188
MYOSLID

LOC100129434
LINC02257

Lnc-SKA2–1
LINC01915

C6orf223

MYG1-AS1

−0.2−0.1 0.0 0.1
2

(e)

0.66

0.57

0.49

0.4

0.31

0.22

0.14

0.05

−0.04

−0.12

−0.21

ADM
ALDOA

ANGPTL4
ANLN
BNC1

CA9
CDKN3

COL4A6

ACOT7
LI

N
C0

22
57

LI
N

C0
21

88
LI

N
C0

07
02

LI
N

C0
19

15
M

YO
SL

ID

M
YG

1-
A

S1
Ln

c-
SK

A
2–

1

C6
or

f2
23

LO
C1

00
12

94
34

DCBLD1
ENO1

FAM83B
FOSL1
GNAI1

HILPDA
KCTD11

KRT17
LDHA

MIF
MRGBP

NDRG1
MRPS17

PGK1
PGAM1

SDC1
SLC16A1

SLC2A1
TPI1

TUBB6
VEGFA

P4HA1

(f)

Figure 1: Construction of a hypoxia-related lncRNA signature. (a) Work flow chart of this study. (b) Forest plot of the 27 lncRNAs that
correlated with the OS of CRC patients. (c and d) LASSO Cox regression analysis. (e) Coefficients of 9 lncRNAs. (f) Heat map that
showed the relationship between hypoxia-related genes and 9 lncRNAs.
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2.10. ssGESA. Single-sample gene set enrichment (ssGSEA)
can calculate the score of certain cell or pathway at the level
of a single sample [25]. A series of immune gene sets were
retrieved from a previous study and are listed in Supplemen-
tary Table S2 [26]. Further, the scores of these gene sets were
calculated using “GSVA” package.

2.11. In Vitro Experiments. To further explore the potential
therapeutic targets in CRC, a series of functional experi-
ments were performed and the detailed methods are intro-
duced in Supplementary methods.

2.12. Statistical Analysis. R software performed the majority
of the bioinformatic analysis. Student’s t-test was used to
compare the difference between the two groups of normally
distributed variables. The Wilcoxon rank-sum test was
applied for variables that were not normally distributed.
The chi-square test could compare the differences between
the two groups of categorical variables. The Pearson regres-
sion analysis revealed the correlation between the two vari-
ables. The two-sided P value of less than 0.05 was
considered statistically significant.

3. Results

3.1. Construction of a Hypoxia-Related lncRNA Signature.
Figure 1(a) presented the overall design of the research.
We obtained 159 differently expressed hypoxia-related
lncRNAs between normal and tumorous samples. Among
the 159 lncRNAs, 27 lncRNAs were correlated with the OS
of CRC patients (Figure 1(b)). Package “caret” randomly
separated CRC samples into a training (n = 353) and a vali-
dation (n = 147) cohort with a ratio of 7 : 3. There was no
significant survival difference between the two cohorts
(Figure S1A). We used training group to construct a HRL
signature and test and entire cohort (n = 500) to verify the
reliability of this model. LASSO regression analysis further
removed 18 genes according to the value of lambda.min,
and the remaining 9 genes with relevant regression
coefficients were obtained to construct the prognostic
model (Figures 1(c)–1(e)). As is shown in Figure 1(f), all

of the 9 lncRNAs had positive correlations (R > 0:4) with
at least one hypoxia-related gene. The expression of
LINC02257, LINC02188, MYOSLID, C6orf223, MYG1-
AS1, and Lnc-SKA2-1 was upregulated in tumor samples,
while the expression of LINC00702, LOC100129434, and
LINC01915 was downregulated in tumor samples
(Figure S1B). The TPM values and coefficients of the 9
lncRNAs were applied to generate the risk score: risk score
= TPMðLINC02257Þ ∗ 0:01038406 + TPMðLINC02188Þ ∗
0:14814960 + TPMðLINC00702Þ ∗ 0:15740894 + TPMðLOC
100129434Þ ∗ 0:03632290 − TPMðLINC01915Þ ∗
0:27678907 + TPMðMYOSLIDÞ ∗ 0:12183431 + TPMðC6
orf223Þ ∗ 0:00373216 + TPMðMYG1 −AS1Þ ∗ 0:03923423
− TPM ðLnc − SKA2 − 1Þ ∗ 0:00861392. According to the
median value of each group, the patients were divided into
high- and low-score group.

3.2. HRL Signature Correlated with Prognosis in CRC. The
Kaplan-Meier survival analysis showed that the high-score
group exhibited a much shorter OS time than the low-
score group in training, testing, and entire group
(Figures 2(a)–2(c)). Then, the calculated the AUC value of
1-, 3-, 5-, and 7-year survival in all 3 cohorts confirmed
the outstanding predictive ability of HRL model
(Figures 2(d)–2(f)). The 5-year survival rate is commonly
regarded as an important indicator to evaluate the outcomes
of tumor patients. The AUCs for 5-year OS prediction in
training, validation, and entire cohort were 0.8, 0.63, and
0.76, respectively, providing an effective basis for clinicians
to judge the prognosis of patients (Figures 2(d)–2(f)). The
distribution of survival time, survival status, and risk score
were visualized by risk curves and scatter plots
(Figures 2(g)–2(i)). In addition, the expression pattern of
the 9 HRLs between high- and low-score groups was also
different (Figures 2(j)–2(l)). Overall, the results demon-
strated that the HRL signature exerts outstanding prognostic
ability in CRC patients.

3.3. Clinical Performance of the lncRNA Signature. Univari-
ate Cox regression analysis revealed the P values of lncRNA
signature, age, and AJCC stage to be less than 0.05,
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Figure 2: Predictive ability of the lncRNA signature. (a–c) The Kaplan-Meier plots in training, validation, and total cohort. (d–f) ROC
curves in training, validation, and total cohort. (g–i) Risk curves and scatter plots in training, validation, and total cohort. (j–l) Heat map
that showed the expression pattern of 9 lncRNAs in high- and low-risk group.
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indicating their association with patients’ OS (Figures 3(a)–
3(c)). Multivariate Cox regression analysis discovered that
the P values of HRL signature were all less than 0.01 and
the values of HR were all more than 2, demonstrating that
the HRL signature is an independent risk factor in all three
cohorts (P < 0:05) (Figures 3(d)–3(f)). The clinicopathologi-
cal characteristics of both the training and validation sets
were summarized in Table 1. We aimed to find out whether
the HRL signature showed predictive abilities in different
subgroups. Interestingly, the lncRNA signature could still
exert predictive function in the majority of the subgroups
(11 out of 12) (Figures 3(g)–3(r)). The relationship among
clinical factors, gene expression, and risk level were shown
using a heat map (Figure S2A). Moreover, the risk score in
T3-4, N1-2, M1, and III-IV stage was significantly higher
than in T1-2, N0, M0, and stages I-II (Figure S2B).

3.4. Construction of a Nomogram. Risk score, AJCC stage,
gender, and age were used to construct the nomograms for

predicting the 1-, 3-, 5-, and 7-year OS in both training
cohort and entire cohort (Figures 4(a) and 4(b)). In the
study, the patients were given a nomogram-based risk score
and were estimated for survival probability. In addition, 1-,
3-, 5-, and 7-year calibration curves were drawn for both
cohorts, which indicated that the nomogram showed high
accuracy and stability (Figures 4(c)–4(j)). The concordance
index of the nomogram in training and entire cohort was
0.78 and 0.76, respectively.

3.5. Gene Enrichment Analysis. A series of functional anal-
yses including GO, KEGG, and GESA were performed to
determine the potential pathway or process that leads to
the different clinical outcomes between the two groups.
The R package “limma” was applied to select differently
expressed genes between high- and low-risk subgroups,
and then, these genes were subjected to GO and KEGG
analyses. Representative GO terms included biological pro-
cess (BP), molecular function (MF), and cellular
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Figure 3: Predictive ability of the lncRNA signature. (a–c) Forest plot of the univariate Cox regression in training, validation, and total
cohort. (d–f) Forest plot of the multivariate Cox regression in training, validation, and total cohort. (g–r) The Kaplan-Meier plots in
different subgroups.
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component (CC). The BP included positive regulation of
cytosolic calcium ion concentration, extracellular structure
organization, extracellular matrix organization, calcium ion
transport, and BMP signaling pathway (Figure 5(a)); the
MF included signaling receptor activator activity, receptor
ligand activity, ion channel activity, extracellular matrix
structural constituent, and cell adhesion molecule binding
(Figure 5(b)); and the CC included transporter complex,
ion channel complex, glutamatergic synapse, collagen tri-
mer, and collagen-containing extracellular matrix
(Figure 5(c)). Moreover, the KEGG results indicated that
different signaling such as ECM-receptor interaction, pen-
tose and glucuronate interconversions, chemical
carcinogenesis-DNA adducts, focal adhesion, and bile
secretion might be involved in the different prognosis
between the two groups (Figure 5(d)). Gene sets from
“h.all.v7.4.entrez.gmt” were used to analyze their activities
in each group. Next, the 5 most enriched pathways in each
group were selected after setting P < 0:05, q values <0.25,
and abs ðNESÞ > 1:5 as the criteria to judge the enriched
pathways. As is shown in Figures 5(e) and 5(f), pathways
such as HALLMARK_EPITHELIAL_MESENCHYMAL_
TRANSITION and HALLMARK_HYPOXIA were
enriched in the high-risk group, while HALLMARK_OXI-
DATIVE_PHOSPHORYLATION and HALLMARK_
MYC_TARGETS were enriched in the low-risk group.

3.6. HRL Signature Correlated with the Therapeutic Effects of
Chemotherapy and Immunotherapy. The IC50 of several
common drugs was calculated. We found the IC50 of masiti-
nib, phenformin, and ruxolitinib was higher in the high-risk

group, indicating that the high-risk group patients tend to be
more resistant to these drugs (Figure 6(a)). On the contrary,
the high-risk group might benefit from pazopanib, foretinib,
and cisplatin, a widely used drug in CRC treatment
(Figure 6(a)). Further, the mutation rate of the top 20 driver
genes between two groups was visualized through waterfall
plots (Figure S3A–B). A higher mutation rate of MUC16,
NIPBL, PTPRK, MYO9A, LPA, TRRAP, APOB, and
COL7A1 was found in the high-risk group (Figure S3C).
Interestingly, the mutation rate of MUC16 in the high-risk
group was 35% while in the low-risk group was 21%
(Figure S3A–B). Moreover, the mutation of MUC16 in
solid tumors has been reported to be correlated with a
higher tumor mutational burden [27]. Immunotherapy is
emerging as a promising method in cancer treatment. We
discovered a significantly higher expression of CTLA4,
PDCD1/PD1, LAG3, HAVCR2/TIM3, and PDCD1LG2/
PD-L2 in the high-risk group (Figure 6(b)). Additionally,
patients in the low-risk group showed a much lower TIDE
score than its counterpart (P = 4:2e − 14), suggesting that
immunotherapy had better therapeutic effects in these
patients (Figure 6(c)). MSI status and TMB are two
important hallmarks in predicting the efficiency of ICB
therapy [28]. The results demonstrated that the high-risk
group occupied a higher proportion of MSI-H patients
(P = 0:02) (Figure 6(d)). What is more, the patients with
MSI-L/MSS and low scores had better OS compared with
those with MSI-L/MSS and high scores (Figure 6(e)).
Similarly, the low-score MSI-H patients had better OS than
the high score MSI-H patients (Figure 6(e)). However, the
TMB analysis showed no significant difference between the

Table 1: The clinicopathological characteristics of both the training and validation sets.

Training cohort
(n = 353)

Risk score
P value

Validation cohort
(n = 147)

Risk score
P

value
High

(n = 176)
Low

(n = 177)
High

(n = 73)
Low

(n = 74)
Gender

0.12 0.04Female 156 85 71 72 42 30

Male 197 91 106 75 31 44

Age

0.87 0.93≤65 156 77 79 65 32 33

>65 197 99 98 82 41 41

AJCC stage

0.0002 0.28
Stage I-II 205 85 120 75 34 41

Stage III-
IV

148 91 57 72 39 33

T stage

<0.0001 0.87T1-2 72 18 54 31 15 16

T3-4 281 158 123 116 58 58

M stage

0.01 0.44M0 291 136 155 128 62 66

M1 62 40 22 19 11 8

N stage

0.0002 0.16N0 213 89 124 77 34 43

N1-2 140 87 53 70 39 31
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two groups (Figure 6(f)), although the classification based
on both TMB and risk score demonstrated that the risk
score could predict patients’ OS regardless of their TMB
status (Figure 6(g)).

3.7. Hypoxia-Related lncRNA Signature Correlated with
Immune Infiltration. Exploring the infiltration pattern of
immune cells could offer prognostic value and guide immu-
notherapy in CRC [28, 29]. Thus, a series of immune-related
algorithms were applied to analyze the immune infiltration
status of 500 CRC patients in the study. ESTIMATE algo-
rithm revealed that the high-risk group had a higher stromal,
immune, and ESTIMATE score (Figures 7(a)–7(c)). CIBER-
SORT results showed that the proportion of macrophages
M0, mast cells activated, and T cells regulatory (Tregs) was
higher, while the proportion of dendritic cells activated, den-
dritic cells resting, mast cells resting, plasma cells, T cells
CD4 memory resting, and T cells CD4 memory activated
was lower in the high-risk group (Figure 7(d)). Pearson anal-
ysis showed that the risk score had strong positive correla-
tion with M0 macrophage and a strong negative
correlation with T cells CD4 memory resting (Figures 7(e)
and 7(f)). Further, the relationship between immune/stro-
mal cells and HRL signature was explored using algorithms
including XCELL, TIMER, QUANTISEQ, MCPCOUNTER,
and EPIC. We observed that the relationship between mac-
rophage, dendritic cell, CD4 T cell, and risk score in CIBER-
SORT was consistent with the majority of these algorithms
(Figure 7(g)). Surprisingly, the risk score had strong positive
correlation with cancer-associated fibroblasts (CAFs)
(R = 0:3 in XCELL, R = 0:48 in MCPCOUNTER, and R =
0:42 in EPIC) (Figure 7(g)). Next, the expression patterns
of cytokines were analyzed as they play an important role
in CRC immunology. It was observed that most of the pro-
tumor cytokines had positive correlation with the risk score
(Figure 7(h)). Scores of 18 immunotherapy response-related
pathways were calculated by ssGESA. Surprisingly, an
inverse correlation was observed between risk score and
the scores of the pathways whose P value was less than
0.05 (Figure 7(i)).

3.8. MYOSLID Promotes the Progression of CRC. There have
been limited studies that discuss the oncogenic roles of

MYOSLID. The previous research has indicated that MYO-
SLID was upregulated in the head and neck squamous cell
carcinoma and contributed to tumor metastasis [30]. Simi-
larly, MYOSLID could enhance the degree of malignancy
by promoting the expression of MCL1 in gastric cancer
[31]. However, no study has been reported that discusses
the role of MYOSLID in CRC. We explored the relationship
between patients’ OS and expression of 9 HRLs and found
that high expression of MYOSLID indicated a poor progno-
sis in TCGA CRC cohort (Figure 8(a) and Figure S4). Also,
higher expression of MYOSLID can be found in the
advanced T stage, N1-2 stage, and AJCC stage in TCGA
CRC cohort (Figure 8(b)). In addition, our study found a
strong positive correlation between MYOSLID and EMT-
related genes including VIM, SNAI2, CDH2, and TGFB1
(Figure 8(c)). Similar correlation was also found between
HIF1A and MYOSLID (Figure 8(c)). Therefore, we
speculated that MYOSLID might also promote the
progression of CRC. We examined the expression of
MYOSLID in HCT116, HCT15, HCT8, DLD1, SW480,
RKO, LOVO, CaCO2, and NCM460 and discovered that
the expression of MYOSLID was highest in HCT15
(Figure 8(d)). Additionally, hypoxic environment can
induce MYOSLID expression (Figure 8(e)). Two siRNAs
were transfected into HCT15 to knock down MYOSLID
(Figure 8(f)). It was observed that the knockdown of
MYOSLID significantly reduced the proliferative ability of
HCT15 (Figure 8(g)). Furthermore, results from the
transwell assay and wound healing assay indicated that
repressing MYOSLID expression could also inhibit
invasion and migration in CRC (Figures 8(h)–8(k)).
Therefore, we concluded that MYOSLID could function as
an oncogene and could become a potential therapeutic
target in CRC.

4. Discussion

Hypoxia has been regarded as a hallmark of the tumor
microenvironment and exists in most of the solid tumors
[4]. It has been studied that lack of oxygen could remodel
tumor microenvironment by promoting abnormal angio-
genesis and reducing extracellular pH levels and nutrient
availability, resulting in immune suppression, drug

0.0
0.0

A
ct

ua
l 5

-y
ea

r O
S 

(p
ro

po
rt

io
n)

0.2

0.2

0.4

0.4

Predicted probability 5-year OS

0.6

0.6

0.8

0.8

1.0

1.0

(i)

0.0
0.0

A
ct

ua
l 7

-y
ea

r O
S 

(p
ro

po
rt

io
n)

0.2

0.2

0.4

0.4

Predicted probability 7-year OS

0.6

0.6

0.8

0.8

1.0

1.0

(j)

Figure 4: Nomogram. (a and b) Nomogram of training and total cohort. (c–j) The 1-, 3-, 5-, and 7-year calibration curves in training and
total cohort.
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resistance, and tumor progression [4, 32]. Herein, the 9
hypoxia-related lncRNAs were applied to construct a HRL
signature. The HRL signature exhibited excellent predictive
ability in predicting patients’ OS. Additionally, the signature
divided patients into two clusters, which showed distinc-
tively different immune checkpoint expression and immune

cell infiltration patterns. Finally, we experimentally validated
the oncogenic function of MYOSLID in CRC.

The past decade has widely studied the function of
lncRNA in CRC development, and the application of
lncRNA as a prognostic model has been reported in a num-
ber of studies [33]. It has been demonstrated that hypoxia
could induce the aberrant expression of lncRNAs, such as
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H19, HOTAIR, and NEAT1 to regulate tumor biology [34].
Moreover, lncRNA could upregulate the expression of HIF
by increasing HIF-1α expression at both transcription and
posttranscription levels [35]. Recently, a series of studies
revealed that several hypoxia-related lncRNA signatures
could provide predictive value [14, 16, 36]. In bladder can-
cer, a lncRNA signature consisting of 4 hypoxia-related
lncRNAs was constructed and was found to exhibit excellent

predictive performance [16]. Hence, it is pivotal to establish
a HRL signature in CRC. Using bioinformatic analyses, we
obtained 9 HRLs which included LINC02257, LINC02188,
MYOSLID, C6orf223, MYG1-AS1, Lnc-SKA2-1,
LINC00702, LOC100129434, and LINC01915 for further
analysis. A HRL signature was established to calculate the
risk scores of each patient. The Kaplan-Meier analysis and
ROC curve revealed that the HRL signature showed potent
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Figure 6: Treatment prediction. (a) Box plots that showed the IC50 of 6 drugs in high- and low-score group. (b) Box plots that showed the
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Figure 7: Tumor microenvironment estimation. (a–c) Beeswarm plots that compare the stromal score, immune score, and ESTIMATE
score between high- and low-risk groups. (d) Box plots that showed the proportion of 22 immune cells in high- and low-score group. (e)
Scatter plot that showed the correlation between T cell CD4 memory resting and risk score. (f) Scatter plot that showed the correlation
between macrophage M0 and risk score. (g) Relationship between risk score and the proportion of stromal cells. (h) Correlation heat
map that showed the relationship between risk score and the expression of cytokines. (i) Correlation heat map that showed the
relationship between risk score and the activities of immunotherapy response-related pathways.
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Figure 8: The role of MYOSLID in CRC. (a) The Kaplan-Meier plot that compared the OS between high- and low-MYOSLID groups. (b)
Box plots that compared the expression of MYOSLID in subgroups with different clinical features. (c) Relationship between risk score and
VIM, SNAI2, CDH2, TGFB1, and HIF1A. (d) The expression of MYOSLID (RNA level) in different cell lines. (e) The expression of
MYOSLID under hypoxia. (f) The expression of MYOSLID (RNA level) before and after knocking down MYOSLID. (g) The OD450
value of HCT15 before and after knocking down MYOSLID. (h–k) Relative cell number in transwell assay. (i and j) Relative migration
distance in wound healing assay.
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accuracy in survival prediction. The signature was also an
independent risk factor and could predict the OS in different
subgroups. Hence, this novel hypoxia-related lncRNA signa-
ture could offer predictive value in CRC.

In CRC, chemotherapy is still the mainstay of treatment
other than surgery [2]. Surprisingly, patients in the high-risk
group were predicted to be more sensitive to cisplatin, a
widely applied chemotherapy drug in CRC. Immune check-
point therapy can offer lasting therapeutic effects and suc-
cessfully improves the OS of patients [37, 38].
Nevertheless, the vast majority of CRC patients showed
resistance to immune therapy, which greatly restricts their
application in the clinic [39]. It has been demonstrated that
TMB, mismatch repair deficiency, expression of immune
checkpoint, and tumor-infiltrating immune cells are predic-
tive biomarkers for therapeutic efficiency of ICB [28]. We
found that patients in the high-score group had high mRNA
level of CTLA4, LAG3, PDCD1, HAVCR2, and PDCD1LG2.
Further, a larger population of MSI-H patients can be found
in the high-score group. However, the TIDE algorithm pre-
dicted that patients in the low-score group can receive more
benefits from ICB, which might be the result of a higher pro-
portion of antitumor immune cell population in the low-
score group.

Emerging evidence has demonstrated that the develop-
ment and prognosis of CRC are tightly closed to TME. The
proportion of a series of antitumor immune cells in CRC
was significantly lower than in normal colorectal mucosa
[29]. In addition, it has been observed that the suppressive
myeloid cells were dominant in immunosuppressive CRC
TME [29]. Studies have revealed that hypoxia could regulate
the biological function of nearby stromal cells to shape an
immunosuppressive microenvironment [4]. HIF-1 signaling
has been reported to help cancer cells escape immune attack
by inducing the expression of PD-L1 [40]. Hypoxia could
also change the function of myeloid-derived suppressor cells
(MDSCs) and promote their differentiation toward tumor-
associated macrophages in the TME [41]. CAFs also facili-
tate the formation of an immunosuppressive TME [42].
The expression of several immunosuppressive cytokines
including IL6, IL10, and TGF-β that are secreted by CAFs
was also seen to be upregulated in hypoxia, inhibiting T
cell-mediated cytotoxicity to suppress immune activation
[43]. Our results revealed that a higher stromal score existed
in the high-risk group, which could be a result of the enrich-
ment of CAFs. Additionally, the HRL score was positively
correlated with the proportion of CAF in XCELL,
MCPCOUNTER, and EPIC. In our study, the HRL signature
divided CRC patients into two clusters with distinct immune
infiltration patterns. The result that the high-risk score
group had a high infiltration of immune cells seemed to be
perplexing. In fact, upregulation of immunosuppressive
immune cells could contribute to the progression of cancer
and indicates poor survival outcomes. Our study found a
higher proportion of macrophages M0 and T cells regulatory
(Tregs) in the high-risk group and a higher proportion of
dendritic cells activated, dendritic cells resting, mast cells
resting, plasma cells, T cells CD4 memory resting, and T
cells CD4 memory activated in the low-risk group. Further-

more, the HRL score was negatively correlated with immu-
notherapy response-related pathways and was positively
correlated with several protumor cytokines, which partly
explained the poor response of the high-risk group to ICB
therapy in TIDE algorithm.

It has been observed that lncRNAs selected using bioin-
formatic analysis could be more likely to be potential thera-
peutic targets for cancer treatment [14]. LINC02257, an
enhancer RNA with DUSP10 as the target gene, has been
reported to be upregulated and associated with the survival
outcomes in multiple kinds of cancers [44]. MYG1-AS1
was regarded as a hypoxia-related lncRNA in hepatocellular
carcinoma [45]. The role of LINC00702 in tumor develop-
ment has been studied in several researches. LINC00702
functions as a tumor-suppressor gene by promoting PTEN
expression in colorectal cancer and nonsmall cell lung can-
cer (NSCLC) while as an oncogene in malignant meningi-
oma and ovarian cancer [46–49]. LINC01915 has been
reported to inhibit the formation of CAFs through miR-
92a-3p/KLF4/CH25H axis, which was consistent with our
analysis that LINC01915 was downregulated in CRC com-
pared with normal tissues [50]. MYOSLID has been reported
to be a hypoxia- and autophagy-related lncRNA in HNSCC
[51, 52]. Furthermore, the role of MYOSLID in HNSCC and
gastric cancer has been validated using a series of in vitro
and in vivo experiments [30, 31]. Our research focused on
exploring the function of MYOSLID in CRC. The knockdown
effects of MYOSLID were studied by applying a series of func-
tional assays. The results revealed that MYOSLID could pro-
mote the progression of CRC by enhancing proliferation,
invasion, andmigration of CRC cells. Hence, MYOSLID could
be a potential target in CRC therapy.

5. Conclusion

In summary, we developed a HRL signature that could
predict the survival outcomes of CRC patients. Addition-
ally, the HRL signature was correlated with drug sensitiv-
ity, immune checkpoint expression, and immune
infiltration of CRC. Finally, we observed that MYOSLID
could affect the biological function of CRC. These indi-
cated that hypoxia-related lncRNA signature could be a
novel biomarker in CRC diagnosis and promising thera-
peutic target in cancer treatment.
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