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It is acknowledged that antiviral immune response contributes to dengue immunopathogenesis. To identify immunological
markers that distinguish dengue fever (DF) and dengue hemorrhagic fever (DHF), 113 patients with confirmed dengue
infection were analyzed at 6 or 7 days after fever onset. Peripheral blood mononuclear cells (PBMC) were isolated, lymphocyte
subsets and activation biomarkers were identified by flow cytometry, and differentiation of T helper (Th) lymphocytes was
achieved by the relative expression analysis of T-bet (Th1), GATA-3 (Th2), ROR-γ (Th17), and FOXP-3 (T regulatory)
transcription factors quantified by real-time PCR. CD8+, CD40L+, and CD45+ cells show higher numbers in DF compared to
DHF patients, whereas CD4+, CD19+, and CD25+ cells show higher numbers in DHF than DF patients. High expression of
GATA-3 accompanied by low expression of T-bet indicates predominance of Th2 response. In addition, higher expression of
FOXP-3 and reduced functional cytotoxic T cells (CD8+perforin+) were observed in DHF patients. In further experiments,
PBMC were stimulated ex vivo with dengue virus E, NS3, NS4, and NS5 peptides, and proliferating T cell subsets were
determined. Lower proliferative responses to NS3 and NS4 peptides and reduced CD8+ cytotoxic T cells were observed in DHF
patients. Our results suggest that immune response to dengue is dysregulated with predominance of CD4+ T cells, low
activation of Th1 cells, and downregulation of the antiviral cytotoxic activity during severe dengue, likely induced by
regulatory T cells.
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1. Introduction

Dengue is one of the most important viral diseases worldwide
and frequently causes outbreaks of high morbidity and eco-
nomic impact in underdeveloped countries [1, 2]. Dengue
virus (DENV) belongs to the Flaviviridae family, genus Flavi-
virus; it is transmitted by mosquitos of the Aedes aegypti and
Aedes albopictus species. DENV possesses an RNA genome
that encodes a polyprotein that is posttranslationally proc-
essed into three structural proteins (capsid (C), precursor
membrane (prM), and envelope (E)) and seven nonstructural
(NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and
NS5) [3]. There are four DENV serotypes (DENV-1,
DENV-2, DENV-3, and DENV-4) [2].

The global incidence of dengue has shown important
changes in recent decades; the World Health Organization
(WHO) estimates there are 100-400 million dengue infec-
tions each year [4]. Reported number of dengue cases
increased more than 8-fold in the last two decades, from
505,430 cases in 2000 to 5.2 million in 2019. Reported deaths
also increased from 960 to 4032 between the year 2000 and
2015 [4]. For the Pan American Health Organization
(PAHO), the largest epidemics recorded in the Region of
the Americas occurred in 2015 and 2019, with more than
2.7 million dengue cases reported in 2019 [5]. In particular,
Mexico had 213,822 dengue cases in 2019 [5]; Torres-Galicia
et al. reported a notable increase in the incidence of DHF in
Mexico since the previous decade [6].

Dengue has a wide spectrum of clinical manifestations
starting with fever and a mild flu-like syndrome [7]. Febrile
phase usually lasts from 2 to 7 days; fever can rise tomore than
40°C accompanied by other symptoms such as intense head-
ache, retroocular pain, myalgia, arthralgia, nausea, and rash.
Patients can spontaneously recover or progress to severe den-
gue, which includes DHF and dengue shock syndrome (DSS).
DHF is characterized by coagulopathy, increased vascular fra-
gility, and permeability. A patient can enter the critical phase
about 3-7 days after fever onset. At this time, fever is dropping
(below 38°C) but signs associated with severe disease canman-
ifest, such as intense bleeding, plasma loss, and led in some
cases to organ failure and potentially fatal complications [4,
7]. Currently, the WHO classifies dengue into 2 major catego-
ries: dengue (with or without warning signs) and severe den-
gue, but in medical practice, it still used the 1997
classification in DF and DHF [4, 8].

Evolution of febrile to severe dengue seems to be corre-
lated with establishment of the immune response in both
primary and secondary infections. Altered immune pro-
cesses include proliferation of dysfunctional effector T cells
induced by cross-reactivity between DENV serotypes,
antibody-dependent enhancement (ADE) of infection that
increases virus replication in phagocytic cells, dysregulation
of complement and coagulation cascades, and overproduc-
tion of cytokines, chemokines, and other mediators of
inflammation that contribute to clinical manifestations of
severe disease [2, 9–11].

Diverse immune cells are targets of DENV infection,
including monocytes/macrophages and dendritic cells [2].
Early after infection, these cells contribute to establish a proin-

flammatory state by overproduction of several cytokines such
as TNF-α, IL-1β, IL-2, IL-6, and type I IFNs. This leads to acti-
vation of CD4+ Th2 cells that produce IL-2, IL-4, IL-5, and IL-
13 that consolidate the inflammatory process, as well as IL-10
and TGF-β that induce differentiation of regulatory T cells
(Treg) and contribute to downregulate the antiviral response
[2, 11–15]. In contraposition, IL-12 and IFN-γ induce activa-
tion of Th1 cells that promote activation of CD8+ cells and the
cytotoxic antiviral response necessary to clear out infection
[12]. Diverse transcription factors are the main regulators of
T cell differentiation; they control the type of cytokines
secreted and the route that will follow the immune response;
indeed T-bet, GATA-3, ROR-γ, and FOXP-3 are involved in
the control of the differentiation process of Th1, Th2, Th17,
and Treg cells, respectively [16, 17].

The protective role of T cells in dengue is controversial;
some reports showed that early activation of CD8+ T cells is
crucial to restrict DENV infection [18, 19]; indeed, higher pro-
liferation and cytotoxic activity of CD8+ T cells with produc-
tion of IFN-γ have been associated with protection against
secondary infections, regardless of DENV serotype [18–22].
In contrast, high levels of CD4+ cells were found in severe
and fatal dengue cases [21, 23, 24], even with increased num-
bers of CD8+ T cells in patients with DHF [18, 25, 26]. At
respect, the proinflammatory response induced by CD4+ cells
to heterotypic secondary infections seems to be associated
with proliferation of low-affinity memory CD8+ T lympho-
cytes that are not as functional as high-affinity memory cells
to control DENV infection [24, 25, 27, 28].

Specific T cell response can be induced by different epitopes
of structural and nonstructural DENV proteins [13, 14, 20,
29–32]. Kurane and Mathew studied the immune response to
attenuated viruses in vaccinees as well as in patients with natural
infection in Thailand; they showed that NS3 have multiple anti-
genic sites recognized by T cells [33, 34]. Rivino et al. evaluated
the reactivity of T cells by using a library of overlaid peptides
that cover all DENV-2 proteome in adult patients from Singa-
pore that suffer a secondary infection. They found a higher pro-
portion of CD8+ T cells induced by NS3 and NS5 peptides;
meanwhile, E and C peptides induced CD4+ T cells [35]. Tian
et al. showed that CD4+ T cells were predominantly directed
against the capsid protein followed by E, NS3, and NS2 pro-
teins, while the activation of CD8+ T cells was induced by
NS3, followed by capsid, NS5, and NS4/B proteins [31]. Weis-
kopf et al. made a complete analysis of CD8+ T cells in a hyper-
endemic region of Sri Lanka. They measured the response of
IFN-γ-producing cells ex vivo; the most antigenic proteins were
NS3, NS4B, andNS5 [20]. Other authors showed that induction
of CD4+ or CD8+ T cells depends on dengue virus serotype and
the patient’s HLA haplotypes [32, 33]. Thus, genetic factors and
geographic location of infected people have an important influ-
ence on the specificity and intensity of cellular immune
response and its role in protection [15, 20, 25, 28, 36, 37].

In this work, cellular parameters of the immune
response were examined in patients during a dengue out-
break that occurred at the central region of Mexico, pheno-
typing of T cells and their transcription factors, and the
proliferative response of immune cells induced by dengue
peptides were correlated with disease severity.

2 Journal of Immunology Research



2. Materials and Methods

2.1. Ethical Statement. This study was conducted in accor-
dance with international ethical principles and the Declara-
tion of Helsinki (last update Brazil 2013). The research
protocol was approved by the Committee of Ethics in Health
Research of the Mexican Institute of Social Security (IMSS)
and recorded under registration numbers R-2011-2103-29
and R-2012-2104-2. All patients (and their relatives) were
informed about the study, and written consent to participate
was obtained from each participant. Parents or legal tutors
authorized the participation and signed informed consent
of patients lower than 18 years old. Patients’ confidentiality
was assured by assigning a progressive study number to their
data and blood samples.

2.2. Clinical Procedures. The study was done with patients
admitted at IMSS “HGZ5” General Hospital located at Mete-
pec, Puebla, Mexico. Healthy blood donors from a geograph-
ical zone free of dengue were enrolled at IMSS High
Specialty Medical Unit located at Puebla City. Confirmatory
dengue diagnosis was done by means of IgM and IgG ELISA
kits (PanBio Diagnostic) and/or detection of NS1 antigen
(Platelia Bio-Rad). The 1997 WHO classification of dengue,
still in practice at this hospital, was used to classify cases into
DF and DHF [9].

Blood samples were obtained from all patients and sub-
mitted to hematological and biochemical laboratory tests,
including hematic biometry, platelet and differential leuko-
cyte counts, and the concentrations of hepatic enzymes
aspartate (AST) and alanine (ALT) aminotransferases. Other
tests such as abdominal ultrasounds were requested for med-
ical purposes only.

For immunological tests, 3 to 5ml blood samples were
obtained in heparinized tubes at 6 or 7 days after fever onset.
Samples were centrifuged at 1700 rpm at 4°C for 7 minutes;
plasma was separated and stored in aliquots at -70°C until
use. Ex vivo PBMC were separated by Ficoll-Histopaque
density gradient centrifugation and analyzed by flow cytom-
etry. Their mRNA was isolated for qPCR assays.

2.3. Flow Cytometry. The following monoclonal antibodies
were used for flow cytometry: CD3-FITC (clone UCHT1),
CD4-APC (clone OKT-4), CD8-APC-Cy7 (clone SK1),
CD19-PE (clone HIB19), CD69-PE (clone FN-50), CD45-
PE (clone UCHC1), CD40L-PE (clone 24-31), and CD25-
PE (clone PC61.5) all from eBioscience (currently Thermo
Fisher Scientific, Waltham, MA, USA). Anti-perforin anti-
body (clone dG9, sc-33655) and anti-IgG2b-PE (both of
Santa Cruz Biotechnology, Dallas TX, USA) were used for
intracellular staining. All antibodies used in multiparametric
flow cytometry were tested and conditions calibrated before
their use in samples.

Ex vivo PBMC were thawed and resuspended at 1 × 106
cells/ml, and lymphocyte subsets were identified by flow
cytometry using the BD FACSCanto II Flow Cytometry Sys-
tem and the FACSDiva Software (BD Biosciences, San Jose
CA, USA). Bicolor panels were analyzed as follows: for
helper T cells, CD3/CD4; for cytotoxic T cells, CD3/CD8;

for B cells, CD3(-)/CD19; and for activated T cells, CD3
coupled with either CD69, CD45, CD40L, or CD25.

2.4. T Cell Proliferation Assays. Peptides of dengue virus
NS3, NS4, NS5, and E proteins [38–40] were synthesized
by GenScript (NJ, USA) at >90% purity. The peptide
sequences and characteristics are shown in Table 1. Peptides
were reconstituted at 10mg/ml following the manufacturer’s
specifications: P1, P2, P4, P5, P6, P8, P9, P12, P13, and P14
in 10% DMSO in water, while P3, P7, and P11 peptides in
3% ammonia in water. Peptides were stored at -20°C until
use. Mixtures of peptides corresponding to each viral protein
were prepared as follows: E (P1, P2, and P3), NS3 (P4, P5,
and P6), NS4 (P7, P8, P9, and P10), and NS5 (P11, P12,
P13, and P14). The final concentration of each peptide in a
mixture was 10μg/ml.

For microplate priming, 96-well microplates were incu-
bated overnight with 1μg/ml suspensions of monoclonal
antibodies with functional assay activity CD28 (clone
37.51) and CD3 (clone HIT3a) both of eBioscience, which
induce costimulatory signals that increase the response to
synthetic peptides [41]. The next day, PBMC of patients
and controls (1:8 × 106 cells) were labelled with 5μM CFSE
(eBioscience) 5 minutes at 37°C in centrifuge tubes. After
that, cells were washed with PBS and resuspended in RPMI
1640 containing 10% FBS, 1% HEPES, 1% L-glutamine,
and 1% penicillin-streptomycin. Then, 1 × 105 PBMC were
added to each well of a primed microplate and stimulated
with the mixture of peptides mentioned previously (E,
NS3, NS4, or NS5). All experiments were done by triplicate.
DMSO (10%) and ammonia (3%) solutions in conditioned
RPMI medium without peptides were used as negative con-
trols. Cells stimulated with Phaseolus vulgaris hemagglutinin
(PHA, SIGMA, 20 ng/ml) were included as positive prolifer-
ation controls. Microplates were incubated at 37°C, 5% CO2
for 120 hours. After that time, proliferation of CD4+ and
CD8+ cells was determined by flow cytometry using the
BD FACSCanto II Flow Cytometry System and the FACS-
Diva Software (BD Biosciences, San Jose CA, USA).

2.5. Ex Vivo Relative Gene Expression Analysis. Total RNA
was extracted directly from ex vivo PBMC using TRIzol
(Invitrogen) following manufacturer’s instructions. cDNA
was synthetized by using random primers and the RevertAid
H Minus Reverse Transcriptase Kit (Thermo Fisher Scien-
tific, USA) at 25°C for 10min, 42°C for 60min, and 70°C
for 10min. Expression of T-bet, GATA-3, ROR-γ, and
FOXP-3 genes was determined by qPCR using the SYBR
Green/ROX-PCR Master Mix (Thermo Fisher Scientific,
USA) and the following primers: T-bet forward 5′-CAC
GCA CTT CCG CAC ATT CC-3′, T-bet reverse 5′-TCC
AGC AGC TCG AAG AGG CA-3′, GATA-3 forward 5′-
ACA ATC TGC CTC AAT CAC TCT G 3′, GATA-3
reverse 5′-TTG ACT TGG ATT GGG ATT TTG-3′, ROR-
γ forward 5′-GTC CAA CAA TGT GAC CCA G-3′, ROR-
γ reverse 5′-CTT TCC ACA TGC TGG CTA CA-3′,
FOXP-3 forward 5′-AAG CAG CGG ACA CTC AAT-3′,
and FOXP-3 reverse 5′-AGG TGG CAG GAT GGT TTC-
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3′. HPRT was included as endogenous control in all experi-
ments using the primers HPRT forward 5′-CCT GGC GTC
GTG ATT AGT GAT GAT-3′ and HPRT reverse 5′-CGA
GCA AGA CGT TCA GTC CTG TC-3′. All reactions were
run in the StepOne Real-Time PCR system (Applied Biosys-
tems). Before the analysis of gene expression in samples,
dynamic ranges were calculated and dissociation curves cor-
responding to each gene were depicted to determine assay
specificity. Relative gene expression between the control
and patient groups was calculated using the 2-ΔΔCT method,
where ΔCT is the difference in the threshold between any
target gene (T-bet, GATA-3, ROR-γ, and FOXP-3) and the
endogenous gene (HPRT). Expression of each mRNA tran-
scription factor was arbitrarily assigned a value of 1 in unin-
fected controls, and relative expression changes were
calculated in patients.

2.6. Statistical Analysis. Normality of data distribution was
tested by the Kolmogorov–Smirnov test. The data were rep-
resented as means with standard deviations (SD). The non-
parametric Mann–Whitney test, T test, or χ2 test was used
to compare independent groups as applicable. All analyses
were done in GraphPad Prism v7.0 software; differences
between groups were considered significant at p < 0:05.

3. Results

3.1. Demographic Characteristics and Clinical Parameters.
According to hospital’s archives, 189 patients were admitted
with diagnosis of dengue from July 1 to October 1, 2015; of
these, 113 patients were included in the study after complet-
ing their clinical tests and agreed to participate voluntarily
by signing the informed consent. Sixty-three patients pre-
sented DF and fifty have DHF. Plasma values of NS1, IgM,
and IgG confirmed dengue infection. Dengue serotype was

not determined. The median age was 48 and 41 years for
DHF and DF patients, respectively, with a variation between
4 and 71 years. Table 2 summarizes the main characteristics
of the study groups.

3.2. Clinical Signs. The most frequent signs and symptoms
present in dengue patients were fever, headache, back pain,
arthralgia, and rash. The hemorrhagic signs were variable;
a high number of patients presented petechiae (46/113), epi-
staxis (35/113), and gingival hemorrhage (16/113). Hema-
temesis and melena were less frequent (7/113 and 4/113,
respectively). Among the 50 patients with DHF, 26 pre-
sented both petechiae and epistaxis, and 10 presented simul-
taneously petechiae, epistaxis, and gingival hemorrhage. One
patient with DHF presented ascites.

3.3. Hematic Changes. No significant differences were found
between groups regarding hematocrit, hemoglobin, creati-
nine, and the proportion of leukocytes, lymphocytes, mono-
cytes, or neutrophils. Significant differences were found
between DF and DHF patients for platelet counts and serum
albumin concentrations (see Table 2). Most patients showed
platelet values < 10,000 cells/mm3 in both DF and DHF
patients (6765 ± 2642 and 2624 ± 1830 cells/mm3, respec-
tively; p < 0:0001). AST and ALT values were higher than
the reference in both DF and DHF patients, but only two
DHF patients presented values > 1000UI/ml for both
hepatic enzymes (see Table 2).

3.4. Lymphocyte Proportions in Dengue Patients. The pro-
portion of CD3+CD4+ T cells was higher in DHF than in
DF patients(29:59 ± 7:56% and 21:03 ± 8:18%, respectively,
p = 0:022) (Figure 1). The proportion of B cells
(CD3-CD19+) was almost twofold higher in DHF than in
DF patients (23:43 ± 7:32% vs. 12:2 ± 5:59%, p < 0:0001).

Table 1: Characteristics of dengue virus peptides used in this study.

Peptide ID Protein Sequence Position Induced response Reference

P1 E FKNPHAKKQDVV 519-530 CD4+ and CD8+ Sánchez-Burgos et al., 2010

P2 E RGARRMAIL 687-695 CD8+ and antibodies Sánchez-Burgos et al., 2010

P3 E DFGSVGGVL 699-707 Mostly antibodies Sánchez-Burgos et al., 2010

P4 NS3 WITDFKGKTVW 1824-1834 CD4+∗ Zeng et al., 1996

P5 NS3 TPEGITPAL 1975-1983 CD4+ and CD8+ Livingston et al., 1995

P6 NS3 GTSGSPIVNR 1608-1617 CD8+ Friberg et al., 2011

P7 NS4a ASIILEFFL 2199-2207 Low CD4+ and CD8+ and antibodies Sánchez-Burgos et al., 2010

P8 NS4a LRPASAWTL 2271-2279 Mostly antibodies Sánchez-Burgos et al., 2010

P9 NS4a CYSQVNPTTL 2337-2346 CD8+ and antibodies Sánchez-Burgos et al., 2010

P10 NS4b GSYLAGAGL 2469-2477 High CD4+ and CD8+ Sánchez-Burgos et al., 2010

P11 NS5 VIPMVTQIAMTDTTP 2826-2840 CD4+ and CD8+ and antibodies Sánchez-Burgos et al., 2010

P12 NS5 YMWLGARFL 2967-1975 Mostly antibodies Sánchez-Burgos et al., 2010

P13 NS5 SYSGVEGEGL 3003-3012 Low CD4+ and high CD8+ Sánchez-Burgos et al., 2010

P14 NS5 YFHRRDLRL 3257-3265 Mid CD4+ and high CD8+ Sánchez-Burgos et al., 2010

Most peptide sequences were obtained from Sánchez-Burgos et al. (2010). P4, P5, and P6 were selected from Zeng et al., Livingston et al., and Friberg et al.,
respectively [38–40]. Position refers to the first and last amino acid in the polyprotein. Peptides that induced IFN-γ production in mouse or human CD4 and
CD8 cells were selected for the present study. ∗Some peptides that induced antibody production and low CD4 and CD8 cell activity were selected as controls
of activation. ∗∗CD8 cells were not tested.
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In contrast, a smaller number of CD3+CD8+ T cells were
found in DHF compared to DF patients (15:45 ± 7:67% vs.
25:54 ± 11:19%; p = 0:0045) (see Figure 1). In addition, sig-
nificant reduction of activated cytotoxic T cells (CD3+CD8+-

perforin+) was found in DHF patients compared to DF
patients (4:17 ± 1:75% vs. 14:65 ± 5:47%, respectively; p <
0:001) (Figure 2).

Activation of T cells was analyzed by the identification of
CD3 together with CD40L, CD45, CD69, and CD25 markers
(Figure 3). Proportions of total CD40L+ cells were signifi-
cantly higher in DF than in DHF patients either in whole
PBMC (19:06 ± 13:54 vs. 4:02 ± 2:96) or CD3+ cells
(3:19 ± 1:98 vs. 1:65 ± 1:29) (p = 0:0009 and p = 0:0053,
respectively) (Table 3). CD45+ cells were more abundant in
DF than DHF (53:02 ± 16:09 vs. 35:73 ± 10:4; p < 0:0004),
but they did not differ between T cells. In contrast, CD25
expression was higher in DHF than in DF patients, either
analyzing whole PBMC (18:36 ± 8:15 vs. 7:49 ± 3:49%; p =
0:0001) or CD3+ T cells (3:0 ± 2:02 vs. 1:24 ± 0:81, p =
0:0018), respectively. No difference was observed in CD69
expression either in PBMC or T cells.

3.5. Relative Expression of T Cell Transcription Factors. T-bet
(Th1), GATA-3 (Th2), ROR-γ (Th17), and FOXP-3 (Treg)
transcription factors associated with helper T cell subpopula-
tions were directly analyzed ex vivo in PBMC. Both DF and
DHF patients showed low expression of T-bet mRNA
(0:4 ± 0:17 and 0:6 ± 0:2-fold) which indicates low levels of
Th1 cells and negative values of ROR-γ expression
(0:0009 ± 0:0006 and 0:04 ± 0:05-fold), which suggest down-
regulation of Th17 cells (Figure 4). The absence of Th17 cells
(ROR-γ) was corroborated by the lack of IL-17 in the sera of
DENV patients (limit of detection 20pg/ml; data not shown).

In contrast, DENV patients showed higher expression of
GATA-3 and FOXP-3 mRNA that indicate the presence of
Th2 and Treg cells, respectively. GATA-3 was significantly
higher in DHF than in DF patients (24:3 ± 13:8 vs. 4:1 ± 3:5
-fold, respectively; p < 0:001). FOXP-3 showed the highest dif-
ferences in expression between DHF and DF (205 ± 191 vs.
1:8 ± 0:9-fold, respectively; p < 0:0001) (Figure 4).

3.6. T Cell Response to Viral Peptides. Proliferative responses
induced ex vivo by viral peptides were analyzed by flow

Table 2: Clinical and laboratory features of patients with dengue fever (DF) and dengue hemorrhagic fever (DHF).

Clinical finding DF (n = 63) DHF (n = 50) p value

Pleural effusion or ascites1 0 1 (2%) —

Tourniquet (+)1 2 (3%) 5 (10%) —

Bleeding manifestations1 12 (19%) 34 (68%) 0.0001

Hematocrit2 39:75 ± 4:9% 37:8 ± 5:42% —

Hemoglobin3 13:55 ± 5:42 g/dl 12:6 ± 1:87 g/dl —

Creatinine3 0:88 ± 0:33mg/dl 0:77 ± 0:26mg/dl 0.2724

<0.6mg/dl 7 (11%) 11 (22%) 0.0556

Albumin2 3:23 ± 0:54 2:97 ± 0:5 0.0046

<2.5mg/dl 6 (9%) 8 (16%) 0.1989

2.5-3.4mg/dl 32 (51%) 33 (66%) 0.0314

Platelet counts2 (cells/mm3) 67,660 ± 26,430 26,240 ± 18,180 0.0001

<25,000 cells/mm3 19 (30%) 27 (54%) 0.0005

25,000–49,000 cells/mm3 16 (25%) 17 (34%) 0.2146

50,000–99,000 cells/mm3 12 (19%) 6 (12%) 0.2408

>100,000 cells/mm3 17 (27%) 0 —

WBC count2, cells × 103/μl 5:246 ± 2:589 6:325 ± 3:511 0.2225

WBC differential counts2 (% of total cells)

Lymphocytes 41:384 ± 13:232 32:5 ± 15:382 0.1149

MID cells 15 ± 6:976 9:833 ± 5:373 0.0508

Neutrophils 43:548 ± 14:063 57:333 ± 19:075 0.0696

Hepatic enzymes

ALT2 114 ± 76UI/ml 113 ± 107UI/ml 0.9403

>80UI/ml 37 (59%) 30 (60%) 0.4757

>200UI/ml 6 (9%) 8 (16%) 0.1989

AST2 159 ± 128UI/ml 178 ± 209UI/ml 0.7119

>80UI/ml 43 (68%) 40 (80%) 0.0756

>200UI/ml 14 (22%) 15 (30%) 0.2590
1Number of patients with the symptom (and percentage). 2Mean value ± SD. 3Mean concentration ± SD. p values were determined by the Mann–Whitney U
test for continuous variables and by the χ2 test for categorical variables; ∗p < 0:05 indicates significance between DF and DHF.

5Journal of Immunology Research



cytometry using CFSE to label T cells. The strategy to ana-
lyze CD4 and CD8 proliferating T cells is shown in
Figure 5; the objective was to evaluate the relative frequency
of proliferating (CFSE low) and nonproliferating (CFSE
high) in CD4+ and CD8+ cells. The proportion of proliferat-
ing CD4 and CD8 cells induced by viral peptides in DF and
DHF is shown in Figure 6.

In general, T cell responses were higher in DF than in
DHF patients; indeed, the proportion of CD4+ cells induced
by E, NS3, NS4, and NS5 was 3:6 ± 1:8 vs. 1:1 ± 0:8%
(p = 0:0003), 7:2 ± 4:3 vs. 1:6 ± 1:3% (p = 0:0006), 4:3 ± 3:2
vs. 0:9 ± 0:6% (p = 0:0032), and 2:6 ± 2:3 vs. 0:8 ± 0:7%
(p = 0:21), respectively. The proportion of CD8+ cells
induced by E, NS3, NS4, and NS5 peptides was 2:3 ± 1:7
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vs. 1:03 ± 0:7% (p = 0:28), 5:7 ± 5:2 vs. 1:8 ± 1:2% (p = 0:029
), 3:03 ± 2:1 vs. 0:7 ± 0:4% (p = 0:0034), and 1:4 ± 1:2 vs.
0:8 ± 0:5% (p = 0:21) either in DF or DHF, respectively.
NS3 peptides were more immunogenic than the other pep-
tides. Positive control stimulus (PHA) induced proliferation
of both CD4+ and CD8+ T cells (around 15%) in both DF
and DHF patients. Negative controls increased less than
0.1% for both groups.

4. Discussion

The balance between Th1 and Th2 cells is crucial to orches-
trate an immune response that protects against virus infec-
tion but maintains homeostasis [42]. Differentiation of
CD4+ naïve T cells into Th1, Th2, Th17, and Treg cell line-
ages depends on the expression of T-bet, GATA-3, ROR-γ,
and FOXP-3 transcription factors, respectively. T-bet and

Table 3: Analysis of activation molecules on immune cells of
dengue patients by flow cytometry.

DF (n = 23) DHF (n = 20) p value

CD40L+ 19:06 ± 13:54 4.02± 2.96 0.0009∗

CD45+ 53:02 ± 16:09 35:73 ± 10:4 0.0004∗

CD69+ 7:84 ± 4:15 9:79 ± 4:04 0.0987

CD25+ 7:49 ± 3:49 18:36 ± 8:15 0.0001∗

CD3+CD40L+ 3:19 ± 1:98 1:65 ± 1:29 0.0053∗

CD3+CD45+ 36:46 ± 12:75 32:21 ± 9:15 0.8184

CD3+CD69+ 4:94 ± 2:01 4:54 ± 1:31 0.8901

CD3+CD25+ 1:24 ± 0:81 3:01 ± 2:02 0.0018∗

Data are from flow cytometry experiments shown in Figure 3; numbers
represent percentages. p values were determined by the Mann–Whitney U
test; ∗mean significance between DF and DHF, p < 0:05.
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GATA-3 rival each other for activation; GATA-3 prevents
the polarization of Th1 and Th17 response by promoting
T-bet and ROR-γ downregulation and controls the secre-
tion of their related cytokines [16, 43–45]. In this work,
we found that patients with dengue did not significantly
express T-bet and ROR-γ, but they showed higher expres-
sion of GATA-3 and FOXP-3, particularly in patients that
worsen to DHF. Higher expression of GATA-3 is in accor-

dance with its ability to promote the proinflammatory
response that is mediated by IL-4, IL-5, IL-6, and IL-13
[16, 46, 47]. Their presence is also indicative of persistent
inflammation and severity in other Flavivirus infections
and dengue [21, 24, 48, 49].

Increased expression of FOXP-3 in patients with DHF
suggests the differentiation of regulatory T cells involved in
the secretion of IL-10. According to this, we have previously
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found high levels of IL-10 in the serum of patients with
DHF [50].

Several studies showed that CD8+ cells play important
roles in the control of DENV infection [18–20]. Our results
showed that CD8+ cells were more abundant in DF than in
DHF patients. In accordance, an increased proportion of
IFN-γ-producing CD8+ T cells has been found in patients
with subclinical dengue infections [21, 22]. Other reports
showed that CD8+ cells contribute to protect against homo-
typic and heterotypic DENV reinfection [13, 21, 51].

However, it has been proposed that cell immunity might
be incompletely activated during the febrile phase of dengue

due to an altered cytokine production, decreased CD8+ T
cell proliferation, and augmented T cell apoptosis [18, 26,
52]. Reduced cytotoxic function has been reported for mild
and severe dengue during defervescence [53]. In our study,
reduction in functional cytotoxic T cells was revealed by
the lower proportion of CD8+perforin+ cells in DHF and
reduced response to several viral peptides. Low CD4+ and
CD8+ cell proliferation was observed both in DF and DHF;
however, the lowest response was found in patients with
hemorrhagic symptomatology. This could be associated with
immune exhaustion observed in some studies on dengue [9,
41, 54, 55]. Exhausted T cells are characterized by specific
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markers such as PD-1, IL-7R, and ICOS, reduced capacity to
secrete IFN-gamma, IL-2, or effector molecules (granzymes,
perforin), and limited expansion capacity [41, 56].

The low levels of CD8+ T cells and reduced cytotoxic
function observed in DHF patients may be related with
kinetics of T cell responses on primary and secondary infec-
tion and not necessarily with the clinical outcome. During
secondary heterologous DENV infection, an early and stron-
ger T cell response was observed [9, 42]. It is also probable
that the low levels of CD8+ cells are the consequence of pre-
vious activation that occurred early during infection and that
negative feedback signals (IL-10, TGF-β) downregulated the
activity of T cells and reduced their numbers. Therefore, we
could be observing this phenomenon in a late phase after
activation, when T cell numbers are reduced again. Other
clues of higher activation of CD8+ cells are apparent increase
in CD25 expression and lower frequency of perforin found
by flow cytometry in DHF. This hypothesis is not contradic-
tory to that of cell exhaustion, proposed previously; both
include activation and downregulation phases. It is probable
that DENV activates downregulatory signals (IL-10) to
reduce the antiviral immune response as an evasion strategy
to persist in the organism [50]. Notably, the clinical worsen-
ing of dengue patients could be associated with reduced
activity of cytotoxic T cells induced by Treg cells [57].

Preservation of homeostasis after the activation of the
antiviral cytotoxic response requires the development of reg-
ulatory T cells that are induced under the control of FOXP-3
[57]. A notable polarization of Treg response in DHF
patients was indicated by the high proportion of CD3+-

CD25+ cells and the 200-fold increase in FOXP-3 transcrip-
tion that was not found in DF patients. Although FOXP-3
expression is not exclusive of the Treg linage [58], expansion
of Treg cells in acute dengue suggests that these cells sup-
pressed the proliferative response of DENV-specific cyto-
toxic T cells, as what occurred in vitro and in a mouse
model [59, 60].

By other side, our results show that a Th17 response was
not involved in the pathogenesis of dengue in these patients;
this is indicated by the low expression of ROR-γ and the lack
of IL-17 both in DHF and DF patients. This is contrary to
other studies that showed increased concentrations of IL-
17 in dengue patients [61–63], including a study in Mexican
patients that showed high levels of TH17 cells and IL-17
might be induced by PMA and ionomycin used to promote
in vitro proliferation and differentiation of Th17 cells [63].
Reduced expression of ROR-γ in our study indicates that
an intense downregulation process occurred in this gene
associated with Th17 cells and IL-17 secretion. ROR-γ
downregulation has been associated with T cell maturation
in the thymus and differentiation of helper T cells in per-
ipheric lymphoid organs; it is also related to several disor-
ders, including infections. ROR-γ is downregulated by the
presence of IL-10 in the microenvironment. Therefore, it is
probable that reduced levels of ROR-γ is also consequence
of FOXP3 expression and IL-10 secretion. In addition,
ROR-γ is also susceptible to downregulation by GATA-3.

We also analyzed the presence of activation biomark-
ers on lymphocytes and other cells. CD40L expression

was significantly lower in patients with DHF, but the pro-
portion of CD25+ (associated with Tregs and other cells)
was significantly higher. CD40L is involved in the secre-
tion of IL-12 as well as in the activation and differentia-
tion of Th1 cells. Reduced numbers of Th1 cells have
been reported in patients with severe dengue [64] and
are associated with the presence of Treg cells, production
of IL-10, and downregulation of CD40L [65, 66]. We
and others have found the association of IL-10 levels with
dengue severity [22, 50, 64].

Although patients were clinically classified in DF or
DHF, our results should be taken with some reserve because
most patients have reduced platelet counts. Platelet counts
< 100,000 cells/mm3 are indicative of high risk for hemor-
rhage, and almost all patients in our study have <10,000
cells/ml and any kind of hemorrhagic manifestations that
indicates a severe hematological compromise. In addition,
all patients were hospitalized; this reflects dengue complica-
tions, although patients classified as DF stay fewer days in
hospitalization than DHF patients.

5. Conclusions

In this study, we analyzed the phenotype and functionality
of immune cells in patients with dengue. Reduced amounts
of functional cytotoxic CD8+ T cells and low expression of
T-bet involved in Th1 differentiation were found in DHF
patients that in contrast showed high levels of Th2 responses
of CD4+ (GATA-3) and regulatory (Foxp3) T lymphocytes.
These confluent characteristics determine the low antigenic
response induced by viral peptides on immune cells of
DHF patients and reveal the imbalance of Th1/Th2/Treg
cells induced by dengue infection.
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