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Background. Nasopharyngeal carcinoma (NPC) is one of the most prevalent cancers with a poor prognosis. Immunotherapy,
especially immune checkpoint blockade (ICB), is becoming a potential therapeutic choice for NPC patients. Thus, the
identification of patients who could benefit from immunotherapy is clinically significant. Methods. The NPC expression
profiles from GSE102349 were used to calculate the cell scores of the tumor microenvironment (TME). The consensus
clustering method was utilized to identify the potential molecular subtypes among NPC samples. The hub genes were selected
from subtype-specific genes by bioinformatics analysis. Machine learning models, including random forest (RF) and support
vector machine (SVM) algorithms, were constructed to predict the immune subtype. Results. In the present study, we identified
two TME subtypes among NPC patients. Patients with the S1 subtype have higher levels of immune cells, immune checkpoint
genes, and prognosis. Using expression data profiles of NPC patients, we constructed machine learning models for predicting
TME subtypes of NPC patients. This model consists of 8 genes (LCK, CD247, FYN, ZAP70, SH2D1A, CD3D, CD3E, and
CD3G). Among them, LCK, FYN, SH2D1A, and CD3D were associated with better prognoses. Among the two constructed
models, SVM exhibited a higher area under curve (AUC) of 0.977, when compared with RF (AUC = 0:966). The web server
based on the constructed machine learning models will contribute to the identification of NPC patients likely to benefit from
ICB therapies. Conclusions. This study identified NPC subtypes and provided an accurate model to select individuals who are
most likely to respond to ICB.

1. Introduction

Nasopharyngeal carcinoma (NPC) is a rare cancer in most
regions of the world, accounting for only 0.7% of all cancers
[1]. In 2020, more than 130,000 new cases of NPC were
recorded globally, along with approximately 80,000 fatalities
[2]. It is important to note that the geographical distribution
of NPC samples is very unbalanced, with over 70 percent of
NPC samples reported in Southeast Asia [3]. The peak inci-
dence of NPC is 50 to 60 years of age, and males have a
higher incidence of NPC than their female counterparts
[4]. The etiologic factors of NPC include EBV infections,
genetic factors, and environmental factors [4]. The preferred
options for the treatment of NPC are primarily comprised of
chemoradiotherapy and adjuvant chemotherapy [5]. The
clinical outcome for individuals suffering from NPC is unfa-

vorable due to tumor relapse and early migration [6]. For
example, the median overall survival (OS) for patients with
distant metastasis was only 15.6 months [7]. Thus, studies
to identify novel and effective treatment therapies for NPC
are urgently required.

One strategy to improve the OS of NPC patients with
distant metastasis is to combine immune-checkpoint block-
ade (ICB) and chemotherapy. More than 90 percent of
patients showed overall response to the combination of
PD1 antibody with chemotherapy [8]. In another phase II
study that aimed to investigate the efficacy of PD-1 antibody
in metastatic NPC patients who had progressed after chemo-
therapy, the objective response rate (ORR) was 29.7% [9].
KEYNOTE-028 (NCT02054806) study is a phase I trial of
PD1 antibody in NPC patients. A total of 7 out of 27 patients
(ORR 26%) experienced an objective response to PD1
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antibody [10]. However, there are some potential challenges
for ICB treatment. First, in various solid tumors, only a small
percentage of patients could benefit from long-term treatment
of ICB (about 20 percent) [11]. Moreover, in NPC patients
treated by ICB, severe drug side effects were found among 87
percent of patients [8]. Besides, the cost of ICB is also very
high. Thus, the identification of NPC patients deriving a ben-
efit from anti-PD1 agents is needed. Multiple biomarkers for
ICB treatment have been recognized. For instance, earlier
research has explored tumor mutation burden (TMB) [12],
CD8+ T cells [13], and PDL1 expression [14]. TMB, on the
other hand, has the drawback of having a cutoff value that
changes according to the kind of tumor [15]. Additionally,
regulatory T lymphocytes may decrease CD8+ T cell activity,
and PDL1 expression confronts the challenge of intratumor
and tumor site variation [16]. As a result, no reliable ICB treat-
ment biomarker has been identified.

NPC, similar to many tumors, is an illness characterized
by intratumoral heterogeneity. Thus, it is indeed vital to
divide them into distinct subtypes that have different molec-
ular features, specific therapies, and clinical outcomes. On
the other hand, TME that contains immune cells, fibroblasts,
and extracellular matrix is a crucial element of tumors, and it
plays a crucial role in tumor development, migration, thera-
peutic sensitivity, and relapse [17]. Therefore, it is possible to
divide NPC patients into multiple subtypes by the diversity
and intricacy of the TME.

In the present study, we identified two TME subtypes
among NPC patients. Patients with the S1 subtype have
higher levels of immune cells, immune checkpoint genes,
and prognosis. Using expression data profiles of NPC
patients, we constructed machine learning models for pre-
dicting TME subtypes of NPC patients. This model consists
of 8 genes (LCK, CD247, FYN, ZAP70, SH2D1A, CD3D,
CD3E, and CD3G). Among them, LCK, FYN, SH2D1A,
and CD3D were associated with better prognoses. The web
server based on the constructed machine learning models
will contribute to the identification of NPC patients deriving
benefit from ICB therapies.

2. Materials and Methods

2.1. Data Resources. Three NPC gene expression data sets,
including GSE12452 [18], GSE68799, and GSE102349 [19],
were downloaded fromGEO. GSE68799 contained 42 NPC tis-
sue samples, GSE12452 contained 31 NPC samples, and
GSE102349 contained 113 NPC samples. The clinical parame-
ters of these three studies are shown in Supplementary Table 1.
The validation dataset for evaluating TME subtypes with ICB
response included IMvigor210 [20], GSE35640 [21],
GSE78220 [22], and GSE111636 studies. IMvigor210 study
contains 195 bladder cancer samples (PD-L1 antibody),
GSE35640 study contains 65 lung cancer samples (MAGE-A3
immunotherapy), GSE78220 contains 28 melanoma samples
(PD-1 antibody), and GSE111636 contains 11 advanced
urothelial tumors (PD-1 antibody). The gene expression
matrix and clinical information of datasets were collected.
Ethical approval was not necessary for this study because our
study is a bioinformatic analysis.

2.2. TME Cell Scores. In order to calculate the scores of TME
cells, ssGSEA, MCP-counter, and ESTIMATE were used.
The ssGSEA algorithm is an extension of the GSEA method
and could compute an aggregated enrichment score for a
gene set. Based on a list of immune metagenes, scores of
28 kinds of immune cells were calculated by ssGSEA [23].
The MCP-counter is a method that can evaluate the values
of 8 immune and 2 stromal cells [24]. ESTIMATE is a
method that can infer the immune, stromal, tumor, and
ESTIMATE scores (the sum of immune and stromal cells)
[25]. There are several reasons for selecting these methods.
(1) The cell scores calculated by these methods could be
compared between samples. (2) The combination of these
methods contains the main cell types in TME (immune cells
were mainly calculated from ssGSEA, endothelial cells and
fibroblast were calculated from MCP-counter, and tumor
cells were calculated from ESTIMATE). (3) These methods
were the most prevalent methods for quantification of the
absolute abundance of cells in TME. (4) These methods are
available as R packages.

2.3. Consensus Clustering (CC) Analysis. A total of 42 TME
cell scores were chosen for the CC analysis using the R Con-
sensusClusterPlus package [26]. And the most appropriate
TME subtype numbers were selected by the plot of relative
change in area under CDF curve, the plot of average silhou-
ette width, the plot of tracking plot, the plot of consensus
score matrix, and the plot of TSNE results. The log-rank test
was used to assess the discrepancy in progression-free sur-
vival (PFS) across two different subtypes.

2.4. Identification of Differentially Expressed Genes and
Enriched Pathways. The “limma” R package was used to
identify DEGs among NPC subtypes [27]. A ∣log 2
FoldChange ∣ >0:8 and a p value < 0.05 were used to identify
DEGs. Based on GSEA, biological process (BP), cellular
component (CC), molecular function (MF), Kyoto Ency-
clopedia of Genes and Genomes (KEGG), and Reactome
were applied to identify functional pathways of NPC sub-
types by log2FoldChange values. GSEA analysis was con-
ducted by R fgsea package. This package implements a
revolutionary approach that effectively reuses a single sam-
ple several times, hence, accelerating the analysis. This
package enables the rapid generation of millions of permu-
tations in a matter of minutes, resulting in very precise p
values. Enriched items with the p value < 0.05 were con-
sidered statistically significant.

2.5. Weighted Correlation Network Analysis (WGCNA). In
the process of WGCNA, the outliers were identified and
removed by WGCNA package [28]. Then, β values and scale
free R2 were adjusted to form a scale-free coexpression net-
work. After that, genes with higher connections were clus-
tered to construct modules. In our study, modules were
generated by the parameters “minModuleSize = 10” and
“mergeCutHeight = 0:15.” The relationships of modules
with clinical characteristics of patients were calculated, and
the module having the greatest correlation value with NPC
subtypes was chosen.
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2.6. Protein-Protein Interaction (PPI) Network Creation.
Genes from the chosen module were used to build the PPI
network based on the STRING database. STRING database
contains PPIs from sources of experiments and assists in
the identification of key regulator genes. The inclusion cri-
teria for protein interactions in the String database were set
as “confidence > 0:4”. Then, the PPIs were uploaded to
Cytoscape software to construct the PPI network. The genes
with the highest degree value were selected as hub genes.

2.7. The Construction and Validation of Machine Learning
Models. RF and SVM algorithms from the “caret” package
[29] were used to construct theNPC subtype predictionmodels.
The mRNA expression levels of hub genes were needed in the
model training phase. (1) Training (50%) and testing data
(50%) were split fromNPC samples of GSE102349. (2) Fivefold
cross-validation was selected to determine the optimal tuning
parameters. (3) AUC values in the testing dataset of the con-
structed models were calculated to evaluate their prediction
ability. ICB datasets (IMvigor210, GSE35640, GSE78220, and
GSE111636) were selected in the investigation of the association
of NPC subtypes with ICB efficacy.

2.8. NPC Subtype Prediction Web Server. The SVM model,
built for NPC subtype prediction, was used to develop a
web server. The web server was provided by the R language
“shiny” package [30]. The web server can be accessed with
any computer system and web browser.

3. Results

3.1. Construction of Molecular Subtypes Based on Cell Scores.
The flowchart of this study is shown in Figure 1. The scores

of 42 cell types for NPC samples, calculated by ssGSEA,
MCP, and ESTIMATE methods, were used to study NPC
subtypes in GSE102349. ConsensusClusterPlus was adopted
to split NPC tumors into k subtypes (k = 2 – 6). Based on the
plot of relative change in area under the CDF curve, k = 2
was optimal (Figure 2(a)). Based on the plot of average sil-
houette width, k = 2 was optimal (Figure 2(b)). Based on
the tracking plot, k = 2 was optimal (Figure 2(c)). The plot
of the consensus score matrix (k = 2) for NPC samples was
plotted (Figure 2(d)). In addition, TSNE results showed that
there are two main subtypes among NPC patients
(Figure 2(e)), referred to as S1 and S2. In general, S1 showed
a better overall prognosis than S2 (Figure 2(f)).

3.2. Differences in Immune Cell Infiltration of Different
Subtypes. Among the two subtypes, S1 had a higher degree
of immune cell infiltration than S2. A “desert”-like charac-
teristic was seen in S2, which was devoid of T cells, particu-
larly CD8 T cells, in the TME (Figure 3). However, S2
demonstrated higher tumor purity than S1. We also investi-
gated the expression values of immune checkpoint genes
(i.e., PD1, PDL1, and CTLA4) that are associated with
immune escape. The expression levels of genes are higher
in the S1 subtype (Figure 4). Furthermore, we compared
immune subtypes with tumor stage and TMB, and we
observed no statistically significant differences between
NPC subtypes (Supplementary Table 2).

3.3. Validation of Molecular Subtypes on Two Independent
Datasets. In the independent dataset GSE12452, the same
R package ConsensusClusterPlus was used to identify the
potential subtypes of NPC samples. Based on the consensus
matrix plot, relative change in area under the CDF curve,
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Figure 1: The flowchart of this study.
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Figure 2: Consensus clustering for NPC samples from GSE102349. (a) The relative change in area under CDF curve for each k subtype. (b)
Silhouette width of each subtype in NPC. The best subtype number was should be the k value with the highest value of average silhouette
width. (c) In the tracking plot, the percentages of subtypes were indicated by different colors. (d) Consensus matrix heat map plots when
k = 2. (e) t-SNE-plot for RNA-sequencing data from NPC samples from GSE102349. (f) Five-year Kaplan-Meier curves for progression-
free survival of NPC patients stratified by the NPC subtypes. CDF: consensus clustering cumulative distribution function.

4 Journal of Immunology Research



and the plot of tracking plot, the plot of average silhouette
width, k = 2 was optimal (Supplementary Figure 1A-1D).
The cell scores for two NPC subtype samples were plotted
(Supplementary Figure 2). In another independent dataset,
GSE68799, two subtypes were also found (Supplementary
Figure 3A-3D). The cell scores for two NPC subtype
samples were also plotted (Supplementary Figure 4).

3.4. Identification of Subtype-Relevant DEGs.With the use of
the “limma” package, we obtained 1072 DEGs that were dif-
ferently expressed between S1 and S2 subtypes. Compared to
the S1 subtype, 155 (15%) genes were upregulated, while 917
(85%) genes were downregulated in the S2 subtype samples.
For the DEGs, a volcano plot is constructed and shown
(Supplementary Figure 5).

3.5. Functional Enrichment Analysis. In the terms of the
biological process (Supplementary Table 3), GSEA results
indicated that upregulated genes in S2 were enriched in
cardiac chamber development, DNA-dependent DNA
replication maintenance of fidelity, circadian rhythm, and
spinal cord development. Upregulated genes in S1 were
enriched in cellular response to lipoprotein particle
stimulus, positive regulation of kinase activity, regulation
of T cell receptor signaling pathway, and movement in
environment of other organism involved in symbiotic
interaction. For the molecular function (Supplementary
Table 4), the enriched terms of upregulated genes in S2
included Mannosyltransferase Activity, Trna Binding, Dna
Secondary Structure Binding, and Magnesium Ion Binding.
Upregulated genes in S1 included Lipopolysaccharide Binding,
Amyloid Beta Binding, G Protein Coupled Chemoattractant

Receptor Activity, and Peptide Receptor Activity. For the
cellular component (Supplementary Table 5), the enriched
terms of upregulated genes in S2 included Histone
Deacetylase Complex, Ubiquitin Ligase Complex, and
Nuclear Ubiquitin Ligase Complex. Upregulated genes in S1
included Cytoplasmic Ubiquitin Ligase Complex. As to
KEGG (Supplementary Table 6), upregulated genes in S2
were mainly associated with the pathways of oxidative
phosphorylation, pyrimidine metabolism, and lysine
degradation. Upregulated genes in S1 were mainly associated
with the pathways of tryptophan metabolism, other glycan
degradation, and glycosaminoglycan degradation. Moreover,
Reactome (Supplementary Table 7) showed that upregulated
genes in S2 were mainly associated with Translation, RNA
Pol III Transcription Initiation from Type 2 Promoter, and
RNA Pol I Transcription Termination. Upregulated genes in
S1 were mainly associated with signaling by Rho Gtpases,
antigen processing cross presentation, Trif-mediated Tlr3
signaling, and endosomal vacuolar pathway.

3.6. Detection of Gene Coexpression Modules Correlated with
NPC Subtypes. 1072 DEGs were used for WGCNA. The out-
lier samples were removed (Supplementary Figure 6), and
the “softthreshold = 8” was chosen to build a scale-free
network (Figures 5(a) and 5(b)). A total of 14 gene
modules were discovered after setting the minimum cluster
size as 10 (Figure 5(c)). The association of gene modules
with the NPC subtype was then explored. We found that
the brown module (R = −0:70, p value < 0.01) was
significantly associated with the immune subtype of NPC
(Figure 5(d)). In addition, the genes in the brown module
demonstrated high module membership (MM) and gene
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Figure 3: Cell scores in two different NPC subtypes are illustrated by the heat map (yellow: higher value; blue: lower value).
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significance (GS) (Figure 5(e)). The brown module was
chosen for further investigation because it had the largest
negative connection with NPC subtypes of all the modules
tested.

3.7. Survival Analysis of Hub Genes. In the brown module, 8
hub genes (LCK, CD247, FYN, ZAP70, SH2D1A, CD3D,
CD3E, and CD3G) were identified by the degree value in
the protein-protein interaction network (Figure 5(f)). Based
on median expression values, we compared the survival dif-
ferences of high and low hub gene groups. Patients with a
lower level of LCK (Figure 6(a)), FYN (Figure 6(c)),
SH2D1A (Figure 6(e)), and CD3D (Figure 6(f)) exhibited
significantly shorter PFS (p value < 0.05). Similar results
were observed in CD247 (Figure 6(b)), ZAP70
(Figure 6(d)), CD3E (Figure 6(g)), and CD3G (Figure 6(h)).

3.8. Construction of Prediction Models of NPC Subtypes. The
mRNA expression levels of genes (LCK, CD247, FYN,
ZAP70, SH2D1A, CD3D, CD3E, and CD3G) from
GSE102349 were selected to build RF and SVM models for

NPC subtype prediction. The median value was used to
translate mRNA expression values from integer data (0–1)
to categorical values (“high” or “low”). The optimal param-
eters for the RF and SVM models were selected as
“mtry = 7” and “C = 4” by the best AUC values
(Figures 7(a) and 7(c)). After SVM and RF model construc-
tion, RF and SVM models scored satisfactorily, exhibiting
AUC values of 0.966 and 0.977, respectively, in the testing
dataset (Figures 7(b) and 7(d)).

3.9. Evaluation of the Correlation of NPC Subtype with ICB.
IMvigor210, GSE35640, GSE78220, and GSE111636, con-
taining the gene expression and ICB response data, were
used to evaluate the correlation of NPC subtype with
ICB. The subtypes of samples from these datasets were
determined by the SVM model and expression values of
LCK, CD247, FYN, ZAP70, SH2D1A, CD3D, CD3E, and
CD3G. The ICB response rates of S1 in GSE35640,
GSE78220, GSE111636, and IMvigor210 were 0.51
(Figure 8(a)), 0.60 (Figure 8(b)), 0.75 (Figure 8(c)), and
0.29 (Figure 8(d)). The ICB response rates of S2 in
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Figure 4: Differential expression of the immune checkpoint genes PDL1, CTLA4, HAVCR2, LAG3, PD1, and TIGIT among two NPC
subtypes, as evaluated by t-test.
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Figure 6: Continued.
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GSE35640 (Figure 8(a)), GSE78220 (Figure 8(b)), GSE111636
(Figure 8(c)), and IMvigor210 (Figure 8(d)) were 0.22, 0.41,
0.50, and 0.21. S1 patients were linked with better OS than
S2 (Figure 8(e)).

3.10. Web Server Development. A web server with the name
of Nasopharyngeal Carcinoma Subtype Prediction (NPCSP)
via https://npcstudy.shinyapps.io/subtype/ was constructed
for NPC subtype prediction. The expression values of eight
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Figure 6: Hub-gene survival analysis. (a)–(h) Survival analysis of 8 hub genes divided according to the median value of their respective
expression levels. p value < 0.05 was considered significant.
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Figure 7: Construction and validation of machine learning models for predicting NPC subtypes. (a) Parameter optimization of RF model by
5-fold cross-validation in the training set. The mtry: number of variables randomly sampled as candidates at each split. (b) ROC curve
analysis of the performance of RF in the test set. (c) Parameter optimization of SVM model by 5-fold cross-validation in the training set.
C parameter in SVM is penalty parameter of the error term. (d) ROC curve analysis of the performance of RF in the test set.
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genes (LCK, CD247, FYN, ZAP70, SH2D1A, CD3D, CD3E,
and CD3G) are needed for prediction. Then, the NPC sub-
type will be predicted by expression values and the SVM
model. The tutorial for using the constructed web server
was provided in Supplementary Figure 7.

3.11. Discussion. Like many cancers, the intratumoral het-
erogeneity of NPC is the major reason for the significant dis-
tinct prognosis among NPC patients. Classifying the NPC
subtypes and selecting the right therapeutic strategies are
crucial. TME has a critical role in tumor development,
migration, therapeutic tolerance, and disease relapse. Thus,
by evaluating the TME, it is feasible to categorize NPC
patients into several subgroups. In this study, we calculated
the TME cell cores and then classified NPC samples into
two subtypes: S1 and S2.

Among two NPC subtypes, S1 had the greater immune
score, a greater stromal score, and a lower tumor purity
than S2. Since S1 was enriched in T cells, the samples in

the S1 subtype could be classified into “hot” tumors. Hot
tumors were usually linked with greater T cells, immune
checkpoints, and a better response to ICB. Thus, S1 NPC
patients are prone to being responders to ICB because S1
and S2 are considered to be “hot-tumor” and “cold-
tumor,” respectively. Results from independent datasets
also confirmed that S1 patients have a greater probability
of ICB response.

In the present work, we created an RF model to predict
the NPC subtype by the expression values of eight genes.
The model’s AUC value suggested that it performed well in
the testing dataset. We created an online web server to make
this RF model accessible for researchers. Users only need to
provide expression values of eight genes (LCK, CD247, FYN,
ZAP70, SH2D1A, CD3D, CD3E, and CD3G) to the web
server. Expression values and the SVM model will be used
to predict the NPC subtype. Consequently, our work pro-
vides a suitable strategy for predicting the NPC subtype
and therefore advising on the ICB therapy decision.
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Figure 8: The correlation of NPC subtypes with response to ICB. (a) Analysis of response data of different subtype patients who had
received ICB treatment (GSE35640). (b) Analysis of response data of different subtype patients who had received ICB treatment
(GSE78220). (c) Analysis of response data of different subtype patients who had received ICB treatment (GSE111636). (d) Analysis of
response data of different subtype patients who had received ICB treatment (IMvigor210). (e) Analysis of overall survival of different
subtype patients who had received ICB treatment (IMvigor210).
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In the previous study, based on ligands and receptors,
a model reached an AUC value greater than 0.7 in an
independent validation dataset (GSE35640) for predicting
immunotherapy response [31]. Their results also found
that the AUC of PDL1 expression was 0.69, and the
AUC of IFNG expression was 0.75. Another study pro-
vided a machine learning model based on the random for-
est algorithm and 11 genes to predict the immunotherapy
response subgroups [32]. The model reached the AUC
value of 0.76 in the testing dataset. In our study, the
model of SVM had a higher AUC value than other stud-
ies, since the AUC value was 0.977.

The hub genes used in machine learning model con-
struction are crucial in the immune signaling pathways. In
T cells, LCK plays a critical role in the regulation of T cell
receptor (TCR) signaling [33]. CD3–TCR complex, com-
prised of CD3D, CD3E, CD3G, and CD247, is the major reg-
ulator of T cell proliferation and stimulation [34, 35]. Fyn is
a membrane proximal and nonreceptor tyrosine kinase and
could initiate TCR and several natural killer cell activation
receptors [36]. ZAP-70 is a cytoplasmic protein tyrosine
kinase that is required for the antigen receptor to initiate T
cell responses [37]. SH2D1A also plays a critical role in the
immune system since it is required in the interaction of T
cells and B cells [38].

There are some advantages to our study. (1) TME cell
scores that are crucial for tumor development and ICB
response were used to classify subtypes. (2) Two indepen-
dent datasets validated the identified subtypes. (3) Two
machine learning models were constructed in our study,
and the SVM reached an AUC value of 0.97 in the testing
dataset. (4) The correlation of subtypes with the ICB
response rate was validated by independent datasets. (5) A
web server was provided for researchers to use the machine
learning model. There are some disadvantages to our study.
(1) An independent cohort that comprises NPC patients
who were treated with ICB should be employed to verify
the link between ICB and the NPC subtype. (2) The cohort
size was limited, which could have resulted in a high rate
of false-positive results. (3) There was no experimental vali-
dation for this study. Genetic and experimental research
with a bigger sample size is necessary to corroborate the
expression pattern of eight hub genes in the future.

4. Conclusion

Based on the TME cell scores, we identified two subtypes (S1
and S2) among NPC patients. The S1 subtype has higher
levels of immune cells, immune checkpoint genes, and
prognosis. We constructed machine learning models for pre-
dicting TME subtypes of NPC patients based on 8 genes
(LCK, CD247, FYN, ZAP70, SH2D1A, CD3D, CD3E, and
CD3G). The web server based on the constructed machine
learning models will contribute to the identification of
NPC patients deriving benefit from ICB therapies. The
machine learning and web server provided in our study
could be a reference for the individualized treatment of
NPC patients.
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Supplementary Materials

Supplementary 1. Supplementary Figure 1: consensus clus-
tering for NPC samples from GSE12452. (a) Consensus
matrix heat map plots when k = 2. (b) The relative change
in area under CDF curve for each k subtype. (c) In the track-
ing plot, the percentages of subtypes were indicated by dif-
ferent colors. (d) Silhouette width of each subtype in NPC.
The best subtype number was should be the k value with
the highest value of average silhouette width.

Supplementary 2. Supplementary Figure 2: cell scores in two
different NPC subtypes are displayed by heat map (yellow:
higher value; blue: lower value).

Supplementary 3. Supplementary Figure 3: consensus clus-
tering for NPC samples from GSE68799. (a) Consensus
matrix heat map plots when k = 2. (b) The relative change
in area under CDF curve for each k subtype. (c) In the track-
ing plot, the percentages of subtypes were indicated by dif-
ferent colors. (d) Silhouette width of each subtype in NPC.
The best subtype number was should be the k value with
the highest value of average silhouette width.

Supplementary 4. Supplementary Figure 4: cell scores in two
different NPC subtypes are displayed by heat map (yellow:
higher value; blue: lower value).

Supplementary 5. Supplementary Figure 5: volcano plot
showing the gene expression differences between NPC sub-
types. Blue dots, downregulated genes in S2. Red dots,
upregulated genes in S2.

Supplementary 6. Supplementary Figure 6: clustering of sam-
ples and removal of outliers.

Supplementary 7. Supplementary Figure 7: the tutorial for
using the constructed web server.

Supplementary 8. Supplementary Table 1: the clinical param-
eters of datasets (GSE12452, GSE68799, and GSE102349).
Supplementary Table 2: associations of NPC subtypes with
clinical features in the GSE102349 cohort. Supplementary
Table 3: enriched BP items between S1 and S2 subtypes from
gene set enrichment analysis. Normalized enrichment score
(NES). Positive NES value means that the pathway is
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enriched in S2 subtype. Supplementary Table 4: enriched MF
items between S1 and S2 subtypes from gene set enrichment
analysis. Normalized enrichment score (NES). Positive NES
value means that the pathway is enriched in S2 subtype. Sup-
plementary Table 5: enriched CC items between S1 and S2
subtypes from gene set enrichment analysis. Normalized
enrichment score (NES). Positive NES value means that the
pathway is enriched in S2 subtype. Supplementary Table 6:
enriched KEGG pathways between S1 and S2 subtypes from
gene set enrichment analysis. Normalized enrichment score
(NES). Positive NES value means that the pathway is enriched
in S2 subtype. Supplementary Table 7: enriched Reactome
items between S1 and S2 subtypes from gene set enrichment
analysis. Normalized enrichment score (NES). Positive NES
value means that the pathway is enriched in S2 subtype.
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