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Objective. From the pathogenic mechanism point of view, systemic lupus erythematosus (SLE) features prominently in T
lymphocyte apoptosis. Yet the regulatory mechanism underlying SLE cell apoptosis remains to be explored. This research
intends to clarify the role played by miR-137 in SLE and the underlying mechanisms. Methods. Twenty SLE patients (SLE
group) and twenty healthy controls (control group) were selected, from whom peripheral blood CD4+ T cells were isolated via
magnetic-activated cell sorting. Reverse transcription-polymerase chain reaction (RT-PCR) quantified miR-137 and AMP-
activated protein kinase (AMPK) in CD4+ T cells. Further, transfection of miR-137 mimics and inhibitors into CD4+ T cells
was carried out to alter miR levels. Levels of pyroptosis, apoptosis, and inflammatory- and pyroptosis-related proteins were
determined through PI staining, flow cytometry, and Western blotting, respectively. A luciferase reporter gene assay identified
the targeting relation between miR-137 and AMPK. Results. SLE patients showed downregulated miR-137 and upregulated
AMPK in CD4+ T cells than controls. miR-137 upregulation by miR-137 mimic transfection inhibited Jurkat cell pyroptosis
and apoptosis at both mRNA and protein levels and suppressed NOD-like receptor thermal protein domain-associated protein
3 (NLRP3) inflammasome activity and pyroptosis-related protein gasdermin D (GSDMD), while miR-137 inhibitor
transfection contributed to completely opposite effects. miR-137 directly targeted AMPK, as indicated by the luciferase reporter
gene assay. Furthermore, miR-137 inhibitor intervention induced healthy CD4+ T cell pyroptosis and apoptosis via mediating
AMPK, whereas miR-137 mimic transfection into CD4+ T cells of SLE patients leads to opposite results. Conclusion.
Upregulating miR-137 inhibits CD4+ T cell pyroptosis in SLE patients by modulating the AMPK pathway, suggesting the
potential diagnostic and therapeutic role of miR-137 in SLE.

1. Introduction

Systemic lupus erythematosus (SLE), a chronic
autoimmune-mediated inflammatory condition of connec-
tive tissue, has diverse clinical presentations ranging from
mild skin disorders to catastrophic organ failure and obstet-
ric complications, which can be life threatening in severe

cases [1–3]. Reports on the incidence and prevalence of
SLE over the past five years have revealed considerable var-
iations across global regions and even subpopulations
[4–6]. SLE is one of the prime reasons for death among
young women. In a metastudy involving more than 26,000
affected women in the United States, these female SLE
patients were found to have a 2.6-fold elevated all-cause
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mortality versus the general population, as well as a stan-
dardized mortality ratio (SMR) from cardiovascular disease
rate of more than 2 times, a possibility of developing infec-
tion of more than 5 times and kidney disease of more than
7 times [7].

Until now, the specific pathogenesis of the disease has
not been fully understood. But the dysimmunity caused by
CD4+ T lymphocyte dysfunction, which is essential in path-
ogenic autoantibody production, is known to be an impor-
tant inducement [8, 9]. CD4+ T cells, as a major T
lymphocyte subpopulation, help B lymphocytes produce
antibodies and activate macrophages, in addition to assisting
the induction of cellular and humoral immunity [10]. Fol-
lowing activation, CD4+ T cells release cytokines in large
quantities and modulate the activities of T and B lympho-
cytes, monocytes/macrophages, and other cells, which in
turn leads to the generation of massive autoantibodies in
the body, resulting in multisystem damage [11]. The forma-
tion of autoantibodies is considered to be the result of
altered pathways of cell death, including apoptosis, necrosis,
formation of neutrophil extracellular traps (NETs), and
increased low-density granulocyte production [12–14].
Pyroptosis, like apoptotic programmed cell death, is actually
a proinflammatory programmed cell death that is featured
by inflammatory intracellular substance release and cell
membrane rupture [15, 16]. In a recent pioneering study
[17], pyroptosis was found to be the primary reason for
CD4+ T cell death from nonproductive human immunode-
ficiency virus type 1 (HIV-1) infection, indicating that
pyroptosis-induced inflammation, CD4+ T cell death, and
immune system activation constitute a unifying theme of
the immunopathogenesis of HIV infection. The role played
by pyroptosis in in vivo CD4+ T cell death, particularly dur-
ing early-stage infection, however, has not yet been
characterized.

Belonging to small noncoding RNAs, microribose
nucleic acids (miRNAs) modulate gene levels through acting
on their target mRNAs, triggering translation suppression or
mRNA degradation [18]. It has been found that miRNAs are
critical in immune homeostasis and participate in immune
cell development and dysfunction by acting on the posttran-
scriptional level of genes, which are strongly linked to auto-
immune diseases (AIDs) [19, 20]. A study found that
inhibiting miRNA-448 hinders CD4+ T cell inflammatory
activation by upregulating SOCS5, a SLE cytokine [21]. Mal-
regulated expression of miR-137 has been reported in some
studies to cause inflammation and AIDs [22, 23]. Yet the
function of serum miR-137 in SLE diagnosis and treatment
and CD4+ T cell apoptosis in SLE patients has not been
reported. And as a cellular signal converter and energy sen-
sor, AMP-activated protein kinase (AMPK) is under the reg-
ulation of various metabolic stresses [24]. Activation of
AMPK is usually accompanied by the increase of catabolism
and the decrease of anabolism realized through substrate
phosphorylation [25, 26]. Recent studies have found a con-
nection between AMPK activation and anti-inflammatory
reaction [27, 28]. Intentionally activating AMPK has been
proposed as a strategy to treat hyperglycemia/hyperlipid-
emia-, redox stress-, or inflammation-associated metabolic

dysregulation [29–31]. The favorable anti-inflammatory
and immunosuppressive action of multiple AMPK activators
against inflammatory diseases and AIDs have been demon-
strated in various cell and preclinical models [32, 33].
Besides, the interaction between AMPK and inflammation
has been highlighted, pointing out that AMPK activation
reduces NF-κB-induced inflammation and immunoreaction
(through decreasing proinflammatory cytokine release and
impairing Th1 and Th17 cell differentiation) [34]. Through
several downstream targets of AMPK, AMPK activators
(metformin (MET), AICAR, etc.) have been shown to indi-
rectly weaken NF-κB signals and alleviate inflammation
[35]. Considering that metabolic control is at the core of
mitigating inflammation, it is reasonable to resolve inflam-
mation through AMPK activation. Moreover, miR-137 has
been reported to inhibit TCF4 in a targeted way and reverse
osteoarthritis progression through AMPK/NF-κB axis [36].
Therefore, in this study, we determined miR-137 in SLE
patients’ CD4+ T cells and discussed its potential role and
the mechanism in regulating SLE cell apoptosis and dysfunc-
tion. At the same time, we found by verification that AMPK
may be miR-137’s direct target gene, which helps it regulate
cell death through inducing pyroptosis.

2. Data and Methods

2.1. Clinical Data. Twenty SLE patients (5 males and 15
females, age range: 34:6 ± 3:7 years) hospitalized between
June 2019 and June 2021, all of whom met the SLE classifi-
cation standard revised by the Systemic Lupus International
Collaboration Clinics (SLICC) in 2009, were collected. The
control group had a total of 20 healthy people (male:female:
9 : 11) aged 34:1 ± 2:8 years, with normal antinuclear anti-
body, antinuclear antibody spectrum, erythrocyte sedimen-
tation rate (ESR), blood routine, urine routine, and
immunoglobulin examination results. Cases and controls
did not show statistical differences in age and sex composi-
tion ratio. Informed consent was obtained from the research
subjects prior to the study, and this research was approved
by our hospital’s Ethics Committee.

2.2. Determination of Peripheral Blood CD4+ T Cells and
Monocyte Isolation. Five to ten milliliters of EDTA anticoa-
gulated venous whole blood were sampled from patients
and health controls participating in the study, 100μL of
which was put into a special flow test tube and added with
10μL of FITC anti-CD4 antibody for 15min of incubation
in the dark. Then, 2mL of tenfold diluted hemolysin was
added for 10min, followed by 5min of centrifugation
(1,500 r/min). After supernatant removal, it was mixed with
1mL of PBS and centrifuged again (1500 r/min) for 5min,
followed by another supernatant removal and mixing with
400μL PBS, for flow cytometry (FCM) determination of
the CD4+ T cell percentage. Another anticoagulated whole
blood sample was prepared, and lymphocytes were separated
by gradient centrifugation with human peripheral blood
mononuclear cell (PBMC) separation medium (Beijing
Dakewe Biotech, China) according to the instructions.
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2.3. Cell Isolation and Culture. The isolated PBMCs were
used to sort CD4+ T cells by using a CD4+ T cell immuno-
magnetic bead separation kit (Takara, Japan). PBMCs were
centrifuged (1000 r/min) for 10min after the addition of
20μL magnetic bead mixture and 30min of cultivation
(4°C). The PBMCs were then taken out into a resuspension
buffer and added with the magnetic bead sorting medium,
followed by 3 washes with the buffer to remove the magnetic
field and treatment with the eluting buffer to obtain CD4+ T
cells that were then placed to an OpTmizer CTS T-Cell
Expansion medium (Gibco, USA) added with 1% L-gluta-
mine+1% penicillin/streptomycin. Jurkat cells were placed
in an RPMI 1640 medium where fetal bovine serum (15%)
and penicillin/streptomycin (1%) were added. All cells were
placed in a 37°C and 5% CO2 incubator for routine culture.

2.4. Cell Transfection. 100nM each of mimic, inhibitor, and
mimic/inhibitor control of miR-137 was transiently trans-
fected into Jurkat cells and CD4+ T cells with the Lipofecta-
mine RNAiMAX transfection reagent (Invitrogen) as per the
supplier’s recommendations and collected 48h later for further
analysis. GenePharma Co., Ltd., Shanghai, China, was entrusted
to chemically synthesize miR-137 mimic (5′-GAUGCGCAU
AAGAAUUCGUUAUU-3′), mimic control (5′-UCGCUU
GGUGCAGGUCGGGAA-3′), miR-137 inhibitor (5′-CUAC
GCGUAUUCUUAAGCAAUAA-3′), and inhibitor NC (5′-
GGUUCGUACGUACACUGUUCA-3′).

2.5. qRT-PCR. TRIzol reagent ordered from Invitrogen was
responsible for cell total RNA extraction, after which reverse
transcription into cDNA was carried out with the use of a
PrimeScript RT Master Mix purchased from Takara, Japan.
Using this cDNA as a template, PCR was performed on
ABI PRISM 7300 sequence detection system (Applied Bio-
systems Inc.) as instructed by the SYBR Premix Ex Taq II
kit manuals (Takara). Specific primers used in qRT-PCR,
which were presented as below, were synthesized by Shang-
hai Sangon Biotech: miR-137: sense (5′-3′): CGCGTAGTC
GAGGAGAGTACCA; antisense (5′-3′): AGTGCAGGGTC
CGAGGTATT; U6: sense: CTCGCTTCGGCAGCACA;
antisense: AACGCTTCACGAATTTGCGT; AMPK: sense:
TTTGCGTGTACGAAGGAAGAAT; antisense: CTCTGT
GGAGTAGCAGTCCCT; β-actin: sense: CCTGGCACCCA
GCACAAT; and antisense: GGGCCGGACTCGTCATAC.
2−ΔΔCt was used to calculate miR-137 and AMPK expression
relative to U6 and β-actin, respectively. Mean values were
obtained after three repeated measurements.

2.6. Western Blotting Experiment. RIPA lysate isolated pro-
tein isolation from cells as instructed by the manufacturer’s
manuals, after which the bicinchoninic acid (BCA) method
was employed for protein content determination. The proteins
were transferred to a membrane made of polyvinylidene fluo-
ride (PVDF) after sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE; 12%) and blocked indoor for
1h with 5% defatted milk, followed by a night-long incubation
(4°C) by immersing in primary antibodies (Cell Signaling
Technology), p-AMPK (Cell Signaling Technology), NLRP3

(Cell Signaling Technology), GSDMD (Cell Signaling Tech-
nology), ASC (R&D Systems), pro-caspase-1 (R&D Systems),
caspase-1 p20 (R&D Systems), pro-IL-1β (Abcam), IL-1β
(Abcam), pro-IL-18 (Abcam), IL-18 (Abcam), and β-actin
(Abcam) all diluted at 1 : 1000. The HRP secondary antibody
diluted at 1 : 1000 was then added for 1h of indoor cultivation.
Finally, the protein bands were exposed in MultiImager, and
protein levels were calculated according to the bands’ gray
values with β-actin as internal reference.

2.7. Double Luciferase Reporter (DLR) Assay. AMPK mRNA
3′-untranslated region (3′-UTR) and its site-directed mutant
were subjected to PCR amplification for cloning into the
psiCHECK-2 vector (Promega). Subsequently, wild-type
(WT) or mutant (MUT) luciferase plasmid was cotrans-
fected into 293T with miR-137 mimetic/negative control.
Renin and firefly luciferase activities, with Renin luciferase
activity as standardized index, were determined by the
DLR system (Promega).

2.8. Hoechst 3342/Prodium Iodide (PI) Staining. Pyroptosis-
induced cell membrane damage was assessed through
Hoechst 3342/PI dual staining. In brief, cells were cultured
in the wells of 24-well plates and immersed in the dark in
a medium mixed with Hoechst 33342 and PI fluorescent
dyes (both from Sigma, USA) for staining at room tempera-
ture. Twenty minutes after staining, cells were observed
microscopically to determine PI positive cell percentage.

2.9. Apoptosis. The adherent cells were gathered, and apopto-
sis was determined following the operating instructions of the
Annexin V-FITC/7-AAD Apoptosis kit (BD Bioscience): after
15min of light-tight cultivation with Annexin V-FITC stain-
ing solution (5μL), they were gently mixed with 5μL of 7-
AAD staining solution for 5min of incubation at 2-8°C in
the dark, followed by FCM determination of cell apoptosis.

2.9.1. Statistical Analysis. GraphPad Prism software statisti-
cally analyzed the data. Each test ran at least in triplicates.
All experimental data of each group were given mean ±
standard deviation, and the mean was pairwisely compared
with Student’s t-test. A P value < 0.05 was deemed signifi-
cant for all tests.

3. Results

3.1. miR-137 and AMPK Levels in Isolated CD4+ T Cells.
qRT-PCR quantified endogenous miR-137 expression in
CD4+ T cell specimens separated from 20 SLE cases and
20 healthy donors. The results revealed obviously lower
miR-137 (Figure 1(a)) and higher AMPK expression
(Figures 1(b) and 1(c)) in CD4+ T cells of cases versus con-
trols. And according to Annexin V/PI dual staining, the per-
centage of apoptosis of freshly isolated CD4+ T cells was
markedly higher in cases versus controls (Figure 1(d)).

3.2. miR-137 Induces Cell Pyroptosis through AMPK. To
determine the modulation of miR-137 on AMPK, we inves-
tigated the role played by miR-137 through transfecting
miR-137 mimic or inhibitor into Jurkat cells. According to
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qRT-PCR, AMPK expression was remarkably reduced by
miR-137 mimic transfection at both mRNA and protein
levels while was notably enhanced by miR-137 inhibitor
transfection (Figures 2(a), 2(b), 2(d), and 2(e)). In addi-
tion, we studied the role played by miR-137 in regulat-
ing AMPK-mediated inflammatory pathway proteins
and pyroptosis-related pathway proteins. NLRP3,
GSDMD, ASD, caspase-1 p20, and IL-1β protein levels
were found to be notably decreased by miR-137 mimic
transfection while were statistically enhanced by miR-
137 inhibitor transfection (Figures 2(b) and 2(e) and
Supplementary Figure 1). Meanwhile, Hoechst 3342/PI
staining showed that miR-137 mimic transfection kept
the integrity of cell membrane caused by pyroptosis
(Figures 2(c) and 2(f)).

3.3. miR-137 Directly Targets AMPK. To demonstrate the
direct interaction between the two genes, we performed a
DLR assay. Through online prediction websites, we pre-
dicted the binding site of AMPK mRNA 3′-UTR
(Figure 3(a)). Subsequently, the DLR gene assay verified that
luciferase activity decreased under AMPK-WT+miR-137
mimic cotransfection (P < 0:01), but the fluorescence activ-

ity of other cotransfected combinations did not alter signifi-
cantly (Figure 3(b)). The results suggest the ability of miR-
137 to directly target AMPK.

3.4. miR-137 Inhibitor Induces Normal CD4+ T Cell
Pyroptosis via Mediating AMPK. We assessed the impact of
the miR-137 inhibitor on isolated healthy CD4+ T cells to
further analyze the functional interaction of miR-137 with
AMPK. miR-137 inhibitor transfection remarkably
enhanced AMPK at both mRNA and protein levels in nor-
mal CD4+ T cells (Figure 4(a)), as well as AMPK-mediated
inflammation and pyroptosis pathway-related protein
expression (Figure 4(b) and Supplementary Figure 2). In
addition, we used Hoechst 3342/PI staining and FCM to
analyze whether miR-137 can regulate AMPK-mediated
cell pyroptosis and apoptosis. As indicated by Figures 4(c)
and 4(d), miR-137 inhibitor transfection induced normal
CD4+ T cell pyroptosis and apoptosis.

3.5. miR-137 Mimic Inhibits CD4+ T Cell Pyroptosis by
Mediating AMPK. As miR-137 was downregulated in SLE
patients’ CD4+ T cells, we studied its function in patients’
CD4+ T cells by transfecting miR-137 mimic. miR-137
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Figure 1: miR-137 and AMPK expressions in isolated CD4+ T cells. (a) miR-137 in isolated CD4+ T cells; (b) AMPK mRNA in isolated
CD4+ T cells; (c) AMPK protein in isolated CD4+ T cells; (d) apoptosis level by flow cytometry. Each test ran in triplicates. The means
were pairwisely compared using Student’s t-test. P < 0:01 means the presence of statistical significance.
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mimic transfection statistically reduced AMPK mRNA and
protein expression in CD4+ T cells (Figure 5(a)), as well as
AMPK-mediated inflammation and pyroptosis pathway-
related protein expression (Figure 5(b) and Supplementary
Figure 3). In addition, Hoechst 3342/PI staining and FCM
showed that miR-137 mimic transfection protected CD4+ T
cells against pyroptosis and apoptosis (Figures 5(c) and 5(d)).

4. Discussion

SLE is an AID in which autoreactive CD4+ T cells play a
vital part and are active mediators of SLE pathogenesis,
which rely on glycolysis to function as inflammatory effec-
tors [37]. Pyroptosis can also cause excessive inflammatory
damage to cells [38], while miRNAs, with wide involvement
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Impact of miR-137 mimic transfection on inflammation and pyroptosis-related proteins. (c) Impact of miR-137 mimic transfection on
cell pyroptosis; (d) AMPK mRNA expression after miR-137 inhibitor transfection. (e) Related protein expression after miR-137 inhibitor
transfection. (f) Impact of miR-137 inhibitor transfection on cell pyroptosis. Each test ran in triplicates. The means were pairwisely
compared using Student’s t-test. P < 0:01 means the presence of statistical significance.
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in regulating innate and adaptive immune cell differentia-
tion, development, and function, are critical in biological
development and physiological activities [39]. SLE is a dis-

ease with unknown pathogenesis and susceptibility to recur-
rence and remission, which brings great pain to patients. So,
exploring abnormal expression molecules of CD4+ T
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Figure 5: miR-137 mimic inhibits CD4+ T cell pyroptosis via mediating AMPK in SLE. (a) AMPK mRNA expression in SLE patients’ CD4+
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Student’s t-test. P < 0:01 means the presence of statistical significance.
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lymphocytes in SLE patients may provide reliable targets for
the diagnosis, efficacy, and prognosis evaluation of SLE and
is also crucial for inhibiting SLE apoptosis and alleviating
related cellular dysfunction.

Numerous studies have shown that the abnormal
miRNA expression is involved in the nosogenesis of SLE
[40, 41]. Along with the development of miRNA panels,
miRNAs have been a research hotspot in the diagnostic
area, but the therapeutic market that is driven primarily
by antagomiR and miRNA mimic products is underdevel-
oped. Miravirsen [42] and RG-101 [43], produced by
Roche/Santaris and Regulus Therapeutics, respectively,
are developed for the treatment of hepatitis C and are
believed to be flagship products for the disease in the
future. Currently, all miRNA-based drugs are in clinical
trials, yet none have made a breakthrough. With the
implementation of several plans, the miRNA market will
undoubtedly become a decisive factor in the coming years,
even if it is still in its infancy.

The present research revealed underexpressed miR-137
and elevated AMPK in CD4+ T cells of SLE cases versus
healthy donors. miRNAs participate in multiple biological
processes, including immune system stabilization, cell
growth, differentiation, and apoptosis. Evidence shows
markedly increased miR-21 and evidently reduced miR-
98 in SLE patients’ CD4+ T cells versus the healthy popu-
lation [44, 45]. This study was also the first to reveal a sig-
nificant reduction in miR-137 in SLE patients’ CD4+ T
cells. Then, we intervened miR-137 to observe its effect
on SLE cells. The results identified that transfection-
induced miR-137 upregulation suppressed Jurkat and
CD4+ T cell pyroptosis and apoptosis in SLE patients at
both mRNA and protein levels while suppressing NLRP3
inflammasome activity and pyroptosis-related protein
GSDMD expression. GSDMD has recently been identified
as a key effector of pyroptosis, which functions by activat-
ing N-terminal insertion, oligomerization, and membrane
pore formation following cleavage of inflammatory cas-
pases [46, 47]. Under normal cell conditions, the C-
terminal of GSDMD will automatically inhibit the pore-
forming activity of the N-terminal [48]. When inflamma-
somes, such as NLRP3 inflammasome, are activated by
extracellular signals associated with pyroptosis, they subse-
quently divide and activate caspase-1, -4, -5, and -11.
Thus, the activated caspase-1 cleaves and isolates GSDMD
N- and C-terminals [49]. In this study, caspase-1 p20
levels were also inhibited after miR-137 mimic transfec-
tion. Notably, MET has been indicated in previous studies
to reduce cell pyroptosis via NLRP3-GSDMD axis, thus
protecting against intestinal ischemia-reperfusion injury
[50]. Also, in the study of Peng et al. [51], piperine ame-
liorated lupus nephritis progression by blocking AMPK
activation in pristane-injected mice. And via targeting
AMPK, piperine markedly reduced NLRP3 inflammasome
activation and inhibited proinflammatory cytokine release,
thus blocking tubular epithelial cell pyroptosis.

Meanwhile, we found that AMPK was also regulated
when miR-137 expression was altered. Thus, miR-137 may
act on SLE by mediating AMPK. Subsequently, we found

that miR-137 can directly target AMPK through DLR gene
assay. In addition, miR-137 inhibitor induced healthy
CD4+ T cell pyroptosis and apoptosis via mediating AMPK,
whereas miR-137 mimic transfection into CD4+ T cells of
SLE patients led to opposite effects. AMPK, which is present
in nearly all cells and tissues of mammals [52], is critical in
modulating energy and substance metabolism and interferes
with a range of biological functions (cell proliferation, apopto-
sis, inflammation, etc.) [53]. AMPK activators (MET and
A769662) have been shown to lower mechanical hypersensi-
tivity in mice and rats with neuropathic pain, revealing a
potential mechanism for the treatment of neuropathic pain
via AMPK [54].

However, this study still has room for improvement.
First, we can investigate the correlation of miR-137 expres-
sion with clinicopathologic features of SLE patients and dis-
ease severity. Second, AMPK is not the only downstream
target of miR-137 in SLE. As discussed in the introduction
section, NF-κB is also the key regulator of inflammation.
Thus, studies on the potential response of the AMPK/NF-
κB axis to miR-137 can be supplemented to further reveal
the related regulatory mechanisms.

5. Conclusion

miR-137 is essential in the pathogenesis of SLE. Downregu-
lation of miR-137 results in dysregulated SLE cell apoptosis,
in part by targeting AMPK for direct interaction, leading to
abnormal T cell responses. Therefore, miR-137 may be a
novel strategy for SLE treatment. In addition, theoretically,
serum molecules are susceptible to environmental influence
[55], while molecule expression in CD4+ T cells is less
affected, showing greater advantages in evaluating the sever-
ity of SLE. Nonetheless, further research is warranted for
confirmation.
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