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Dysregulation of adipogenesis is related to diabetic peripheral neuropathy (DPN) pathogenesis, which may be mediated by
immune infiltration. Nevertheless, the expression patterns of multiple adipogenesis-related genes and the differences of
immune infiltration in different lipid metabolism levels remain unknown. GSE95849, a gene expression matrix containing
DPN patients and healthy participants, was downloaded from Gene Expression Omnibus (GEO) database. Differentially
expressed adipogenesis-related genes (DEARGs) were screened by overlapping the adipogenesis-related genes with differentially
expressed genes (DEGs). DPN patients from GSE24290 and GSE148059 were divided into two adipogenesis subgroups
according to the expression of DEARGs. The single-sample gene set enrichment analysis (ssGSEA) was used to estimate the
abundance of the immune cells between two subgroups. The analysis of immune infiltration suggested that a variety of
immune cells and immune processes were elevated in the high expression group of DEARGs. The differentially expressed
genes of the two subgroups were mainly enriched in biological processes and signaling pathways related to lipid metabolism.
PPARG, FABP4, LIPE, FASN, SCD, DGAT2, PNPLA2, ADIPOQ, LEP, and CEBPA were identified as the hub genes of the
two subgroups, whose related transcription factors (TFs) and miRNAs were predicted. An immunohistochemical assay was
used to verify the expression of hub genes in DPN nerve tissues. Our comprehensive analysis of adipogenesis subgroups in
DPN illustrated that different expression patterns of DEARGs may lead to different immune and inflammatory states. The
identification of DEARGs may help to further distinguish the different characteristics of DPN patients and lay the foundation
for targeted treatment. Our findings may bring a novel perspective to the diagnosis and treatment of DPN patients.

1. Introduction

Diabetic peripheral neuropathy (DPN) is a serious compli-
cation of diabetes characterized by pain and a loss of sensory
function beginning distally in the lower extremities. Over
time, at least 50% of individuals with diabetes eventually
develop into DPN [1], which increases the risk of amputa-
tion and death. Nowadays, the exact pathogenesis of DPN
is still unclear, and there is a lack of effective targeted treat-
ment. There has been growing awareness that DPN is a
chronic inflammatory disease, and this persistent chronic
inflammatory response would accelerate the progression of
nerve damage [2, 3], which is mainly related to oxidative
stress, inflammation, and vascular endothelial system dam-
age [4]. Related proinflammatory cytokines, such as TNF-

α, interleukin- (IL-) 1, IL-6, and IL-8, are mainly produced
by activated immune cells (especially resident macrophages)
as well as adipocytes, which promote the amplification of
inflammatory signals [5]. Exploring the role of immune
infiltration and inflammatory responses may be crucial for
further understanding the pathogenesis of DPN, which helps
in searching for specific diagnostic markers and exploring
potential effective therapeutic targets.

Adipogenesis is the process whereby fibroblast-like pro-
genitor cells become triglyceride-filled mature adipocytes
[6]. It can increase in size in one of two main ways: hyper-
trophy (increase in the size of existing adipocytes) or hyper-
plasia (formation of new adipocytes through differentiation
of resident precursors known as preadipocytes) [6]. The sub-
cutaneous adipose tissue (SAT) has a limited ability to
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expand by recruiting and/or differentiating available precursor
cells.When inadequate, it will lead to a hypertrophic expansion
of the cells with increased inflammation, insulin resistance, and
dysfunctional prolipolytic tissue, leading to a disorder of lipid
metabolism and lipid-related diseases [7–9]. Researches have
shown that obesity was associated with an increased risk of
incident DPN among individuals with type 2 diabetes mellitus,
regardless of sex [10]. Emerging evidence showed that excessive
adipogenesis was related to DPN pathogenesis [11, 12]. The
excess free fatty acids catabolized by β-oxidation in response
to hyperlipidemia can injure the peripheral nervous system,
particularly Schwann cells, through the generation of ROS
andmitochondrial dysfunction [13]. Multiple highly conserved
pathways were reported to be associated with DPN, involving
the signaling of adipogenesis, lipid synthesis, increased expres-
sion of adipogenesis-related factors, and inflammation [14, 15].
Adipogenesis is often accompanied by low-grade inflammation
and immune response, secretion of adipokines, and release of
fatty acids that can maintain immune cell activation [16]. Fur-
thermore, obesity-associated inflammation can lead to compli-
cations in other metabolic tissues (e.g., liver, skeletal muscle,
and pancreas) through lipotoxicity and inflammatory signaling
networks [17]. Recent studies suggested that DPN was associ-
ated with an increase in inflammatory cells’ aberrant cytokine
expression, oxidative stress, ischemia, as well as proinflamma-
tory changes in the bone marrow [18–20]. A large number of
inflammatory mediators and cytokines (such as TNF-α, IL-
1β, IL-18, IFN-γ, and IL-12) can promote the development of
DPN. ROS generation, NF-κB nuclear translocation, NLRP3
inflammasome (NLRP3, ASC, and caspase-1) activation, and
gasdermin D cleavage may damage Schwann cells [21, 22].
Anti-inflammatory and antioxidant treatments can restore
immune homeostasis and reduce pain caused by DPN [23, 24].
At present, numerous pieces of research have illustrated the
effect of adipogenesis and inflammation on DPN and focused
on the influence of a single gene on disease progression. How-
ever, according to the characteristics of the disease, the disease
can be subdivided into groups, which will be helpful to carry
out the targeted treatment. Besides, the expression patterns
of multiple adipogenesis-related genes and the immune infil-
tration between different subgroups remain to be systemati-
cally analyzed.

In this study, we extracted differentially expressed
adipogenesis-related genes (DEARGs) between DPN patients
and healthy people, and two adipogenesis subgroups were dis-
covered based on the expression of DEARGs. Then, we com-
pared the immune infiltration and other biologic processes
in two subgroups and selected the hub genes between them.
Furthermore, transcription factors (TFs) and miRNAs that
potentially regulate hub genes have been predicted. Immuno-
histochemistry was also utilized to verify the expression of hub
genes. We expected that this study will make a certain contri-
bution to the diagnosis and treatment of DPN.

2. Materials and Methods

2.1. Data Collection. All the microarray bulk RNA sequencing
data we used were obtained from Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). GSE95

849 (annotated by GPL22448 PhalanxHuman lncRNAOneAr-
ray v1_mRNA platform) had 6 DPN patients and 6 healthy
participants. The “limma” R package was used to normalize
the expression matrix and analyzed differentially expressed
genes (DEGs) between DPN and healthy people. GSE24290
(annotated by GPL10526 [HG-U133_Plus_2] platform) and
GSE148059 (annotated by GPL16791 Illumina HiSeq 2500
platform) had 35 and 77 DPN patients, respectively. The
“limma” package was used to remove their batch effect. Finally,
112 DPN patients from GSE24290 and GSE148059 were
merged as a dataset for further analysis.

2.2. Identification of DEARGs. Adipogenesis-related genes of
the HALLMARK_ADIPOGENESIS gene set were obtained
from the MSigDB Team (https://www.gsea-msigdb.org/
gsea/msigdb/), which is one of the most widely used and
comprehensive databases of gene sets for performing gene
set enrichment analysis. Log2jfold change ðFCÞj > 1 and
adjust p value <0.05 were used as filter criteria to screen
DEGs of GSE95849. Duplicated genes were excluded. Then,
the intersection of adipogenesis-related genes and DEGs was
analyzed by Venn diagram (FunRich 3.1.3), and 74 DEARGs
were finally selected.

2.3. Unsupervised Clustering Analysis of DEARGs. The “Con-
sensusClusterPlus”R package was used to identify adipogenesis
subgroups with an unsupervised clustering method according
to the expression of DEARGs. The optimal value of k was cho-
sen according to the following criteria: (i) a higher intragroup
correlation and a lower intergroup correlation; (ii) the cumula-
tive distribution function (CDF) curve increased smoothly
while the delta area increased gradually; (iii) no subgroups have
a small sample size. According to the above criteria, k = 2 was
chosen as the appropriate number of clusters. Principal compo-
nent analysis (PCA) was analyzed by the “states” R package.
The “pheatmap”R package was used to visualize the expression
of DEARGs in two adipogenesis subgroups.

2.4. Immune Infiltration in Two Subgroups.Chronic inflamma-
tion and immune infiltration were considered important pro-
cesses which were induced by excessive adipogenesis [6]. To
estimate the immune infiltration in two adipogenesis sub-
groups, single-sample gene set enrichment analysis (ssGSEA)
was applied by “GSVA” and “GSEABase” R package [25, 26].
The “pheatmap”R package was used to visualize the expression
of inflammation-related genes.

2.5. Gene Set Enrichment Analysis (GSEA). GSEA 4.2.3 was
used for gene set enrichment analysis. The gene sets associ-
ated with 50 well-defined biological states or processes were
obtained from Hallmark gene sets in MSigDB. A p value
<0.05 and false discovery rate ðFDRÞ < 0:25 were deemed
as significant difference between two subgroups.

2.6. Identification of DEGs in Adipogenesis Subgroups and
Function Enrichment Analysis. To make a further under-
standing of the two subgroups, the “limma” package was
performed to identify DEGs with jFCj > 1:5 and adjusted p
value <0.05. Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) were performed by the
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“clusterProfiler” R package using a q value <0.05 as statisti-
cally significant enrichment.

2.7. Protein-Protein Interaction (PPI) and Hub Gene
Selection. Search Tool for the Retrieval of Interacting Genes
(STRING) database (https://cn.string-db.org/) and Cytos-
cape (version 3.9.1) were used to analyze the interaction of
DEGs. In order to find the hub genes among DEGs, the
“cytoHubba” plugin of Cytoscape was utilized, and the top
ten genes were chosen.

2.8. Correlation Analysis between Hub Genes and Immune
Infiltration. To assess the relationship between hub genes
and immune infiltration, correlation analysis was utilized

between 10 hub genes and 29 immune cells and processes.
A p value <0.05 was deemed as a significant correlation.

2.9. Prediction of Transcription Factors (TFs) and miRNAs.
ChEA3 is a web-based TF enrichment analysis tool that ranks
TFs associated with user-submitted gene sets. The ChEA3
background database contains a collection of gene set libraries
generated frommultiple sources including ENCODE, ReMap,
GTEx, Enrichr, and ARCHS4 databases [27]. FunRich (ver-
sion 3.1.3) is a stand-alone software tool used mainly for func-
tional enrichment and interaction network analysis of genes
and proteins [28]. Based on these two softwares, we predicted
the potential TFs andmiRNAs that may regulate hub genes we
found. The top ten predicted TFs were shown in the bar chart,
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Figure 1: Identification of DEARGs. (a) Volcano plots of DEGs in GSE95849. Two vertical lines indicate gene expression fold change > 1
and <-1, respectively, and the horizontal line indicates the adjusted p value of 0.05. The color of the dot represents the adjusted p value
levels. (b) DEARGs identified by Venn diagram. The blue circle represents the 200 adipogenesis-related genes from the MSigDB Team,
and the red circle represents the 6193 DEGs in GSE95849. (c, d) PCA diagram indicated that after removing the batch effect, samples in
two datasets became comparable.

3Journal of Immunology Research

https://cn.string-db.org/


Consensus matrix k = 2

1
2

(a)

–100

–50

0

50

100

–150 –100 –50 0 50

PCA1 (9.01%)

PC
A

2 
(6

.7
18

%
)

Subgroup
Cluster 1
Cluster 2

(b)

DNAJC15
REEP5
SSPN
AK2
DECR1
LPCAT3
PRDX3
TOB1
ACADM
HIBCH
SOWAHC
GPD2
CCNG2
DHRS7
NABP1
MCCC1
PTCD3
PIM3
MGLL
STOM
SLC19A1
GBE1
ACOX1
ADIPOR2
ACLY
HADH
TALDO1
RETSAT
ADIPOQ
CD36
IDH1
YWHAG
ME1
ESYT1
CAT
RTN3
APOE
SLC1A5
BCL2L13
DLAT
PGM1
BCL6
DHRS7B
MGST3
NMT1
SUCLG1
G3BP2
MYLK
COX7B
RNF11
SCP2
ATL2
DBT
PPM1B
RREB1
ESRRA
ELOVL6
PREB
SLC5A6
DGAT1
ELMOD3
TST
COQ5
MRPL15
SDHC
UCP2
UQCRC1
AIFM1
UQCR10
AGPAT3
ACO2
ECH1

Subgroup

Subgroup
Cluster 1
Cluster 2

–4

–2

0

2

4

(c)

Figure 2: Identification of adipogenesis subgroups in DPN. (a) Consensus matrix heat map defining two clusters (k = 2) and their
correlation area. (b) PCA analysis indicating an obvious difference in transcriptomes between the two subgroups. (c) Differences in
expression levels of DEARGs between the two distinct subgroups.
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and the predicted miRNAs were listed in table. Heat map was
also performed to present the relationship between hub genes
and TFs.

2.10. Specimen and Immunohistochemistry (IHC). Formalin-
fixed, paraffin-embedded sciatic nerve tissues were collected
from 3 DPN mice and 3 healthy mice. Animal tissue samples
were presented by Yaoming Xue research group of the Endocri-
nology Department of Nanfang Hospital. The sciatic nerve was
taken from db/db mice and has been pathologically diagnosed
as DPN. This study was approved by the Ethics Committee of
Nanfang Hospital in Guangzhou. Primary antibodies used were
as follows: monoclonal mouse anti−PPARG (60127-1-IG;

1 : 5000 dilution; Proteintech); monoclonal rabbit anti−FABP4
(ab92501; 1 : 16000 dilution; Abcam); polyclonal rabbit anti
−LIPE (17333-1-AP; 1 : 200 dilution; Proteintech). The IHC
assay was conducted as previously reported [29].

2.11. Statistical Analysis. R software (version 4.1.2) and Perl
(version 5.16.2) were conducted to process, analyze and visual-
ize data. Shapiro-Wilk test was applied for the normality test.
The Student t-test was used for comparison of variables that
obey normal distribution while the Wilcoxon rank-sum test
was used for nonnormally distributed variables. A two-sided
p value <0.05 was deemed statistically significant. The “ggpubr”
and “ggplot2” R packages were applied for visualization.
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Figure 3: Immune infiltration in adipogenesis subgroups. (a) Abundance of 16 infiltrating immune cells in the two adipogenesis subgroups.
(b) Differences of 13 infiltrating immune processes in the two adipogenesis subgroups. (∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001).
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Enrichment plot: HALLMARK_ADIPOGENESIS

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.4
0.2
0.0

–0.2

En
ric

hm
en

t s
co

re
 (E

S)
0 2,000 4,000 6,000 8,000 10,000 12,000 14,00016,000

Ra
nk

ed
 li

st 
m

et
ric

(s
ig

na
l2

no
ise

)
Rank in ordered dataset

‘Cluster2’ (positively correlated)

‘Cluster1’ (negatively correlated)

Zero cross at 7978

Enrichment profile
Hits
Ranking metric scores

(a)

Enrichment plot: HALLMARK_APOPTOSIS

0.4

0.3

0.2

0.1

0.0

0.4
0.2
0.0

–0.2

En
ric

hm
en

t s
co

re
 (E

S)

Ra
nk

ed
 li

st 
m

et
ric

(s
ig

na
l2

no
ise

) ‘Cluster2’ (positively correlated)

‘Cluster1’ (negatively correlated)

Zero cross at 7978

0 2,000 4,000 6,000 8,000 10,000 12,000 14,00016,000

Rank in ordered dataset

Enrichment profile
Hits
Ranking metric scores

(b)

Enrichment plot:
HALLMARK_CHOLESTEROL_HOMEOSTASIS

0.6
0.5
0.4
0.3
0.2
0.1
0.0

–0.1

0.4
0.2
0.0

–0.2

En
ric

hm
en

t s
co

re
 (E

S)
Ra

nk
ed

 li
st 

m
et

ric
(s

ig
na

l2
no

ise
) ‘Cluster2’ (positively correlated)

‘Cluster1’ (negatively correlated)

Zero cross at 7978

0 2,000 4,000 6,000 8,000 10,000 12,000 14,00016,000

Rank in ordered dataset

Enrichment profile
Hits
Ranking metric scores

(c)

Enrichment plot: HALLMARK_COMPLEMENT

0.4
0.5
0.6

0.3
0.2
0.1
0.0

0.4
0.2
0.0

–0.2
En

ric
hm

en
t s

co
re

 (E
S)

Ra
nk

ed
 li

st 
m

et
ric

(s
ig

na
l2

no
ise

) ‘Cluster2’ (positively correlated)

‘Cluster1’ (negatively correlated)

Zero cross at 7978

0 2,000 4,000 6,000 8,000 10,000 12,000 14,00016,000

Rank in ordered dataset

Enrichment profile
Hits
Ranking metric scores

(d)
Enrichment plot:

HALLMARK_FATTY_ACID_METABOLISM

0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.4
0.2
0.0

–0.2

En
ric

hm
en

t s
co

re
 (E

S)

Ra
nk

ed
 li

st 
m

et
ric

(s
ig

na
l2

no
ise

) ‘Cluster2’ (positively correlated)

‘Cluster1’ (negatively correlated)

Zero cross at 7978

0 2,000 4,000 6,000 8,000 10,000 12,000 14,00016,000

Rank in ordered dataset

Enrichment profile
Hits
Ranking metric scores

(e)

Enrichment plot: HALLMARK_GLYCOLYSIS
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

0.4
0.2
0.0

–0.2

En
ric

hm
en

t s
co

re
 (E

S)
Ra

nk
ed

 li
st 

m
et

ric
(s

ig
na

l2
no

ise
) ‘Cluster2’ (positively correlated)

‘Cluster1’ (negatively correlated)

Zero cross at 7978

0 2,000 4,000 6,000 8,000 10,000 12,000 14,00016,000

Rank in ordered dataset

Enrichment profile
Hits
Ranking metric scores

(f)
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Figure 4: Continued.
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3. Result

3.1. Identification of DEARGs. The analysis process of this study
can be seen in Figure S1. Amicroarray dataset, including 6DPN
patients and 6 healthy participants, was used to identify DEGs.
A total of 6267 DEGs were obtained by the “limma” package,
including 4463 upregulated and 1804 downregulated genes
(Table S1). The final DEGs were visualized by the volcano
map (Figure 1(a)). To determine the relationship between
adipogenesis and DPN, we obtained 200 adipogenesis-related
genes from the MSigDB Team. A total of 74 DEARGs were
selected through the intersection of the DEGs and the
adipogenesis-related genes (Table S2). The identified DEARGs
were shown by the Venn diagram (Figure 1(b)).

3.2. Identification of Adipogenesis Subgroups in DPN.GSE24290
and GSE148059 were obtained from the GEO database. After

merging these two datasets, the “limma” R package was applied
to remove the batch effect and normalized the gene expression
matrix (Figure S2A-B, Table S3). PCA diagram indicated that
after removing the batch effect, samples in two datasets
became comparable (Figures 1(c) and 1(d)). 112 DPN patients
were enrolled in this study to reveal the relationship between
adipogenesis and DPN. Unsupervised clustering was used to
identify adipogenesis subgroups based on expression of
DEARGs. Our findings indicated that the optimal clustering
variable was 2 (Figure S3A-I). As shown in Figure 2(a), we
categorized DPN patients into two clusters with a reasonable
number of patients in each cluster (n = 66, 46 in cluster 1 and
cluster 2, respectively). PCA analysis indicated that cluster 1
and cluster 2 were distinguished into two parts as shown in
Figure 2(b). Additionally, as displayed in Figure 2(c), a
substantial difference in DEARGs expression was identified,
most of which were upregulated in cluster 2.
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Figure 4: GSEA in adipogenesis subgroups. (a–n) Hallmark gene sets enriched in cluster 2 with a p value <0.05.
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Figure 5: Differential expression analysis, function enrichment analysis, and hub gene selection. (a) A circular plot for GO enrichment
analysis of the DEGs in two adipogenesis subgroups. (b) A clustering circular plot for KEGG analysis of the DEGs in two adipogenesis
subgroups. (c) Protein-protein interaction network construction and analysis of differentially expressed genes. Red nodes represent
upregulated genes, and green nodes represent downregulated genes. (d) Top 10 candidate genes with maximal clique centrality, including
PPARG, FABP4, LIPE, FASN, SCD, DGAT2, PNPLA2, ADIPOQ, LEP, and CEBPA.
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3.3. Immune Infiltration in Adipogenesis Subgroups. Immune
infiltration and low-grade inflammation are both hallmarks of
DPN [30]. We first compared the relative abundance of
immune cells in two adipogenesis subgroups (Table S4). As
shown in Figure 3(a), a significant difference in most immune
cells between both clusters can be seen. The enrichment
scores of CD8+ T cell, macrophage cell, pDCs, T-helper cell,
Th1 cell, and TIL were significantly higher in cluster 2, in
which there were higher-expressed DEARGs. We also
assessed immune processes between two subgroups, which
indicated that the enrichment scores of APC coinhibition,
CCR, checkpoint, cytolytic activity, inflammation-promoting,
parainflammation, T cell coinhibition, and T cell
costimulation were markedly higher in cluster 2 than cluster
1(Figure 3(b)). Moreover, the expression of inflammatory-
related genes was evaluated in two subgroups. Results showed
that cluster 2 may have a more pronounced inflammatory
response (Figure S4), which was consistent with previous
mechanism research [16]. Chronic inflammation and immune
infiltration were considered important processes which were
induced by excessive adipogenesis [6]. This may prompt that
the upregulated adipose differentiation process in DPN
promoted immune infiltration.

3.4. GSEA Analysis in Adipogenesis Subgroups. To explore
the difference between other biological processes in two adi-
pogenesis subgroups, GSEA was applied, and we could find

that most genes were enriched in metabolic processes, such
as fatty acid metabolism, oxidative phosphorylation, choles-
terol homeostasis, and glycolysis. Notably, hypoxia, apopto-
sis, and complement were also significantly activated in
cluster 2, which were reported to be associated with DPN
pathogenesis [1, 31]. Besides, mTOC1, PI3K/AKT/mTOR,
TNF-α signaling, and reactive oxygen species pathway were
enriched in cluster 2 (Figures 4(a)–4(n), Table S5). These
classical signal pathways mediated immune infiltration [32,
33], indicating that regulation of these signaling pathways
may control the inflammatory response in DPN.

3.5. Differential Expression Analysis, Function Enrichment
Analysis, and Hub Gene Selection. To gain more insight into
molecular characteristics associated with adipogenesis sub-
groups, the “limma” package was utilized to discover DEGs in
two adipogenesis subgroups. 131 DEGs were extracted, and
most of them were upregulated in cluster 2 (Figure S5A,
Table S6). GO analysis indicated that DEGs have mainly
enriched lipid metabolism-related biological processes,
including lipid storage, fatty acid metabolic process, and
triglyceride metabolic process (Figure 5(a), Table S7). KEGG
pathway enrichment analysis illustrated that more
adipogenesis-related signaling pathways were enriched in
cluster 2 (such as the PPAR signaling pathway, AMPK
signaling pathway, and adipocytokine signaling pathway)
(Figure 5(b), Table S8). In addition, we obtained interactive

Table 1: Hub genes and their functions.

Gene
symbol

Full name Function

PPARG
Peroxisome proliferator-activated

receptor gamma
The protein encoded by this gene is PPARγ, which is a regulator of adipocyte

differentiation.

FABP4 Fatty acid binding protein 4
FABP4 encodes the fatty acid binding protein binding long-chain fatty acids and other
hydrophobic ligands. It is thought that FABPs’ roles include fatty acid uptake, transport,

and metabolism.

LIPE Lipase E, hormone sensitive type

The long form is expressed in steroidogenic tissues such as testis, where it converts
cholesteryl esters to free cholesterol for steroid hormone production. The short form is
expressed in adipose tissue, among others, where it hydrolyzes stored triglycerides to free

fatty acids.

FASN Fatty acid synthase
Its main function is to catalyze the synthesis of palmitate from acetyl-CoA and malonyl-

CoA, in the presence of NADPH, into long-chain saturated fatty acids.

SCD Stearoyl-CoA desaturase
This gene encodes an enzyme involved in fatty acid biosynthesis, primarily the synthesis of

oleic acid.

DGAT2 Diacylglycerol O-acyltransferase 2
It catalyzes the final reaction in the synthesis of triglycerides in which diacylglycerol is

covalently bound to long-chain fatty acyl-CoAs.

PNPLA2
Patatin-like phospholipase

domain-containing 2

This gene encodes an enzyme which catalyzes the first step in the hydrolysis of triglycerides
in adipose tissue. Mutations in this gene are associated with neutral lipid storage disease

with myopathy.

ADIPOQ
Adiponectin, C1Q, and collagen

domain containing
The encoded protein circulates in the plasma and is involved with metabolic and hormonal

processes. Mutations in this gene are associated with adiponectin deficiency.

LEP Leptin
This gene encodes a protein that is secreted by white adipocytes into the circulation and

plays a major role in the regulation of energy homeostasis.

CEBPA
CCAAT enhancer-binding

protein alpha
Activity of this protein can modulate the expression of genes involved in cell cycle

regulation as well as in body weight homeostasis.
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information among DEGs via the STRING online tool and
established a prospective protein-protein interaction network.
Red represented upregulation, and green represented
downregulation (Figure 5(c)). As shown in Figure 5(d), we
identified top 10 hub genes (PPARG, FABP4, LIPE, FASN,
SCD, DGAT2, PNPLA2, ADIPOQ, LEP, and CEBPA) of the
global PPI network according to the results of MCC
algorithm using cytoHubba plugin. Table 1 showed their full
names and functions. These genes may perform as key genes
to identify different adipogenesis subgroups.

3.6. Immune Correlation, TFs, and miRNA of Hub Genes. To
further investigate the relationship between hub genes and

immune infiltration, correlation analysis was performed. It
revealed that the expression of hub genes was remarkably
associated with macrophage cell, Th1 cell, TIL cell, inflamma-
tion-promoting, parainflammation, T cell coinhibition, and T
cell costimulation, which were also enriched in cluster 2
(Figure S5B). Then, we predicted the top 10 TFs that
potentially regulated hub genes, including PPARG, NR1H3,
IRX6, RXRA, MEOX1, CEBPA, DMRT2, GSC, MYC, and
MXD4 (Figure 6(a)). The heat map represents TF predicted
by different databases, including ENCODE, ReMap, GTEx,
Enrichr, and ARCHS4 databases (Figure 6(b)). PPI network
was used to present the interaction between hub genes and
predicted top 10 TF (Figure 6(c)). What is more, we also
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Figure 6: Predicted TFs of hub genes. (a) Top 10 predicted TFs for hub genes, including PPARG, NR1H3, IRX6, RXRA, MEOX1, CEBPA,
DMRT2, GSC, MYC, and MXD4. (b) The heat map represents TF predicted by different databases (ENCODE, ReMap, GTEx, Enrichr, and
ARCHS4). (c) PPI network between hub genes and the top ten predicted TF. (d) Interaction between hub genes and predicted miRNA.

10 Journal of Immunology Research



predicted the miRNAs that may regulate hub genes that we
found (Figure 6(d), Table 2).

3.7. Expression of Hub Genes in Sciatic Nerve Tissues.Using sci-
atic nerve tissues from DPN mouse and healthy mouse, we
detected the expression of the top three hub genes (PPARG,
FABP4, and LIPE) via IHC (Figure 7(a), Table S9). The
results revealed that only the expressions of PPARG were
considerably increased in sciatic nerve tissues from DPN
mouse compared with the corresponding normal nerve tissues
from healthy mouse (Figures 7(b)–7(d)). Taken together, our
results suggested that PPARG may play an essential role in
the diagnosis of DPN.

4. Discussion

Dyslipidemia is an important factor in DPN progression.
Reduction of blood lipid and weight loss helps to delay the
occurrence of DPN. More and more research suggested that
adipogenesis can promote the development of DPN, but most
of them focus on a single gene [2, 34, 35]. It is necessary to dis-
cover the expression patterns of multiple adipogenesis-related
genes and their relationship with DPN. Since different genes
often interact to jointly regulate the development of diseases,
it is of great significance to explore the polygenic expression
pattern of DPN [36]. In this study, 112 DPN patients were
selected for unsupervised clustering and found that DPN
patients could be divided into two significantly different sub-
groups according to the expression levels of DEARGs. DPN
patients with high adipogenic levels had an increased level of
immune infiltration and inflammatory response, indicating
that disturbed lipid metabolism was associated with immune
infiltration. Further, we screened the hub genes between two
subgroups and predicted their potential TFs and miRNAs
involved in the regulation. Some validations were performed
to identify the expression of hub genes in the peripheral nerve.

The results above may help us to further conduct mechanistic
studies of the hub genes in DPN.

Excessive lipid synthesis often leads to chronic low-grade
inflammation and immune infiltration, which may further
cause other tissue damage. In pathological states such as obesity
and metabolic excess, adipocytes often recruit more proinflam-
matory macrophages and other immune cells, and cytokines
(such as TNF and IL-1) will significantly elevate to inhibit
excessive adipogenesis [37]. DPN is also considered to be sig-
nificantly associated with the peripheral immune response
and inflammation. A previous study found that DPN animal
models can overexpress TNF-α and IL-6, which were known
as inflammatory factors [38]. Persistent neurogenic inflamma-
tion attracted innate and adaptive immune cells, especially
macrophages [39]. There was a consensus that macrophages
were the most important immune cell in DPN. Macrophages
played an important role in innate immunity M1-like pheno-
type that can aggravate DPN by their excessive production of
proteases, cytokines, and reactive oxygen species [40]. The
infiltration of blood macrophages in the spinal cord may pro-
mote the development of painful neuropathy in diabetic
patients [41]. Studies also showed that the inhibition of the
release of M1 and macrophages into M2 macrophages could
induce the gradual recovery of nerve conduction velocity, nerve
blood flow, and axonal morphology in streptomycin-induced
diabetic rats [42]. In our study, macrophages were highly
enriched in cluster 2, which overexpressed adipogenesis and
inflammatory-related genes. This may suggest that excessive
lipid synthesis led to the recruitment of macrophages, which
further mediates the damage of peripheral nerves in diabetes.
Additionally, CD8+ T cells and CD4+ T cells also increased
in cluster 2. Although CD8+ T cells mainly participated in
adaptive immune, they have been reported to induce obvious
apoptosis of Schwann cells [43]. A quantitative immunohisto-
chemical study, which was carried out on 20 cases of DPN sural
nerve biopsy specimens, had also found that diabetic nerve T

Table 2: Predicted miRNA.

Gene
symbol

miRNA

PPARG
Hsa-miR-27a-3p; hsa-miR-216a-3p; hsa-miR-27b-3p; hsa-miR-128-3p; hsa-miR-130a-3p; hsa-miR-301a-3p; hsa-miR-130b-

3p; hsa-miR-454-3p; hsa-miR-301b-3p; hsa-miR-4295; hsa-miR-3666; hsa-miR-3681-3p

FABP4 Hsa-miR-455-3p

LIPE Hsa-miR-15a-5p; hsa-miR-16-5p; hsa-miR-15b-5p; hsa-miR-124-3p; hsa-miR-195-5p; hsa-miR-6838-5p

FASN Hsa-miR-15a-5p; hsa-miR-16-5p; hsa-miR-15b-5p; hsa-miR-195-5p; hsa-miR-424-5p; hsa-miR-497-5p; hsa-miR-6838-5p

SCD

Hsa-let-7a-5p; hsa-let-7b-5p; hsa-let-7c-5p; hsa-let-7d-5p; hsa-let-7e-5p; hsa-let-7f-5p; hsa-miR-98-5p; hsa-miR-199a-3p;
hsa-miR-181a-5p; hsa-miR-181b-5p; hsa-miR-181c-5p; hsa-miR-199b-3p; hsa-miR-200b-3p; hsa-let-7 g-5p; hsa-let-7i-5p;
hsa-miR-124-3p; hsa-miR-200c-3p; hsa-miR-429; hsa-miR-181d-5p; hsa-miR-3129-5p; hsa-miR-4262; hsa-miR-4458; hsa-

miR-4500

DGAT2 —

PNPLA2 Hsa-miR-148a-3p; hsa-miR-124-3p; hsa-miR-152-3p; hsa-miR-377-3p; hsa-miR-148b-3p; hsa-miR-506-3p

ADIPOQ —

LEP Hsa-miR-9-5p; hsa-miR-296-5p; hsa-miR-532-5p; hsa-miR-668-3p; hsa-miR-874-3p

CEBPA Hsa-miR-31-5p; hsa-miR-101-3p; hsa-miR-182-5p; hsa-miR-124-3p; hsa-miR-190a-5p; hsa-miR-369-3p; hsa-miR-190b
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cells infiltrated mainly CD8+ cells [44]. An imbalance of CD4+
T regulatory cells (Tregs) was also critical in the development
of insulin resistance and diabetes [45]. Thus, although the
cause-effect relationship between immune infiltration and
DPN is uncertain, we tend to believe that some certain immune
infiltrates lead to DPN. Anti-inflammatory therapy can reduce
pain in DPN, while modulation of adipogenesis can moderate
immune infiltration. Regulation of adipogenesis and immune
infiltration may be the effective and reliable treatment of DPN.

To further explore the application of adipogenesis sub-
groups in DPN, we identified ten hub genes between two sub-
groups. Relevant studies had shown that these hub genes were
associated with DPN and related metabolism. Peroxisome
proliferator-activated receptor gamma (PPARG) is a regulator
of adipocyte differentiation, which can express PPARγ and is
known to be important for ameliorating DPN. Besides, multi-
ple drugs or small molecules could improve DPN by modulat-
ing the PPAR pathway [29, 46, 47]. Fatty acid binding protein 4
(FABP4) mainly participates in fatty acid uptake, transport,

and metabolism. Antibody-mediated targeting of the hormone
complex forms and improves metabolic outcomes, enhances
cellular function, and maintains cellular integrity to prevent
type 1 and type 2 diabetes [48]. Notably, FABP4 could regulate
lipogenesis by downregulating PPARγ and then have an affec-
tion onDPN [49]. Stearoyl-CoA desaturase (SCD) is an integral
membrane protein located in the endoplasmic reticulum,
involved in the synthesis of fatty acids, mainly oleic acid. Studies
in transgenic mouse models had demonstrated an important
role of SCD in regulating cellular processes, including lipid syn-
thesis and oxidation, thermogenesis, hormone signaling, and
inflammation [50]. Lipase E (LIPE) expresses a key enzyme
for lipolysis, which hydrolyzes stored triglycerides into free fatty
acids, and improves insulin resistance by participating in the
regulation of fat metabolism [51]. Metformin and resveratrol
inhibited PKA/LIPE activation, thereby inhibiting adipolysis,
reducing FFA influx and DAG accumulation, and improving
insulin signaling [52]. Interleukin 4 (IL-4) could also inhibit
lipogenesis and promote adipolysis to reduce lipid deposition
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Figure 7: Expression of PPARG, FABP4, and LIPE in sciatic nerve tissues from db/db mice and db/m mice (Magnification ×400).
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by enhancing the activity of LIPE [53]. Fatty acid synthase
(FASN) is a multifunctional protein that mainly functions to
catalyze the synthesis of palmitate growth chain saturated fatty
acid by acetyl-CoA and malonyl-CoA in the presence of
NADPH, which was closely related to immune response. Sev-
eral studies had shown that miRNA could inhibit inflammation
by targeting FASN to improve the progression of diabetes com-
plications [54]. Interestingly, as the core gene of adipogenic
subgroups, their high expression is also related to the high
abundance of immune cells, which may have relationship in
their participation in immune-related mechanisms. PPARγ is
a key factor in regulating, at least some aspects of macrophage
lipid metabolism. The study had shown that Brd4 binds to the
promoter and enhancer of GdF3 to promote PPARγ-dependent
expression of GdF3 in macrophages and modulated lipid
metabolism and diet-induced obesity [55]. In DCs, T cells,
and other immune cells, researchers detected upregulation of
lipid metabolism and transport-related genes upon PPARγ
ligand treatment and found that upregulation of these genes
could be blocked by PPARγ-specific antagonist suggesting a
PPARγ-dependent regulation [56]. The role of FABP in regulat-
ing immunity had been confirmed in many diseases.
Macrophage-FABP4 promoted the crosstalk between macro-
phages and neutrophils by regulating the production of CXCL1
in macrophages, thus playing a new role in the defense of lung
hosts against Pseudomonas aeruginosa infection [57]. In addi-
tion, both FABP4 and FABP5 were involved in maintaining T
lymphocyte homeostasis by regulating cytokine production,
which might be regulated by cellular fatty acid-mediated signal-
ing in thymic epithelial cells [58]. SCD1 expressed in cancer
cells and immune cells could cause immune resistance, and its
inhibition enhanced the therapeutic effect of antitumor T cells
and anti-PD-1 antibodies [59]. LPS-induced macrophages were
characterized by enhanced endogenous fatty acid synthesis and
downregulation of the proinflammatory response by inhibition
of fatty acid synthase (FASN). Further research showed that
metformin could inhibit the elevation of FASN and the proin-
flammatory activation in macrophages [60]. There was evi-
dence that Toll-like receptor-mediated inflammation required
FASN-dependent MYD88 palmitoylation [30]. Another study
showed that the link between FASN and cholesterol synthesis
was required for TLR signal transduction and proinflammatory
macrophage activation [61]. Meanwhile, overexpression of
FASN could lead to the downregulation of immune-related
genes [62]. These hub genes play a crucial role in the progres-
sion of diabetes complications by regulating fat metabolism
and immune infiltration and regulating insulin resistance. By
analyzing the correlation between immune infiltration and the
screened hub genes, we also found that expression of hub genes
was positively correlated with the enrichment levels of immune
cells and immune processes, which suggested that these hub
genes may represent the characteristics of cluster 2.

Although our findings seem encouraging, this study is still
insufficient. First, the results of immune infiltration in adipo-
genesis subgroups were analyzed by ssGSEA, which uses a gene
signature-based method to estimate the relative abundance of
immune cells. Tissue-based flow cytometry may provide more
accurate results. Besides, we applied immunohistochemistry to
verify the expression of five hub genes in the DPN sciatic tis-

sues, and the intensive mechanistic studies of these genes still
need to be further improved in future studies. This will be the
direction of our research in the future.

5. Conclusion

Briefly, our integrated analysis of adipogenesis subgroups
revealed the relationship between adipogenesis, immune cell,
and inflammatory process and identified PPARG, FABP4,
LIPE, FASN, SCD, DGAT2, PNPLA2, ADIPOQ, LEP, and
CEBPA as auxiliary diagnostic indicators for adipogenesis
subgroups in DPN. These findings emphasized the impor-
tance of adipogenesis and would provide a new perspective
for immunotherapy of DPN patients. However, future stud-
ies with larger samples and clinical information using flow
cytometry analysis are warranted to validate these findings.
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