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IL-17: Balancing Protective Immunity and Pathogenesis
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The biological role of interleukin 17 (IL-17) has been explored during recent decades and identified as a pivotal player in
coordinating innate and adaptive immune responses. Notably, IL-17 functions as a double-edged sword with both destructive
and protective immunological roles. While substantial progress has implicated unrestrained IL-17 in a variety of infectious diseases
or autoimmune conditions, IL-17 plays an important role in protecting the host against pathogens and maintaining physiological
homeostasis. In this review, we describe canonical IL-17 signaling mechanisms promoting neutrophils recruitment, antimicrobial
peptide production, and maintaining the epithelium barrier integrity, as well as some noncanonical mechanisms involving IL-17
that elicit protective immunity.

1. Introduction

During the last few decades, understanding the pathophysi-
ology of inflammatory diseases has been expanded by the
discovery of the existence of different T cell subsets. Effector
T helper (Th) cells are derived from naive CD4+ T cells
triggered by the engagement of T cell receptor (TCR) and
costimulatory molecules under the presence of specific cyto-
kines. The main subsets of activated CD4+ T cells include
specialized Th1/Th2 cells and Treg cells with distinct func-
tional profiles [1, 2]. This aforementioned paradigmwas chal-
lenged by the discovery of other T cell subsets including
T helper 17 (Th17) cells, Th9, Th22, and T follicular helper
(Tfh) cells [3–6]. Retinoic acid receptor-related orphan recep-
tor-γt (RORγt) and signal transducer and activator of tran-
scription 3 (STAT3) are the key transcription factors in
activating the differentiation of the program of committed
Th17 cells. Transforming growth factor-β (TGF-β) and proin-
flammatory cytokines such as interleukin 6 (IL-6) are critical

cytokines for murine Th17 cell differentiation [7]. The signa-
ture cytokine, IL-17, of Th17 cells has pleiotropic roles target-
ing both nonhematopoietic cells, including fibroblasts and
epithelial cells, and hematopoietic cells. IL-17 has emerged
as having dichotomous roles due to both destructive and
protective effects in various diseases, especially infectious dis-
eases and autoimmune diseases. This review summarizes the
basic pathogenic roles of IL-17 and particularly focuses on the
protective role of IL-17 responses.

2. IL-17 Cytokine and Signaling

IL-17, the hallmark cytokine of Th17, was cloned and named
as CTLA8 in 1993 [8]. The IL-17 cytokine family consists of
six members based on sequence homology, called IL17-A,
IL17-B, IL-17C, IL-17D, IL-17E (also known as IL-25), and
IL-17F [9, 10]. IL-17A and IL-17F can form either hetero-
dimers or homodimers, as they have closely related expres-
sion patterns and sequences [11]. IL-17A (also commonly
called IL-17) has been the most studied member of the IL-17
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cytokine family. Besides Th17 cells, various innate and
acquired immune cells are also capable of producing IL-17
(Figure 1). The main non-Th17 cellular sources that can
produce IL-17 cytokines include type 3 innate lymphoid cells
(ILC3), γδ T cells, CD8+ T cells, and natural killer cells
[12–16]. It has also been reported that neutrophils can pro-
duce IL-17 after stimulation with LPS or recombinant IL-6
and IL-23 [17, 18]. There are five different subunits of IL-17
receptors, IL-17RA, IL-17RB, IL-17 RC, IL-17 RD, and IL-17
RE [14]. IL-17 receptors are expressed widely in different
cells and tissue types. IL-17 signals via a heterodimeric
IL-17RA/IL-17RC complex [19, 20].

A conserved cytoplasmic motif known as the “similar
expression of fibroblast growth factor and IL-17R” (SEFIR)
domain was identified within the members of the IL17R
family, which is closely related to Toll/interleukin-1 receptor
(TIR) domains expressed in Toll-like receptor (TLR) and IL-
1R family members [10, 21]. Adaptor for IL-17 receptor
(Act1) (nuclear factor-kappa B (NF-κB) activator 1), also
known as CIKS encoded by the gene TRAF3IP2 (TRAF3 inter-
acting protein 2), also contains the SEFIR domain and is an
indispensable component in the IL-17 signaling pathway [22,
23]. IL-17R/Act1 signaling activation is mediated through
SEFIR domain–SEFIR domain interaction that recruits tumor
necrosis factor-R-associated factor 6 (TRAF6), a critical
upstream activator for transcription factor NF-κB, AP-1 (acti-
vator protein-1), and C/EBP (CCAAT/enhancer-binding pro-
tein) [10, 24–26], all of which induce a panel of inflammatory
mediators to respond to pathogens (Figure 1). While IL-17-
mediated responses involved in infection and inflammatory

diseases, it is important to note that signaling through IL-17/
IL-17R also plays a protective role through multiple mechan-
isms, such as regulating the recruitment and granulopoiesis of
neutrophils, producing antimicrobial peptides andmaintaining
barrier integrity [27, 28]. The regulation of pathologic versus
protective IL-17 responses involves a complex interplay of sev-
eral factors. Transcriptional factors, including RORγt, STAT3,
IRF4, and FoxP3, play critical roles in the differentiation, func-
tion, and balance of Th17 cells and Tregs, thereby influencing
the outcome of IL-17-mediated immune responses. Specifi-
cally, RORγt is considered the master transcription factor for
IL-17 production and promotes the differentiation of naïve
CD4+ T cells into Th17 cells, which produce IL-17. Activated
STAT3 plays a crucial role in promoting IL-17 production by
enhancing its transctiption and IRF4 interacts with RORγt and
collaborates in the regulation of IL-17 expression by binding to
the IL-17 gene promoter. On the contrary, FoxP3 is a transcrip-
tion factor that plays a crucial role in the development and
function of regulatory T cells (Tregs). Dysregulation of these
factors can contribute to the development of inflammatory
diseases by either excessive IL-17 production or impaired reg-
ulatory mechanisms. Furthermore, the cytokine milieu and the
local microenvironment, such as a balance between immune
cell types, at the site of infection or inflammation also influence
the balance between pathologic and protective IL-17 responses.
Understanding these regulatory mechanisms is crucial for the
development of targeted therapies that can modulate IL-17
responses in a beneficial way, promoting host defense while
minimizing tissue damage and chronic inflammation in vari-
ous infectious and inflammatory diseases.
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FIGURE 1: Schematic representation of the IL-17 signaling pathway: transduction and amplification. The IL-17RA and IL-17RC subunits bind
to IL-17A, IL-17F, and IL-17AF ligands. The intracellular domains interact with adaptor Act1. Act1 additionally contains a TRAF-binding
site that enables association with TRAF family proteins. Engagement with TRAF6 drives activation of the classical NF-κB, MAPK pathway.
Act1 can also engage other TRAF family proteins to promote a post-transcriptional mRNA stabilization pathway. Th17, T helper-17 cells; γδ
T cells, gamma delta T cells; ILC, innate lymphoid cells; NKT nature killer T cells; TRAF, TNF-receptor associated factor; MAPK, mitogen-
activated protein kinase; NF-κB, nuclear factor κB; AP-1, activator protein; C/EBP, CCAAT enhancer-binding protein.
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3. Immunopathogenesis of IL-17

Even though IL-17 is produced in response to most infec-
tions, there is convincing evidence suggesting improperly
regulated IL-17 and other Th17 cytokines can contribute to
the pathogenesis of a variety of diseases [29]. Excessive IL-17
can be detrimental for many human inflammatory and auto-
immune diseases including psoriasis, arthritis, Sjogren’s dis-
ease, and inflammatory bowel disease (IBD) [30–35]
(Table 1). In rheumatoid arthritis (RA), for example, IL-17
induced proinflammatory pathogenesis partially by activat-
ing osteoclastogenesis that is closely associated with bone
resorption in RA patients [36] (Table 1). Periodontitis is a
common chronic inflammatory disease caused by microbial
infection in the susceptible hosts and it has been documented
that IL-17 plays both protective and destructive roles in the
progression of periodontitis [37, 38]. Some studies have
found that IL-17 dominated the inflammatory network asso-
ciated with periodontitis traits [39, 40] (Table 1), which indi-
cated that abnormal inflammatory responses induced by
IL-17 may cause tissue damage. One potential mechanism is
that IL-17 is able to amplify inflammation through excessive
neutrophil recruitment by enhancing proinflammatory cyto-
kine/chemokine production, which results in further osteo-
clast activation and bone resorption [41]. However, emerging
evidence demonstrates the role of anti-inflammatory cyto-
kines in regulating IL-17. For instance, IL-10 plays a key
role in limiting IL-17-mediated pathology [39]. Furthermore,
fibroblasts are one of the most abundant cell types that con-
tribute to the formation of connective tissue. IL-17 not only
mediates fibroblast proliferation [42] (Table 1), but also
induces fibroblast cells to secrete the matrix metalloprotei-
nase-1 (MMP-1) and MMP-3 causing connective tissue
destruction [43]. It is also documented that the presence of
bacterial dysbiosis and increased microbial load may be
accompanied by hyperproduction of IL-17 in chronic and
leukocyte adhesion deficiency I (LAD-I) periodontitis [44].
Notably, IL-17 signaling was critical for acute lung injury of

influenza infection and S. pneumoniae coinfection with influ-
enza virus elicits IL-17A response causing inflammation in
the nasopharynx [45, 46] (Table 1). Targeting IL-17RA sig-
naling or IL-17A could potentially be a therapeutic strategy to
mitigate immunopathology associated with sever influenza
infections.

IL-6 is both a signaling mediator that prominently con-
tributes to maintenance of the Th17-cell population and a
known pro-inflammatory target in downstream IL-17 signal-
ing. Importantly, the IL-17-mediated positive feedback loop
of IL-6 signaling through NF-κB and STAT3 contributes to
enhanced autoimmune encephalomyelitis (EAE), whereas
neutralizing IL-17 disrupts IL-17-sustaining, IL-6 self-
reinforcing loop at the sites of inflammation [47] (Table 1).
Regarding digestive disease, there is increased IL-17 expres-
sion and number of IL-17-producing T cells in the inflamed
mucosa of active IBD patients [32, 48]. Furthermore, genome-
wide association studies (GWAS) have identified several
Th17/IL-17-associated genetic variants in Crohn’s disease
and ulcerative colitis patients [49]. There is a clear need to
understand how those genetic variants integrate with cells,
microbes, and even metabolites in the intestinal microenvi-
ronment. Additionally, a recent study demonstrates that the
Th17/RORγt+ regulatory T cell balance driven by IBD micro-
biota is reversible by a defined microbiota transplant in a set
of gnotobiotic mouse experiments [50]. The interplay
between Th17 cells and Treg cells in the context of intestinal
microbiota engages in an extensive bidirectional communica-
tion. IL-10 produced by Tregs promotes immune homeostasis
whereas expansion of Th17 cells may alter the configuration
of the gutmicrobiome. Furthermore, intestinal microenviron-
mental factors, such as diet and antibiotic use, may lead to
microbiome disturbance. However, the microbiome plays
decisive roles in the training and shaping of the host immune
system. The crosstalk between perturbations of the gut micro-
biome and immune dysregulation may finally lead to an
inflammatory disorder of the gastrointestinal tract [51]. The
studies to identify these alternations and understand them in

TABLE 1: IL-17 pathway in autoimmune and inflammatory diseases.

Inflammatory/autoimmune diseases Evidence of role for IL-17 pathway in different diseases Refs.

Arthritis

IL-17A+CD8+ T cells were predominantly TCRαβ+ and their frequencies were
increased in the synovial fluid of patients with established arthritis.
IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent
stimulator of osteoclastogenesis.

[33, 36]

Sjogren’s disease
A significant increase of IL-17 expressing cells in salivary glands involved in the
onset and progression of Sjogren’s disease.

[34]

Inflammatory bowel disease Pathogenic CXCR6+ Th17 populations are induced in autoimmunity. [30]

Periodontitis

IL-17 dominated an inflammatory network characteristic of periodontitis, and
IL-10 dampens this excessive IL-17-mediated periodontitis trait.
Homeostatic IL-17-TRAF3IP2-neutrophil axis underpinning host defense
against a keystone periodontal pathogen.

[39, 40]

Encephalomyelitis
IL-17-mediated positive feedback loop of IL-6 signaling through NF-κB and
STAT3 contributes to enhanced autoimmune encephalomyelitis.

[47]

Virus associated inflammation
Bone marrow-derived IL-17A is required for the development of pneumonitis.
IL-17 signaling is critical for lung immunopathology associated with virus
infection.

[42, 45, 46]
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complex networks may have either diagnostic or therapeutic
potential. Indeed, insights into IL-17 studies have spurred
efforts to explore and test targeted therapies via different clin-
ical trials with IL-17 inhibitors. Psoriasis is a T cell-mediated
inflammatory systemic disease that is characterized by prolif-
erating keratinocytes and erythematous plaques on the skin.
The clinical studies of Bimekizumab and Secukinumab have
shown the remarkable efficacy of IL-17 inhibition for the
treatment of plaque psoriasis [52, 53]. Moreover, IL-17 antag-
onist netakimab is effective and safe in the treatment of cyto-
kine release syndrome in COVID-19 [54]. Collectively,
emerging evidence indicates IL-17 is a keymediator in inflam-
matory pathogenesis but the mechanisms are complex and
await further elucidation.

4. IL-17 Canonical Protective Effects

4.1. IL-17 Increases the Generation and Recruitment of
Neutrophils.While the presence of IL-17 has been implicated
in inflammatory pathogenesis, it exerts protective functions
in clearing pathogens and maintaining tissue homeostasis
through diversemechanisms that have also been documented.
The most well-known function of IL-17 is its ability to initiate
an inflammatory response inducing neutrophil-specific che-
mokines [(CXCL1, CXCL2, CXCL5, and IL-8) that attract
neutrophils from the bloodstream to sites of infection, the
expression of adhesion molecules to facilitate the firm attach-
ment and extravasation [10], and granulocyte colony-
stimulating factors (G-CSF) that promotes neutrophil

generation and migration to the site of infection at surfaces of
the skin and mucosa [55]. IL-17 was also reported to induce the
expression of granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF) in NK cells [56]. Additionally, induced G-CSF
andGM-CSF from IL-17will in turn enhance the expansion and
survival of neutrophils [57]. Furthermore, IL-17 plays a role in
neutrophil recruitment in limiting pathogens [58–60] (Figure 2).
Disruption of IL-17 signaling resulted in bacterial dysbiosis
accompanied by earlier autoimmune disease onset in the gut
and worsened severity associated with increased G-CSF expres-
sion in the intestine and systemic GM-CSF expression in one
study [61]. These data might be interpreted as showing neutro-
phils serve critical protective roles in host defense processes. It
has also been reported that IL-17RA-deletion abrogated the
increase of splenic neutrophil progenitors [62] and IL-17 signal-
ing played a nonredundant role in neutrophil recruitment in
human lung tissue through elaborated G-CSF [63]. Moreover,
IL-17RA-deficient mice exhibited increased susceptibility to
additional pathogens due to a lack of neutrophil recruit-
ment [64–67].

In addition, IL-17 can synergistically raise IL-1β-mediated
cellular mRNA induction and protein release of IL-8 via acti-
vation of AP-1 and NF-κB [68]. IL-1β can also functionally
synergize to enhance CCL20 production in human gingival
fibroblasts to recruit Th17 cells [69]. Thus, IL-17 can cooper-
ate with IL-1β to promote a Th17 laden environment, which
in turn may cause a protective situation. Apart from upregu-
lating chemokine expression in epithelial and endothelial
cells, the formation of the IL-17 signalosome driven by
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FIGURE 2: Role of IL-17 in protective immunity versus immunopathology. Protective immunity: IL-17 activates the production of chemokines
for neutrophil recruitment and triggers neutrophil extracellular traps (NETs) for pathogen clearance. IL-17 promotes the production of
antimicrobial peptides (AMPs) with antibacterial properties through skin or mucosal surfaces. IL-17 also enhances epithelial barrier function
to prevent dissemination of pathogens to amplify immune response. Immunopathology: IL-17 mediates tissue inflammation and damage
that leads to different inflammatory and autoimmune diseases.
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IL-17-induced dimerization of IL-17RA potentiates CXCL1
mRNA expression in keratinocytes [70] and CXCL1 recruits
neutrophils. Furthermore, IL-17 also inducesMAPK activation
and prolongs the half-life of CXCL1 mRNA [71] and regulates
the stability of CXCL1mRNA transcripts [72]. Zhang et al. [73]
further demonstrated that IL-17 potentiates its immunosup-
pressive effects through tumor-associated neutrophil recruit-
ment and pathogen clearance by neutrophil extracellular traps
(NETs). NETosis is increased in severe COVID-19 patients
[74] and a potential mechanism that has been suggested is
that the cytokine storm might be perpetuated by IL17-induced
systemic NETs. Altogether, these studies point out that IL-17 is
a key component for neutrophil homeostasis, which is fine-
tuned by a balance among granulopoiesis, extravasation of
neutrophils into local infected sites, as well as prolonged lon-
gevity of neutrophil-specific chemokines.

4.2. IL-17 Promotes the Production of Antimicrobial Peptides.
The protective mechanisms of IL-17-mediated immunity are
not only limited to neutrophil orchestration but also related
to antimicrobial peptide (AMP) production, such as S100
proteins, cathelicidin (LL-37 in humans and mCRAMP in
mice), β-defensins, C-type lectins, and lactoferrins to clear
pathogens (Figure 2). AMPs are well recognized as important
proteins in innate immunity, especially on the skin and
mucosal surface. Strikingly, the host defense peptide cathe-
licidin is a potentiator for Th17 differentiation and mice
lacking cathelicidin cannot increase IL-17 production in
response to inflammation [75]. β-Defensins are key compo-
nents of innate immunity, which directly kill or inhibit the
growth of some Gram-positive as well as Gram-negative
microorganisms. IL-17 enhances antimicrobial peptides pro-
duced by human keratinocytes or epithelial cells [76, 77] and
IL-17 acts synergistically with IL-22 produced by ILC3s to
induce AMP secretion by epithelial cells, such as β-defensin
2, β-defensin 3, and lipocalins, which play indispensable
roles in limiting dissemination of pathogens [78, 79]. Given
the synergistic effect of IL-17 and IL-22, it is not surprising
that the IL-17/IL-22 alliance functions as an essential com-
ponent of mucosal immunity to pathogens. TNF-α can have
an additional synergistic effect with IL-17 to increase the
production of AMPs, such as β-defensin 2 and S100A7 by
keratinocytes [80, 81]. In the past decade, murine studies
have provided clues to elucidate the complexity of the intestinal
microbiota and the host defense againstmicrobiota tomaintain
mucosal barrier function and homeostasis through compli-
cated molecular mechanisms. Ivanov et al. [82] reported that
the presence of segmented filamentous bacteria (SFB), a single
commensal microbe, is sufficient to induce IL-17-producing
cells in the small intestine and colonization of SFB reduces
the growth of the intestinal pathogen Citrobacter rodentium
and correlated with antimicrobial peptide secretion. However,
the induction of the Th17 population not only depends on the
intestinal microbiota, but also depends on constant exposure of
the intestine to diet and metabolism as highlighted by multiple
studies with distinctmetabolicmechanisms impacting different
Th17 cell phenotypes [83]. The mechanisms that regulate het-
erogenous nonpathogenic Th17 cells (npTh17) and pathogenic

Th17 cells (pTh17) were further dissected by single-cell ATAC-
seq integrated with single-cell RNA-seq showing differences in
the chromatin landscape of each [84]. Moreover, IL-17-
induced antimicrobial protein regenerating family member
3Alpha (REG3A) in keratinocytes can promote skin prolifera-
tion after injury [85]. Taken together, the mounting evidence
suggests that another hallmark protective function of IL-17 is
stimulating AMP production. However, further studies are
needed to fully unravel the regulatory mechanisms surround-
ing the role of IL-17 in AMP production.

4.3. IL-17 Maintaining Barrier Integrity. The fundamental
role of the epithelium of the gastrointestinal tract and skin,
which combined are the largest human body surface area
exposed to the external environment, is developing barrier
integrity to resist diverse hostile pathogens. Several diseases
have been associated with compromised epithelial barrier
function, such as IBD, psoriasis, and atopic dermatitis
[86, 87]. A plethora of past studies have implicated IL-17-
producing cells or IL-17’s role in maintaining homeostasis of
barrier integrity and preventing pathogens from invasion
[12] (Figure 2). Neutralization of IL-17 aggravates the devel-
opment of dextran sulfate sodium- (DSS-) induced colitis in
mice due to downregulated claudin expression resulting
from IL-17 neutralization, resulting in decreased or even
compromised mucosal barrier integrity [88]. γδ T cells
have differential TCR expression and distinct functions
such as producing either IFNγ or IL-17 [89], which could
alter barrier integrity. Interestingly, IL-17 also regulates the
tight junction protein occludin during epithelial injury, and
the protective effects of IL-17 produced by γδ T cells, inde-
pendent of IL-23 signaling, remains intact in a DSS-induced
colitis model [90]. Moreover, inhibition of IL-17 signaling
exacerbates colitis that was associated with severe intestinal
epithelial barrier dysfunction [91]. These studies are a strong
endorsement of the protective effects of IL-17 in forming and
maintaining the intestinal mucosa fence. Loss of epithelial
barrier function could result in the dissemination of patho-
gens or commensal bacteria allowing easy access to macro-
phages and dendritic cells residing below the mucosal barrier,
which in turn amplifies the subsequent innate and adaptive
immune activation and causes disease development.

Epithelial integrity can also be enhanced by inducing
tight junction correlated proteins, such as upregulating
claudin gene expression, through the IL-17-mediated ERK
MAPK pathway [92]. Kallikrein 1 expression can also be
driven by IL-17 in renal epithelial cells to confer protection
against Candida albicans dissemination and expression of
kallikrein is impaired in IL-17RA−/− mice following C. albi-
cans infection [93]. Taken together, the commensal organ-
isms or pathogens from the lumen can be kept from passing
through tight junction proteins between epithelial cells by
IL-17-mediated barrier tightening. It is true that IL-17 also
plays a pathogenic role during protective surveillance, thus
leading to the paradox of IL-17; tissue-damaging potential is
weighed against its protective role in maintaining barrier
integrity [90, 94]. Further work will be required to unravel
more about the regulation of IL-17 in epithelial barrier
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function as well as the regulation of IL-17 production from
either Th17 cells or other cell types.

5. IL-17 Noncanonical Protective Effects

IL-17 has blossomed during the past 30 years and has gained
much attention for context-dependent roles in switching
between friend and foe. This review largely highlights the
beneficial aspects and it is evident that IL-17/IL-17R signal-
ing results in neutrophils recruitment, AMP secretion, and
tight junction maintenance.

In addition to the mechanisms mentioned above, IL-17
signaling can also affect T and B cell functions. Act1 is nec-
essary for IL-17-mediated inflammatory responses and func-
tions as a negative regulator in T and B cells via direct
inhibition of STAT3 [95]. Majumder et al. [96] recently
found a novel role of IL-17 in driving the activation of fibro-
blastic reticular cells in secondary lymphoid organs through
metabolic reprograming, which potentiates the proliferation
and survival of these cells as well as promotes B cell responses.
Additionally, IL-17 is also known to govern hypoxic adapta-
tion of injured epithelium. [97]. Moreover, proper control of
IL-17 might decrease short-term memory deficit and delay
mild cognitive impairment in Alzheimer’s disease [98, 99].
More research efforts are needed to explore how IL-17 con-
trols central nervous system autoimmunity as well as regu-
lates neuron communication before clinical trials for therapy
can be designed.

Finally, the compelling future direction of IL-17 research
will investigate proper brakes to control the level and capac-
ity of IL-17 signaling. Future studies may unveil fine-tuned
mechanisms for regulating inflammation and maintaining
successful immunity with minimal immunopathology. Fur-
thermore, gaining an in-depth understanding of these
mechanisms may facilitate discovering and providing new
therapeutic drugs. There is no doubt that more context- and
tissue-dependent functions of IL-17 in human diseases and
homeostasis will be revealed in the following decade.
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