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Seasonal influenza vaccination has different implications on the immune response depending on the comorbidities. Diabetes is one
such critical disease that increases the patient’s susceptibility to influenza and suppresses vaccine efficacy and immunity. The sex of
the individuals also plays a definitive role in the immune responses to both the vaccine and the infection. This study aims to
understand the efficacy of the seasonal vaccine against influenza in diabetic groups and undergoing immune mechanisms in
different sexes (females and males). In this study, we are reporting about a switching of the immune response of the infected and
vaccinated diabetic females towards stronger Th1/Th17 responses with suppressed humoral immunity. They show increased
cDC1, enhanced proinflammatory activities within T cells, CD8T activation, Th17 proliferation, and the majority of IgG2 antibody
subtypes with reduced neutralization potential. Males with diabetes exhibit enhanced humoral Th2-immunity than the nondiabetic
group. They exhibit higher cDC2, and DEC205 levels within them with an increase in plasma B lymphocytes, higher IgG1 subtypes
in plasma cells, and influenza-hemagglutinin-specific IgG titer with stronger virus neutralization potential. Males with diabetes
recovered better than the females as observed from the changes in their body weight. This study highlights the critical immune
mechanisms and sex-specific swapping of their preferred immune response pathways against influenza after vaccination during
diabetes. We propose a need for a sex-specific customized vaccine regimen to be implemented against influenza for individuals
having diabetes to exploit the manifested strength and weakness in their protective immunity.

1. Introduction

Influenza is one of the notorious viruses affecting human-
kind for centuries. The virus and its impact on our immune
response have been extensively studied for decades. Novel
vaccination strategies are being developed worldwide to pre-
vent or curb pandemics of this respiratory virus. However,
one major factor generally overlooked in this vaccine devel-
opment process is the sex of the recipients. It has been exten-
sively studied and reviewed [1, 2] that male and female shows
quite a difference in their immunity and their response to the
vaccination [3, 4]. Even though a growing body of literature
highlights the sex-based differences in immunity, immunol-
ogy ranked in the lowest position out of the 10 major biolog-
ical disciplines for mentioning the sex of the participant

human or animal model [5, 6]. Over 90% of the immunology
papers do not analyze their data by sex [5, 6].

In 2010, the WHO published a report providing detailed
evidence of how sex and gender play a critical role in the
outcome of influenza virus infection [7]. They highlighted
the poor outcome of the adult female patients with the infec-
tion. More deaths in adult females have been reported in the
United States during the 1957 H2N2 pandemic [8], world-
wide during H5N1 infection in 2008, worldwide in 2009
H1N1 pandemic [9] specially reported in Canada [10], Japan
[11], and China [12]. Several reports and lab studies are
suggesting the greater pathogenesis and poor host outcome
of influenza infection in females [13, 14]. In a murine model,
the studies on sex differences in the immune response
against influenza infers the females are more susceptible
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and more likely to succumb to infection in lower viral doses
than the males [15, 16].

The varied impact of influenza viral infection on the host
also depends on the comorbidities the individual may have
pre- or post-infection. Diabetes is one such predominating
disease that has a critical impact on host immunity against
influenza [17, 18]. Studies have shown the increased suscep-
tibility of the diabetic patients to severe infection due to
impaired immune response [19, 20]. Many recent studies
reported diabetes-associated immune pathology with increased
disease severity, and mortality in influenza infection [21, 22].
Studies have attempted to address the issue but still the puzzle
remains unanswered [18].

One common mode of protection against influenza is the
seasonal vaccination program. However, its efficacy is debat-
able in the diabetes group [18]. Two small retrospective
studies reported that the pandemic influenza in 2009 is asso-
ciated with Type 1 diabetes [23, 24]. These studies reported
increased diabetic pathogenesis or severity for those infected
with H1N1 virus during the pandemic [23, 24]. Diabetes is
reported to suppress and alter the immune response and also
modify the vaccine response [17, 18, 25]. Higher blood glu-
cose levels have a broad impact on immune metabolism and
function [26]. Some of the studies reported the efficacy and
benefits derived from the seasonal influenza vaccination in
diabetic patients [18, 27–29]. These studies are mostly based
on observational studies where clinical endpoints like hospi-
talization and death, beneficial reduction of morbidity and
mortality, or correlation with diabetes and influenza severity
and death were reported. Other studies only focus on the
serological antibody titer and its correlation with the outcome
and did not cover the cellular response. There is a huge knowl-
edge gap about the mechanism played by immune cells in
shaping such response or outcome.

We evaluate the immune response from an all-around
study comprising an infection (influenza) and its vaccination
(VaxiGrip) response along with comorbidity (diabetes) in
different sexes (male and female). In this study, we answered
the long-standing question of how diabetes plays a crucial
role in influencing our immune system during influenza
vaccination, with a focus on the sex differences and their
impact on the humoral and adaptive immune response
derived from the dendritic cells, T and B lymphocytes, and
the antibody response.

2. Materials and Methods

2.1. Animal Use and Experiment Groups. Male and female
mice, 6–8 weeks old C57Bl/6 were obtained from Janevier,
Sollentuna, Sweden. The mice were divided into six experi-
mental groups (n= 5 for each group), including two control
groups: male control (MCtrl) and female control (FCtrl).
Human seasonal influenza vaccine Vaxgrip was provided
subcutaneously to four groups ((the diabetes groups; FD+,
MD+), (normal/nondiabetic groups; FD− and MD−)) along
with human endogenous lipid emulsion adjuvant derivative
of the N3 (cationic) lipid formulations obtained from Merck
(Darmstadt, Germany). This adjuvant has been used in our

previous studies as well [30–32] and is well-established for
boosting immunity. Influenza viral challenge was provided
in all four groups of vaccinated mice. The viral challenge has
also been administered to another group of six mice (three
males and three females) which are unvaccinated. All of
these six mice were dead within 2 weeks of the challenge
and were excluded from the study. The control groups of
the study (MCtrl and FCtrl) received the same amount of
saline solution instead of the virus and they survived till the
end of the experimental timeline. All the mice from these two
control groups and the other four groups (FD−, FD+, MD−,
and MD+) were sacrificed on the 31st-day postviral chal-
lenge date. The animals received a standard rodent diet.
Food and water were available ad libitum. The water supply
was changed daily. The cages were changed weekly. The
change in the physical parameters is checked and recorded.
This study was carried out in strict accordance with the
recommendations in the Guide for the Care of Laboratory
Animals at the Linköping University. The protocol was
approved by the Committee on Ethics of Animal Experi-
ments of the Linköping University (Protocol Number Dnr
18053-2020 and Dnr: 00234-2022).

2.2. Inducing Diabetes in the Mice Group. The mice in group
FD+ and MD+, were injected intraperitoneally with strep-
tozotocin (Sigma–Aldrich) after dissolving it in 50mM
sodium citrate buffer (pH 4.5). The dose and the procedure
were the same as done before [33]. A amount of 60mg/kg
dose was provided for consecutive 3 days while other groups
got an equal amount of vehicle. Two weeks after the treat-
ment fasting blood glucose was measured with a glucose
analyzer (Acc-check). All the mice considered in the study
have their blood glucose level above 17mmol/L as done
before [33].

2.3. Immunization and Infection Challenge. Mice received
1 μg of Vaxigrip HA/mouse with cationic adjuvant N3
(Eurocine). During vaccination, the mice were anesthetized
with isoflurane (IsoFlo® vet, Orion Pharma Animal Health,
Sollentuna, Sweden). The mice received three shots at differ-
ent intervals (days 0, 21, and 42). Blood samples were col-
lected in between respective doses from the vena saphena to
measure the generated immune response in the animals.
After 28 days of the last vaccination, the mice were chal-
lenged with the influenza virus (influenza A/H1N1/Califor-
nia/07/2009), and 10 μl of challenge dose 50LD50 was
administered intranasally. A separate seventh group of six
unvaccinated mice (three males and three females) were also
challenged with the virus. All of the six mice in this group
died within 2 weeks of the viral challenge and were thus
excluded from the study (and hence not mentioned in
Table 1). All the remaining six mice groups (as mentioned
in Table 1) were sacrificed on the 31st-day postviral chal-
lenge or postmock challenge (for the MCtrl and FCtrl). No
death of the mice were observed in all of these six groups
mentioned in Table 1. So the subsequent study and the anal-
ysis were done on n= 5 for each of the six groups. The
detailed work plan discussed here is provided in the sche-
matic representation format in the flowchart provided in
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Figure 1. The body weight of mouse in the experiment was
measured daily to monitor the changes.

2.4. Flow Cytometry. Flow cytometry on the splenic single-cell
suspension was done as described before [34] and also dis-
cussed in detail in the supplementary methods section. The
use of the antibodies combination for determining the cellular
subsets, phenotypes, activation, and so forth along with the
references are also provided in Table S1. Briefly, the splenic
single-cell suspension from the sacrificed mice was subjected
to washing and blocking followed by fluorochrome-tagged
antibody incubation. For intracellular staining cellular per-
meabilization was done followed by fixing. Isotype-matched
antibody controls were taken. The data compensation of the
fluorescence spillover was performed. Fluorescence signals
from the labeled cells were acquired using a BDAriaIIIMachine
and analyzed by FlowJo software.

2.5. Serology Screening. ELISA was performed on the serum
separated from the blood samples (0.5ml) that were collected
from all the animal groups in Table 1 on the day of sacrifice
following the standard procedure described before [31] and in
the supplementary methods section. Briefly, recombinant H1N1
or H3N2 hemagglutinin (HA) antigen was used to coat the
ELISA plates followed by serum sample incubation, washing,
and HRP-labeled conjugate goat-antimouse IgG (BioRad,
Richmond, CA) antibody incubation. For the IgG subtyping,
antimouse IgG1, IgG2a, IgG2b, and IgG3 antibodies are used
followed by antigoat IgG-HRP antibody. o-Phenylenediamine
(from Sigma–Aldrich, St. Louis,MA) solution is used to develop
the signal followed by reaction termination by H2SO4. The
absorbance was measured at OD in an ELISA plate reader
(Molecular Devices, Spectramax ID3). The cutoff value for
positive reactivity was calculated from the mean OD490 plus
SD for negative control samples.

TABLE 1: Illustrating the control and research groups (diabetes and nondiabetes) that were challenged by the influenza virus.

Group name Gender Infected by H1N1 Vaccine (VaxiGrip)+ adjuvant N3 Number of individuals

Control (FCtrl) Female No No 5
Nondiabetic (FD−) Female Yes Yes 5
Diabetic (FD+) Female Yes Yes 5
Control (MCtrl) Male No No 5
Nondiabetic (MD−) Male Yes Yes 5
Diabetic (MD+) Male Yes Yes 5

Note: The groups in total were six; three males and three females groups. The study groups were vaccinated with VaxiGrip and the adjuvant N3 (1 µg HA/N3)
excluding the control. All vaccinated individuals in the research groups received the same dose. N3, cationic lipid adjuvant; H1N1 virus, influenza A/California/
07/2009(H1N1)pdm.
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FIGURE 1: The schematic representation of the workflow.
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2.6. Hemagglutination Inhibition Assay. The hemagglutina-
tion inhibition assay (HAI) was used to evaluate the presence
of neutralizing anti-HA antibodies against viral influenza A
in serum from individual mice as described previously [35]
and in the supplementary methods section. The HAI assay
was initiated by adding 25 µl phosphate-buffered saline to
each well of a microtiter plate, followed by the addition of
50 µl of the receptor-destroying enzyme (RDE) treated
serum. The serum was diluted in eightfold serial dilutions
starting from 1/10 up to 1/1,280 dilutions. A amount of 25 µl
of influenza A/H1N1/CA09pdm containing four hemagglu-
tinating units was added into each well. Subsequently, 50 µl
chicken erythrocytes were added, and mixed, followed by
incubation at 4°C for 1 hr. Thereafter, the plate was evaluated
for hemagglutination and the degree of HAI.

2.7. Statistical Analyses. Data analysis was performed using
GraphPad Prism. Initial analysis of immunological parame-
ters was performed using Kruskal–Wallis one-way ANOVA
to understand the significant difference between the groups.
The second independent comparisons between study groups
were performed with nonparametric methods using the
Mann–Whitney U test. p<0:05 was considered statistically
significant. p<0:05 were considered significant ( ∗p<0:05,
∗∗p<0:01, and ∗∗∗p<0:001). Only within-test corrections
were made and not wide/across-test corrections. The pairwise
comparison between individual groups was performed with
Mann–Whitney U test using nonparametric method. The p-
value asterisk shown in each figure of this manuscript is based
on this Mann–Whitney test result.

3. Results

3.1. Higher cDC1 with Increased Costimulatory CD80/86 and
MHCI Expression in the Female Diabetic Group as Compared
to the Sex-Matched Nondiabetic Group Observed,Male Diabetic
Group Showed an Increased cDC2 Population. The evaluation
of the population percentage and activation of myeloid lineage
dendritic cells: B220−MHCII+CD11c+CD11b−CD8a+ con-
ventional dendritic cell 1 (cDC1) and B220−MHCII+CD11c
+CD11b+CD8a− conventional dendritic cell 2 (cDC2) [36, 37]
revealed an interesting variation between males and females
(Figure 2(a)–2(c)). A significant increase of cDC1 in the dia-
betic female group as compared to its nondiabetic counterpart
(Figure 2(b)) with the exact opposite trend for cDC2 popula-
tion percentage is observed (Figure 2(c)). The males, on the
other hand, showed a decrease in cDC1 postdiabetes (Figure 2
(b)). cDC2 level however increased significantly in the male
diabetic group as compared to nondiabetic MD− (Figure 2
(c)). The fold change in cDC1 and cDC2 population percent-
age also shows the same trend (Figure 2(d)) with an increase
in cDC1 in diabetic females and an increase in cDC2 popula-
tion in diabetic males, reversing from low cDC1 in nondia-
betic females and high cDC2 in nondiabetic males.

The analysis of the cDC for the costimulatory marker
expression CD80 and CD86 (Figures 2(a) and 2(e)) shows a
significant increase of CD80+CD86+ cDC1 population in
female diabetics (FD+) compared to FD− and MD− and
MD+ (Figure 2(e)). A significant increase of CD80+CD86+

cDC2 is found in diabetic males as compared to MD−, FD−,
and FD+ (Figure 2(e)). The absolute number of cell compar-
isons also reveals the same trend (Figures S1(a) and S1(b)).
MHCI expression as observed by the mean fluorescence inten-
sity (MFI) (Figure S2(a)) is significantly higher in FD+ cDC1
than in any other groups (Figure 2(f)). It is noteworthy that its
level significantly dropped in MD+ as compared to MD− in
cDC1 with no significant changes in cDC2 (Figure 2(f)).
DEC205, expression is remarkably higher in FD− cDC2 as com-
pared to all other groups (Figures 2(g) and S2(b)). Its level of
cDC2 significantly dropped in diabetic females and significantly
increased in diabetic males as compared to their sex-matched
nondiabetic counterparts (Figure 2(g)).

A significant increase in cDC1 population in the female
diabetic group with higher CD80+CD86+ activation mar-
kers and MHC1 expression indicates a potential for better
CD8T cell activation. On the other hand, a significantly
higher cDC2 population percentage in the male diabetic
group with increased costimulatory marker CD80/86 and
DEC205 expression indicates a better activation of CD4T-
based humoral pathway.

3.2. CD8T and CD4T Cell Population Increased in the Female
Diabetic Group as Compared to the Sex-Matched Nondiabetic
Group. T cell subsets were studied by CD3 positive gating on
live single-cell splenocytes followed by determination of
CD4+ and CD8+ T cell population (Figure 3(a)). CD3+CD8+
cytotoxic T cell levels increased in FD+ as compared to
FD−, while it decreases in MD+ as compared to MD− (Fig-
ure 3(b)). CD3+CD4+ Helper T cell population increased in
FD+ with respect to FD−, with no significant change within
the male groups (Figure 3(c)). Diabetes in males (MD+
group) showed a reduced CD4 helper T cell population as
compared to diabetic females (FD+ group) (Figure 3(c)).

Overall, the increased CD8T population in diabetic
females indicates a possibility of enhancement of CD8T-
based cell-mediated immunity (Figure 3(b)). There is an
overall reduction in both the CD4 helper T and CD8 cyto-
toxic T cell populations in all the infected groups as com-
pared to their respective controls (Figures 3(b) and 3(c)). As
our samples are collected on day 31 postinfection, there is a
possibility of T cell apoptosis, exhaustion, and senescence as
reported before in long-term infections [38].

3.3. Higher CD8T Activation Marker CD28 Expression, with
an Increase of Th17 Cells Observed in Diabetic Female,
Diabetic Male Exhibits a Significant Reduction of Both Treg
and Th17 Cells. The CD3+CD4+ T cell population gated out
on the splenocytes (as in Figure 3(a)) and analyzed for the
expression of regulatory T cell (Treg) markers FOXP3 and
Th17 cell marker RORgT (Figure 3(d)). While there is no
significant change in Treg in female groups observed, their
population dropped in the male diabetic (MD+) group
(Figure 3(e)). There is also a significant increase in the
Th17 cells in the female infected groups, especially during
diabetes (Figure 3(f)). The absolute number of cell compar-
isons of both Treg (Figure S3(a)) and Th17 (Figure S3(b))
provides the same result as observed in the percentage com-
parison (Figures 3(e) and 3(f)).
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While studying the costimulatory marker CD28 expres-
sion on CD3+CD8+T cells, showed significantly higher
expression in FD+ groups as compared to all other infected
groups (FD−, MD−, and MD+) (Figures 3(g) and S3(c)).
Reduction of the CD28 expression is found in CD8T cells
of diabetic males as compared to nondiabetic males, while an

increase in its expression is observed in FD+ as compared to
FD− (Figure 3(g)).

In conclusion, enhancement of Th1 and Th17 aggressive
immune responses was observed in females with diabetes. It
has to be noted here along with a higher percentage of Th17
cells, greater CD8T costimulation as marked CD28 expression
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[39], is found in the infected female diabetic groups than in the
males (Figure 3(g)).

3.4. Interferon Gamma Expression within the T Cells Exhibits
Higher Proinflammatory Activity in the Diabetic Female
Group. We have assessed the cytokine expression by taking
key proinflammatory cytokine Interferon-gamma (IFNγ).
We assessed the expression status from the MFI within
the permeabilized CD8T cells and CD4T cells. The IFNγ+
CD8T and CD4T cells were analyzed (Figure S4(a)–S4(c))
and IFNγ MFI was then calculated and represented in the
bar diagram (Figures 3(h) and 3(i)). The female diabetic

mice group (FD+) showed the highest expression of
the proinflammatory cytokines within both CD8T cells
(Figure 3(h)) and CD4T cells (Figure 3(i)). While a signifi-
cant increase is observed in the FD+ CD8T cells as com-
pared with FD− CD8T cells, no significant change in the
MD+ was found.

In conclusion, along with a higher level of Th17 subsets
of CD4T cells (Figure 3(f )), and enhanced CD8T cell activa-
tion (Figure 3(g)) there is also increased proinflammatory
cytokines within CD4T and CD8T cells (Figures 3(h) and
3(i)) in diabetic female (FD+) group indicates an undergoing
Th1/Th17 cell-mediated immune response.
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FIGURE 3: Evaluating the proportional and activity alterations in CD8T and CD4T cells and their subsets Treg and Th17 cell population. (a)
The CD3+ cells are gated out from the live single splenocytes and the CD4T and CD8T populations are analyzed taking the unstained live
single cells as reference gating. (b) The population percentage of cytotoxic CD8T cells and (c) the population percentage of helper CD4T cells
were determined. The percentage exhibited in the Y axis is the total percentage within the 10,000 splenocytes analyzed. Hence, for absolute
number conversion of CD8T or CD4T percentage: 1% in the Y axis= 100 cells. (d) The CD3+CD4+ T cell population gated out on the
splenocytes (as in (a)) is analyzed for the expression of regulatory T cell (Treg) markers FOXP3 and Th17 cell marker RORgT. (e) Treg
population (CD3+CD4+ FOXP3+) and (f ) Th17 cell population (CD3+CD4+RORgT+) percentage of total helper CD4T cells were
determined. The comparison between the absolute number of Treg and Th17 cells is provided in Figures S3(a) and S3(b). (g) The bar
diagram of costimulatory marker CD28 expression on CD8T cells is determined by analyzing the MFI. The MFI and histogram plots are
provided in Figure S3(c). (h and i) The MFI values were analyzed to determine the level of intracellular expression of proinflammatory
cytokine of IFNγ as observed by flow cytometric staining of the permeabilized CD8T (h) and CD4T (i) cells, respectively. D−, nondiabetic
groups; D+, diabetic groups. Data in graphs are the representative images derived from at least four independent experiments ( ∗p<0:05,
∗∗p<0:01, and ∗∗∗p<0:001). For each group n= 5, the error bar indicates the standard deviation.
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3.5. Increase in Plasma Cells in Diabetic Males while the
Increased Population of Memory B Cells as well as Immature
B Cells Observed in the Female Diabetic Groups. Splenic live
single-cell suspensions from all the groups were gated for
different B-cell subsets [40, 41]. Cells were stained with
B220 antibody to identify the B220low and B220+ cell popu-
lations with respect to unstained cells (Figure 4(a)). The
B220low cells were then gated for CD19low/neg and B220+ cells
are gated for CD19+ cell populations using the unstained
cells as reference (Figure 4(a)). B220/CD45R+CD19+ cells
are gated for CD27+MHCII+ cells and CD40+CD80+ are
gated on top of it to determine B220/CD45R+CD19+CD27
+MHCII+CD40+CD80+ Memory B cells (Figure 4(b)).
B220/CD45R+CD19+ cells are also gated for IgMhigh+
IgDlow/neg population (yellow box) and IgM+IgD+ (thick
black box) population. From there B220/CD45R+CD19
+IgMhigh+IgDlow/neg+CD43− immature/transitional B cells
and B220/CD45R+CD19+IgM+IgD+MHCII+CD138− acti-
vated B cell population is identified (Figure 4(c)). B220low

CD19low/neg IgM−IgD−CD138+ long-lived plasma Cells
were also analyzed (Figure 4(d)).

An increase in memory B cells and immature/transi-
tional B cells was observed in FD− as compared to FD+
(Figure 4(e)). A significant decrease in the immature/transi-
tional B cells was observed in both the infected male groups
with or without diabetes, while no significant change in the
memory B cells was observed in them (Figure 4(e)). Although
there were no significant changes in the activated B cells
between the diabetic and nondiabetic group of both sexes, a
significant drop in the plasma cells were observed in FD+ as
compared to FD− (Figure 4(f)). A significant rise in the
plasma cells was observed in diabetic males as compared to
nondiabetic males and diabetic females (Figure 4(f)).

In conclusion, an increase in memory B and immature/
transitional B cells with lower plasma cells in diabetic females
as compared to nondiabetics provides a clue of the possibility
of the suppressed humoral response. On the other side, a
reduced population percentage of immature and memory
B with a higher plasma cell population in diabetic males
indicates a possible enhancement of humoral response.

3.6. Significantly Higher IgG1 Level in Plasma Cells of Diabetic
Males while a Higher IgG2 Titer in Diabetic Females was
Observed. B220lowCD19low/negIgM−IgD−CD138+ plasma cells
costained with the fluorescently stained IgG1 and IgG2 showed
a marked reduction in the IgG1 with a significant increase of
IgG2 in the FD+ as compared to FD− (Figures 5(a) and 5(b)).
The same trend was observed in the number of IgG1+ and
IgG2+ plasma cell population percentage (Figures S5(a) and
S5(b)). A significant increase in IgG1 and IgG2 MFI is
observed in the MD+ with respect to MD− (Figures 5(a)
and 5(b)). The analysis of the whole spleen cell suspension
also showed a similar trend (Figures S5(c) and S5(d)). There-
fore, we conclude that in diabetes, IgG1 level is significantly
higher in males as compared to females, while IgG2 levels are
significantly higher in females compared to males (Figures 5
(a) and 5(b)).

3.7. InfluenzaHA-Specific Serum IgG Subtyping Shows Both IgG1
and IgG2Based ImmuneResponseswith theMaleDiabetic Group
Exhibiting the Higher Titer. The serums isolated on the day of
sacrifice are subjected to the ELISA for the detection of the anti-
IgG antibodies specific to the coated influenzaHA ofH1N1. The
anti-HA IgG antibody subtypes were studied. The significant
reduction of IgG1, IgG2a, IgG2b, and IgG3 in the FD+ group
as compared to FD− is observed. The opposite trend is true
between MD+ and MD−, with a significant increase in MD+
observed (Figure 5(c)). In conclusion, the diabetic Male (MD+)
group exhibits a significantly higher expression of IgG1, IgG2a,
and IgG2b anti-HA antibodies with respect to diabetic females
(FD+) (Figure 5(c)). No significant change is observed in IgG3
between these two groups (Figure 5(c)).

3.8. Enhanced Postchallenge Antibody Response Found in
Diabetic Males than Diabetic Females. Serum collected on
the day of sacrifice has been tested for anti-HA IgG response
against H1N1 and H3N2 HA coated in the ELISA plates. The
level of specific antibodies is significantly higher in the female
in comparison to the male infected groups in nondiabetic
conditions (Figure 5(d)). Females in the same group (FD−)
showed stronger heterospecific antibody response against
H3N2 HA, although all of them are provided with the
H1N1 as vaccine antigen (Figure 5(d)). It is noteworthy
that during diabetes the male produces a much stronger
antibody response as derived from their IgG antibody titers in
comparison to the FD+ group (Figure 5(d)). Thus, we
conclude that although females have higher antibody titers
in normal nondiabetic conditions, during diabetes the males
showed significantly elevated humoral serum IgG response
against vaccine antigen HA.

3.9. The Female Diabetic Group Shows Considerably Low
Potency of Virus Neutralization than the Males. When we
use the RDE-treated serum samples from each of the groups
and investigated their virus neutralization capacity a clear
picture emerges regarding the potency of these serums in
combating the live virus. The diabetic male shows a strong
virus neutralization almost like the normal male group
(Figure 5(e)). The hemagglutination inhibition (HI) titer is
the golden standard for providing a correlation with immune
protection. HI titers≥ 40 are accepted widely to correlate
with 50% of immune protection against influenza [42]. Dia-
betic females performed worse than the males in the virus
neutralization assay performed in this study. This correlates
well with the drop in the HA-specific antibody in the ELISA
(Figure 5(d)). It has to be noted that although normal
nondiabetic females showed the highest antibody titer in
the ELISA their neutralization potential is comparable with
the nondiabetic males.

3.10. The Physical Parameter Signifies Enhanced Recovery in
Diabetic Males after Viral Challenge although No Mortality
was Observed in Both Sexes after Vaccination. The mice sets
were followed up for all the groups and the body weight is
measured as the indicator of health status. A significant
reduction in body weight was observed in the diabetic groups
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exhibited in the Y axis of (e) and (f ) is the percentage within the total 10,000 splenocytes analyzed. Hence, for comparison for absolute cell
number, the conversion: 1% in the Y axis= 100 cells. D−, nondiabetic groups; D+, diabetic groups. Data in graphs are the representative
images derived from at least four independent experiments ( ∗p<0:05, ∗∗p<0:01, and ∗∗∗p<0:001). For each group n= 5, the error bar
indicates the standard deviation.
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both in males and females in comparison to the nondiabetic
(Figure 5(f )). The male mice showed a faster recovery in
their body weight after the infection challenge in both the
diabetic and nondiabetic groups (MD+ andMD−) (Figure 5(f)).
There was no mortality after the virus challenge in any of the
vaccinated animal groups. They were sacrificed on the
31st-day postviral challenge. However, half of the control
groups that were receiving the virus were all sacrificed within
12 days of the viral challenge andwere excluded from the study.

4. Discussion

It is of utmost importance to design suitable vaccine strate-
gies for specific diabetic groups. This is particularly impor-
tant as there is an increased risk for influenza complications
observed in patients with diabetes. They are ∼3x (95% CI:
2.04–4.71) more likely to be hospitalized [43], ∼4x (95% CI:
1.29–14.3) more likely to be admitted to the ICU [43], and
∼2x (95% CI: 1.5–3.6) more likely to die after influenza
hospitalization [44, 45]. On average, diabetes deaths accounted
for 19.6% of estimated influenza-associated all-cause mortality
[46]. There are contradictory reports where some indicate no
benefits from influenza vaccination in diabetes, while others
found similar benefits for diabetes patients as that seen in
healthy controls [18, 27–29]. However, the studies also
reported biases in measuring the effectiveness of seasonal
influenza vaccination in the diabetic patient group [18, 47].
The meta-analysis done on 1,444 related articles on this
topic comprising 170,924 participants concluded about
the lack of evidence to determine the magnitude of benefit
that diabetic people are getting from the seasonal flu shots
[18]. In this study, as there was no mortality in the vacci-
nated groups (MD−, MD+, FD−, and FD+) it can be safely
concluded that both sexes are protected from the postvac-
cination influenza challenge, whether they are diabetic or
not. The mechanism and efficiency level of protection var-
ied between groups and their comparative summary has
been provided in Table S2.

While comparing the FD− and FD+ groups, an increase
in cDC1 (Figures 2(a), 2(b), and 2(d)), elevated expression of
MHCI, CD80/86 positive costimulatory marker expression
(Figures 2(e) and 2(f )), increase in CD8T cell population
(Figure 3(c)), and its costimulation marker CD28 expression
(Figure 3(f )) and proinflammatory activity of higher IFNγ
level within CD8T cells (Figures 3(h) and 3(i)) all indicate an
elevated CD8T immune pathway in diabetic females. Cell-
mediated immunity was reported to be better correlated with
influenza protection in persons with poor immune response
[48, 49]. In humans, the females suffered most adversely
from the influenza infection and have far higher symptoms
[13, 14]. The significant decrease of cDC2 (Figures 2(c) and 2(d)),

increase in immature B and memory B (Figure 4(e)), drop in
plasma B cells (Figure 4(f)), drop in the influenza-specific
antibody titers (Figures 5(c) and 5(d)), and virus neutraliza-
tion capacity (Figure 5(e)) in the female diabetic group as
compared to FD−, indicate a suppressed humoral response
in diabetic condition with a switch in immune protection
mode in diabetic females.

Previous reports in normal nondiabetic mouse models
suggest the amount of H1N1 or H3N2 virus required to
kill 50% of mice (LD50) was significantly lower in females
as compared to males in C57BL/6 mice [15, 16]. It is 11-fold
lower in the case of H1N1 infection and fourfold lower in the
case of H3N2. The median dose of H1N1 constantly showed
a greater reduction in body temperature, body mass, and
survival of female mice as compared to males [15]. We find
the same in FD− versus MD− comparison of body weight
(Figure 5(f)). In the same study, Robinson et al. [15] reported
higher mortality and morbidity in female C57BL/6 mice than
the males after they are infected with influenza A virus A/PR/
8/34 (PR8; H1N1). Therefore, even after having developed
higher antibody titers in nondiabetic conditions, the females
are doing far worse than the male after diabetes.

While comparing the MD− and MD+ groups, Diabetic
males shift towards expressing abundant MHCII and DEC205
in cDC. DEC205 is a critical dendritic cell protein marker that
takes the novel pathway of antigen uptake as they are recycled
through MHCII-rich late endosomal compartments increas-
ing antigen presentation to CD4+ helper T cells [50]. Apart
from thatMD+ group also showed the reduction of immature
B cells and memory B cells (Figure 4(e)), with a significant
increase in plasma cells (Figure 4(f)) producing higher
influenza-specific antibody titers (Figures 5(c) and 5(d))
with enhanced neutralization capacity as compared to MD−
group (Figure 5(e)). This indicates an enhanced humoral
immunity in the diabetic male, which is stronger than the
nondiabetic male and diabetic female.

The myeloid lineage conventional dendritic cells have
two most common subsets, cDC1 and cDC2. It has been
widely accepted that cDC1 is more efficient in the MHCI-
mediated CD8T activation, while cDC2 is efficient inMHCII-
mediated CD4T activation [51, 52]. In this study, the female
diabetic group has a significantly higher cDC1 population
percentage with increased MHCI expression, with an increase
in CD8T cell (Figure 3(b)) and its activation (Figure 3(g)).
The male diabetic group on the other hand has a significantly
higher cDC2 population (Figure 2(c)), and better humoral
response. The B cell development process is initiated from
the bone marrow and after the negative selection, it migrates
to a secondary lymphoid organ such as the spleen. The B cells
in this naïve immature state express high IgM and very little to
no IgD [40, 41]. The immature transitional B cells studied

The highest serum dilution factor that is still capable of neutralizing the virus is represented. (f ) The alternation in body mass percentage as
observed in 3 day-points that have been represented in the graph as 5-, 14-, and 25-days postinfection challenges. The statistical significance
in the 14th day point represents for both MD+ versus MD− and FD+ versus FD−. The statistical significance bar for the 25th day indicates
the significance for MD+ versus FD+. Data in graphs are derived from at least four independent experiments ( ∗p<0:05, ∗∗p<0:01, and
∗∗∗p<0:001). For each group n= 5, the error bar indicates the standard deviation.
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here (Figures 4(c) and 4(e)) significantly increased in diabetic
females while lowered in infectedmale groups. However, after
the antigen-dependent activation of the B cells to its activated
state (Figures 4(c) and 4(e)) there were no significant differ-
ences during pre- and post-diabetic state within the same sex,
although antibody-secreting long-lived plasma cells (Figures 4(d)
and 4(f)) are significantly higher in male diabetic condition than
the females.

The CD3+CD4+FoXP3+ regulatory T cells (Treg) facil-
itate Th2-based tolerogenic immune response [53, 54]. In
case of a pathogenic challenge, it is quite normal to have
higher CD3+CD4+RORgT+ Th17 Helper T cells which
are more aggressive and drive Th1/Th17-based immune
response [53, 54]. However, it has been seen that a balance
between the two is most crucial to have a favorable outcome
for the host. The Treg : Th17 ratio is an indicator of Th1
versus Th2 immune response where a drop in the ratio indi-
cates a Th1 response [53, 54]. Significantly low Th17 cell
population percentage in MD+ as compared to FD+, with
no significant difference in Treg observed (Figures 3(e) and 3
(f)) indicates a low Th1/Th17 response in MD+. Along with
that, enhanced IgG1 level or titer in the MD+ as compared to
FD+ also indicates an elevated Th2 response in them (Figures 5
(a) and 5(c)). Thewhole IgG antibody titer specific toH1N1 and
H3N2 HA antigen is also high in MD+ (Figure 5(d)). Elevated
Th2 response is a better antibody production predictor [55, 56].
The humoral immune response elicited after vaccination is
characterized by a Th2 response when the IgG antibody sub-
class distribution is dominated by IgG1. On the other hand, if
it is dominated by the subclass IgG2, it indicates more of a
Th1 response [57]. Higher IgG2 titer in the female diabetic
group (Figure 5(b)) with a higher Th17 population, increased
CD8T cell activation, and proinflammatory activities of sig-
nificantly higher IFNg and TNFa levels as compared to MD+
(Figure 3(i)) all indicate Th1/Th17-type immune response.
Controlled upregulation in Th1 response is necessary in the
host in most cases for combating an infectious agent [56].

This activation of the humoral immune response path-
ways in male diabetic mice as observed in our study is excit-
ing. In Type 1 diabetes, a higher antibody titer is reported in
diabetic individuals before [17]. Alterations in blood glucose
levels and metabolism have been reported to trigger the
immune system in other diseases and conditions [58]. Some-
times they are related to hyperactivation of the immune
system leading to cytokine storms [59] and also abundant
antibody synthesis [60]. It has to be noted that in this study,
both sexes exhibited the activation and immune response
from both the immune arms. It is only that during diabetes
the preferred immune protection mechanism of each sex got
swapped than what they were in prediabetic condition.

In humans, half a dose of influenza vaccination in adult
females elicits the same immune response as that derived
from the full dose for males [28, 61]. Postvaccination, the
females showed higher serum antibody titer specific to the
influenza virus [28, 61] and provide enhanced protection
against the heterospecific virus strains of influenza. We
find the same in this study in mice model where nondiabetic
females (FD−) showed a much stronger immune response

with amuch higher influenza HA− specific antibody response
as compared to nondiabetic males (MD−). This FD− group
also produced higher antibodies against the heterosubtypic
strain of H3N2 (Figure 5(d)). This correlates with the previ-
ous findings from other groups [16, 62]. Lorenzo et al. [16]
and L’Huillier et al. [62] reported that antibody responses
and crossprotection against lethal influenza A viruses differ
between the sexes in C57BL/6 mice. The potential molecular
mechanism for these changes may stem from the innate dif-
ference in antiviral immunity shown by males and females.
The differential processing of the antigens by the antigen-
presenting cells of two sexes might also contribute toward
the differential holistic downstream immune response observed.

The study is primarily focused on evaluating the vaccine
efficacy in influenza infection during diabetes and not on the
basic immunity difference between diabetic and nondiabetic
groups. Hence, we choose not to include a diabetic group
without immunization or viral challenge, that is diabetic
control. The control that we have used in this study (MCtrl
and FCtrl) is for having a sex-specific baseline comparison
for every immune parameter studied. A limitation of this
study is the lack of immune profile data at multiple time
points after the infection and the vaccination. The immune
response is a dynamic process that keeps on altering. So, to
get a much broader and finer picture there is a need to study
them at different time points in later studies and also to
include other possible immune cells, chemokines, and cyto-
kines in those future studies. To the limited scope of this
study, we did not evaluate the potential influence of the
female estrous cycle on local humoral immune response.
However, since all the mice in female groups are of the
same age range their influence on skewing the response
will negate out within same-sex comparison. Another limi-
tation to take into account is the reduced helper and cyto-
toxic T cell population in all the infected groups which might
be due to T cell aging and senescence after long-term combat
with the infection, as reported in other studies [38].

In conclusion, our study in the murine model success-
fully illustrates the mechanistic sex-specific difference of the
seasonal vaccination-mediated immune protection against
the influenza virus in diabetes. The results of this study could
be interpreted to propose that vaccines should be designed or
delivered to match the person’s biological sex and comorbid-
ity. This study also highlights the need of tailoring the exist-
ing FDA-approved vaccines to be necessary for better
protection of the recipients [28]. Modification of the vaccine
dose, adjuvant, mode of administration, types, and so forth
can trigger the weak spot of each sex to confer much stronger
protection for patients with severe complications. We
strongly believe these mechanistic details of the alternative
paths taken by each sex, their strength, and their limitations
and weaknesses will be critical for shaping better sex-specific
vaccine strategies in the future.
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