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Background. Arising from T progenitor cells, T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant
tumor, accounting for 15% of childhood ALL and 25% of adult ALL. Composing of putative enhancers in close genomic proximity,
super enhancer (SE) is critical for cell identity and the pathogenesis of multiple cancers. Belonging to the cytosolute linker protein
group, FYB1 is essential for TCR signaling and extensively studied in terms of tumor pathogenesis and metastasis. Dissecting the
role of FYN binding protein 1 (FYB1) in T-ALL holds the potential to improve the treatment outcome and prognosis of T-ALL.
Methods. In this study, SEs were explored using public H3K27ac ChIP-seq data derived from T-ALL cell lines, AML cell lines and
hematopoietic stem and progenitor cells (HSPCs). Downstream target of FYB1 gene was identified by RNA-seq. Effects of shRNA-
mediated downregulation of FYB1 and immunoglobulin lambda-like polypeptide 1 (IGLL1) on self-renewal of T-ALL cells were
evaluated in vitro and/or in vivo. Results. As an SE-driven gene, overexpression of FYB1 was observed in T-ALL, according to the
Cancer Cell Line Encyclopedia database. In vitro, knocking down FYB1 led to comprised growth and enhanced apoptosis of T-ALL
cells. In vivo, downregulation of FYB1 significantly decreased the disease burden by suppressing tumor growth and improved
survival rate. Knocking down FYB1 resulted in significantly decreased expression of IGLL1 that was also an SE-driven gene in T-
ALL. As a downstream target of FYB1, IGLL1 exerted similar role as FYB1 in inhibiting growth of T-ALL cells. Conclusion. Our
results suggested that FYB1 gene played important role in regulating self-renewal of T-ALL cells by activating IGLL1, representing
a promising therapeutic target for T-ALL patients.

1. Introduction

As an aggressive hematological tumor, T-cell acute lymphoblas-
tic leukemia (T-ALL) accounts for 15% and 25% of childhood
and adult ALL, respectively, and presented poor sensitivity to
chemotherapy drugs and prone to the drug resistance [1–4].
About 15% of childhood T-ALL and 40% of adult T-ALL
will relapse eventually with subsequent poor prognosis after

extensive combination chemotherapy [5, 6]. Therefore, it is con-
ducive to explore the pathogenesis of T-ALL to achieve better
treatment and prognosis.

As a large cluster composed of several adjacent near-
ordinary enhancers, super enhancer (SE) is commonly observed
in high-density transcription factors, cofactors, and enhancer-
related epigenetic modifications. By regulating lineage-specific
genes and oncogens, SE is critical for cell identity and the
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pathogenesis ofmultiple cancers [7–10]. Inhibiting the activity of
SE may significantly comprised the growth and survival of
tumor cells, and exploring roles of SE-driven genes may hold
great potential for developing targeted therapies [11].

The FYN binding protein 1 (FYB1) encodes the adhesion
and degranulation-promoting adapter protein (ADAP) and
is highly expressed in T cells, NK cells, bone marrow cells,
and platelets, responsible for the signal transduction upon T
cell receptor (TCR) stimulation with integrin activation [12].

Studies have shown key roles of FYB1 gene in
megakaryocyte-specific platelet production [13] and autoim-
mune encephalomyelitis [14]. In addition, deficiency of FYB1
can enhance the cytotoxicity of CD8+ CTL and inhibit the
expression of PD-1 in CD8+ effector T cells, thus significantly
inhibiting tumor growth and enhancing antitumor immunity
[15]. High expression of FYB1 was reported in various types of
breast cancers, accounting for the recurrence and metastasis of
this disease [16]. Of note, aberrant high expression of FYB1was
suggested as a biomarker for poor prognosis in advanced cuta-
neous T-cell lymphoma [17]. However, the role of FYB1 gene
in T-ALL remains poorly understood.

In this study, we identified FYB1 as an SE-driven gene using
public H3K27ac ChIP-seq data from T-ALL cell lines, acute
myeloid leukemia (AML) cell lines and hematopoietic stem
and progenitor cells (HSPCs). As a SE-driven gene, FYB1 gene
was highly expressed in T-ALL cell lines, suggesting plausible
dependance of T-ALL cells on the high expression of FYB1 gene.
Downregulating FYB1 blunted the growth of T-ALL cells both
in vitro and in vivo through the downstream effector, IGLL1.
Our results proposed FYB1 as a potential vulnerability of T-ALL
cells, representing an interesting therapeutic target.

2. Materials and Methods

2.1. Cell Line and Culture. Human T-ALL cell lines, including
HUT78, J-gamma1, CCRF-CEM, MOLT-4, Jurkat and 6T-
CEM, human AML cell lines, including MV4-11 and NB4,
and human CML cell line K562, were all cultured with Roswell
Park Memorial Institute (RPMI)-1640 medium (Biological
Industries; Sartorius AG) supplemented with 10% FBS (Biolog-
ical Industries, CT, USA) and 1% penicillin–streptomycin

(Millipore Sigma, MA, USA). Human neuroblastoma cell
lines SK-N-BE2 and IMR32, human gastric cancer cell lines
OACP4C and HGC-27, and human osteosarcoma cell line
HOS were all cultured with DMEM medium (Biological Indus-
tries; Sartorius AG) supplemented with 10% FBS (Biological
Industries, CT, USA) and 1% penicillin–streptomycin (Millipore
Sigma, MA, USA). All cell lines mentioned above were pur-
chased from the Chinese Academy of Sciences Cell Bank and
were cultured in a humidified incubator with 5% CO2 gas at
37°C and subjected to routine mycoplasma testing. In 2020 and
2021, all cell lines were confirmed by short tandem replicates.

2.2. Cell Proliferation and Viability Measurement. Cells
(J-gamma1, 6T-CEM and Jurkat) were plated in a 96-well
plate with a density of 1× 103. Following the instructions of
the manufacturer, Cell Counting Kit-8 (CCK8) (Dojindo
Molecular Technologies, Tokyo, Japan) was applied to deter-
mine the cell viability. Community multiplication was com-
puted as a percentage of cell growth in the control medium.
Cell density was measured three times and repeated in at
least three separate trials. Plots and statistic analysis were
performed by Graph Prism software 8.4.3 (GraphPad Soft-
ware, Inc., San Diego, CA, USA).

2.3. RNA Preparation and Real-Time PCR Expression
Analysis. The quantitative real-time polymerase chain reac-
tion (qRT-PCR) was conducted as mentioned previously
[18]. TRIzol® reagent (Invitrogen, CA, USA) was used to
extract total RNA. The high volume cDNA Reverse Tran-
scription Kit (Applied Biosystems, CA, USA) was used to
synthesize cDNA from 2mg total mRNA. qRT-PCR was
performed on LightCycler 480 real-time system (cat.
No. 04707516001; Roche, Penzberg, Germany). GAPDH
was used as an internal control, the mRNA expression level
was calculated by theΔCTmethod. Sequences of primers used
in this study were shown as below: GAPDH: forward:
TGCACCACCAACTGCTTAG, reverse: GATGCAGGGA
TGATGTTC, FYB1 forward: GGATGTCTCAGTCAATAG
CCG, and reverse: GGTTCCTTGTCAGGCTTTTCC.

2.4. Preparation and Infection of Lentivirus. shRNAs target-
ing FYB1 and IGLL1 (sequences were shown in Table 1) were

TABLE 1: shRNAs used to knockdown FYB1 and IGLL1.

Name Sequence

Homo-FYB1-sh1
CCGGCCAAATGTTGACCTGACGAAACTCGAGTTTCGTCAGGT
CAACATTTGGTTTTTTGAATT

Homo-FYB1-sh2
CCGGGCTTCAAGCAAGGAGAGCAAACTCGAGTTTGCTCTCCT
TGCTTGAAGCTTTTTTGAATT

Homo-FYB1-sh3
CCGGGCCATCTCTTCACAGTGTAAACTCGAGTTTACACTGTG
AAGAGATGGCTTTTTTGAATT

Homo-IGLL1-sh1
CCGGGCCCAACAGCTGCATCGCAGACTCGAGTCTGCGATGC
AGCTGTTGGGCTTTTTGAATT

Homo-IGLL1-sh2
CCGGTGAGGAGCTCCAAGCCAACAACTCGAGTTGTTGGCTTG
GAGCTCCTCATTTTTGAATT

Homo-IGLL1-sh3
CCGGCGAAGGGAGCACCGTGGAGAACTCGAGTTCTCCACGG
TGCTCCCTTCGTTTTTGAATT
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cloned into the pLKO.1-puro lentivirus vector (IGE
BIOTECHNOLOGY LTD, Guangzhou, China). HA-tagged
FYB1 CDS sequence was cloned into the pLKO.1-puro
lentivirus vector. (IGE BIOTECHNOLOGY LTD, Guangzhou,
China). High titer of lentivirus was prepared using pMD2.G and
psPAX2 (pMD2. G: #12, 259; psPAX2: #12,260; Cambridge,
MA, USA). According to the manufacturer’s instructions,
polyethyleneimine (linear MW 25,000 Da, 5mg/ml, pH7.0)
(Item No.: 23966-1; Polysciences, Warrington, PA, USA) was
used to cotransfect pMD2.G, psPAX2 in 293FT cells. Lentivirus
supernatant was collected and filtered using a 0.45μm filter.
Leukemia cells were then incubated with lentivirus for 24 hr
supplemented with polyurethane (Sigma–Aldrich) of 10μg/ml.
Puromycin (10μg/ml) selection was used to make stable T-ALL
cell lines was prepared with 10μg/ml puromycin (Invitrogen;
Thermo Fisher Scientific, Inc.).

2.5. RNA-Seq and Data Processing. In accordance with the
protocol advised by Novogene (Beijing, China), RNA
sequencing was carried out as brief described as below. Total
RNAwas first retro-transcribed into cDNA for library construc-
tion, followed by next-generation sequencing. The original reads
were then filtered and mapped against HISAT for clean reads.
Gene expression levels were then computed (in fragments per
kilobase exon model mapped per million reads). The
differentially expressed genes (DEGs) were identified by
DESeq2 analysis (P<0:05 and Log2 (fold change) >0.5 or
Log2 (fold change) <−0.5). The RNA sequencing data have
been uploaded to the GEO database (https://www.ncbi.nlm.nih
.gov/geo) under the session of GSE197450.

2.6. Apoptosis Analysis. Apoptosis was analyzed as men-
tioned previously [18]. T-ALL cells (6T-CEM and J-gamma1
cell lines) were infected with lentivirus for 24 hr in the pres-
ence of 10 μg/ml polyurethane (Sigma–Aldrich). Stable cell
lines were selected with 10 μg/ml of puromycin (Invitrogen;
Thermo Fisher Scientific, Inc.). Leukemia cells obtained after
5 days of screening were washed with precooled 1x PBS and
suspended in a 1x binding buffer and then treated using the
FITC-Annexin V Apoptosis Kit (item no.: 556420; BD
Biosciences, Franklin Lakes, NJ, USA) according to the man-
ufacturer’s instructions. Flow cytometry (Beckman Gallios™
Flow Cytometry; Beckman) was used to analyze the apoptosis.

2.7. Cell Cycle Analysis. The cell cycle was analyzed as men-
tioned previously [18]. The cells were fixed using 70% etha-
nol at 4°C overnight. After 24 hr, the fixed cells were
permeated with 0.5% Triton X-100, stained at 37°C using
PI (1.5 μmol/l; Catalog no.: P4170; Sigma–Aldrich; Merck
KGaA) and 25 μg/ml RNase A, and kept in dark for 1 hr.
Beckman Gallios™ flow cytometry (Immunotech; Beckman
Colter, Inc.) was used to evaluate cell cycle distribution. The
MultiCycle AV DNA analysis software (Version: 328; Verity
Software House, Inc.) was used to analyze the proportion of
cells at different stages of the cell cycle.

2.8. Western Blotting Analysis. Western blotting was ana-
lyzed as mentioned previously [18]. The RIPA lysis buffer
(Beyotime Institute of Biotechnology) supplemented with
protease and phosphatase inhibitors was used to lyse cells

(Jurkat, 6T-CEM and J-gamma1). After ultrasonic treatment,
the supernatant was collected using centrifugalization as
total protein, and its concentration was quantitatively deter-
mined by the BCA kit (Thermo Fisher Science). Western
blotting analysis was conducted with reference proteins of
the following primary antibodies including FYB1 (cat. ab76103;
Abcam), IGLL1 (cat. ab154517, Abcam), PARP (cat. No. 9542;
Cell Signaling Technology), cleaved caspase-3 (cat. 9661S, Cell
Signaling Technology), caspase-8 (cat. 9746, Cell Signaling Tech-
nology), HA (cat. ab9110; Abcam), glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) (cat. MA3374; Millipore); Z-VAD-
FMK (cat. HY-16658B; MedChemExpress), and incubated
using the affiniure IgG (H+L)/biotin and peroxidase (cat. 111-
035-003;), and IgG (H+L) (cat. 115-035-003;). All secondary
antibodies were purchased from Jackson ImmunoResearch
Laboratories, Inc. (West Grove, PA, USA). LAS 4010 (Cytiva)
imaging system and ImageQuant TL 8.1 software (Cytiva) were
used to observe the protein bands with ECL ultrasensitive
luminescent solution (Thermo Fisher Scientific, Inc.); and
the ImageJ software was used for band quantification. Then,
the GAPDH antibody was used as an internal control.

2.9. In Vivo Xenograft Leukemia Model. All animal proce-
dures in this study have been approved and licensed by the
Animal Care and Use Committee of Children’s Hospital of
Soochow University (CAM-SU-AP #: JP-2018-1). Female
NSG mice aged 4–8 weeks (NOD-Prkdc) Scid II2rgEm1/
Smoc, NM-NSG-001) were purchased from Shanghai Model
Organizations. Mice were maintained in a standard SPF
room and used in all studies of the sh-NC Group and the
sh-FYB1 Group with 12 for each. On Day 0, each mouse was
injected with 2× 106 Jurkat cells via tail vein injection. On
the 18th day after cell injection, luciferase was injected into
the abdominal cavity of each mouse and followed by imme-
diate anesthesia with isoflurane gas. Then, the NightOWL
in vivo imaging system (BERTHOLD, Germany) was used
for the mouse of each group on the 25th, 30th, and 35th days.
Mice weight and fur were monitored every 5 days. Mice were
euthanized when they reached the humane endpoint. The
liver, spleen, peripheral blood (PB), and bone marrow of
mice in the sh-NC group and the sh-FYB1 group were
collected; and the liver and spleen organs were subjected
for imaging. The flow cytometry (Beckman Gallios™ Flow
Cytometry; Beckman) was used to analyze the expression
quantity of antihuman CD45+ after grinding the liver,
spleen, PB, and bone marrow of mice and the differences
between the sh-NC Group and the sh-FYB1 group were
compared. Immunohistochemistry and HE (hematoxylin
and eosin) staining were conducted for each organ
specimen. Cleaved-Caspase 3 (item no.: GB11009-1, 1:30,
Servicebio, Boston, MA, USA) and Ki67 (item no.: AB
15580, 1:30, Abcam, Cambridge, UK) were used according
to the manufacturer’s instructions.

2.10. Public ChIP-Seq Data Collection and Analysis. Public
ChIP-Seq H3K27ac datasets of T-ALL cell lines, AML cell
lines, and HSPCs were downloaded from the Cistrome data-
base (http://www.cistrome.org/). The obtained ChIP-Seq
H3K27ac datasets (GSE70734, GSE29611, GSE50622,
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GSE76783, GSE59657, GSE80779, GSE123872, GSE188750,
GSE71809, GSE70660, and GSE93372) were aligned to the
reference genome (UCSC hg38) with alignment parameters -
p 4 -q -x [19]. Peaks were detected with MACS2 (v2.0.9) [20]
for the parameters -g hs -n test -B -q 0.01. The bedgraph files
produced by MACS2 were converted to the bigwig files with
the UCSC bedGraphToBigWig tool, and then the bigwig files
were visualized with the Integrative Genomics Viewer (IGV)
[21]. Then we identified SEs by the ROSE (rank order of SEs)
method [22, 23], according to the parameters -s 12500 -t 2000
(-s stitching distance; -t TSS exclusion zone size).

2.11. Public Database. The expression level of FYB1 and
IGLL1 mRNA in different types of tumor cell lines was
obtained from the Cancer Cell Line Encyclopedia (CCLE)
(http://www.broadinstitute.org/ccle).

2.12. Data Statistics and Analysis. All experiments were per-
formed in triplicates and independently repeated at least
three times. Statistical analyses were performed with GraphPad
Prism 8.4.3 (GraphPad Software, Inc.). t-Test orMann–Whitney
U-test was used for comparison between the two groups. The
P values with statistical significance are indicated as ∗P<0:05,
∗∗P<0:01, ∗∗∗P<0:001, and ∗∗∗∗P<0:0001.

3. Results

3.1. Super Enhancers Are Enriched in T-ALL-Associated
Oncogenes in T-ALL Cell Lines. To identify the genes corre-
lated with SEs in T-ALL, we analyzed public H3K27ac ChIP-
seq datasets in 7T-ALL cell lines (ALL-SIL, DND-41, Jurkat,
LOUCY, MOLT-3, MOLT-4, P12-ICHIKAWA). In this study
NB4, MV4-11, and THP-1 were also used as representative
AML cell lines. Additionally, we included three HSPC)
samples, to compare the H3K27ac signals among those
T-ALL, AML, and HSPC cell samples. The principal
component analysis (PCA) result and clustering result based
on the peak signals clearly distinguished T-ALL samples from
AML or HSPC (Figures 1(a) and 1(b)). Putative SEs identified
in each of the 7T-ALL cell lines are shown in Figure 1(c) and
Supplementary 1. A total of 213 genes were selected which were
commonly correlated with SEs in at least 6T-ALL cell lines,
including CDK6, CCND3, ETV6, and FYB1 (Figure 1(c)). As
shown in Figure 1(d)–1(f), the enhancer region of T-ALL-
associated oncogene CDK6, CCND3, and ETV6 in T-ALL
cell lines showed coincident H3K27ac signals that were not
present in AML or HSPC cells. Our results indicate that SE
was commonly seen in T-ALL associated genes.

3.2. FYB1 Was Activated by Super Enhancer and Highly
Expressed in T-ALL Cell Lines. FYB1 was identified as one
of the SE-driven genes in T-ALL cells (Figure 1(c)). SE was
consistently observed at FYB1 locus in all 7T-ALL cell lines
but not in either AML cell lines or HSPC cells (Figure 2(a)). In
line with this, expressions of FYB1 were highest in T-ALL cell
lines among other cancer cell lines, according to the CCLE
dataset (https://portals.broadinstitute.org/ccle) (Figure 2(b)).
Furthermore, high expression of FYB1 was confirmed by
western blot in T-ALL cell lines, HUT78, J-gamma1, CCRF-
CEM, MOLT-4, Jurkat, and 6T-CEM but not in non-T-ALL

cell lines (NV4-11, NB4, K562, SK-N-BE2, IMR-32,
OACP4C, HGC27, and HOS) (Figures 2(c) and 2(d)). Collec-
tively, these results indicated that FYB1 was highly expressed
in T-ALL cells potentially driven by SE.

3.3. FYB1 Knockdown Inhibits the Proliferation and Promotes
the Apoptosis of T-ALL Cells. To explore the biological role of
FYB1, we knocked down FYB1 genes in three T-ALL cell
lines (J-gamma1, 6T-CEM and Jurkat) with high expression
of FYB1 by shRNAs (Table 1). Knocking down efficiency was
confirmed at both mRNA and protein levels (Figures 3(a)
and 3(b)). Downregulation of FYB1 significantly inhibited
the proliferation of T-ALL cells (P<0:001) (Figures 3(c)
and 3(d)). In addition, downregulation of FYB1 led to
enhanced apoptosis of J-gamma1 and 6T-CEM cell lines
(Figure 3(e)). In consistent with this, elevated levels of
PARP and cleaved caspase-3 and -8 were observed as a result
of downregulating FYB1 (Figure 3(f )), which can be blocked
by apoptosis inhibitor Z-VAD (Supplementary 2). In con-
trast, overexpression of FYB1 resulted in enhanced prolifer-
ation of J-gamma1 and Jurkat cells (Figures 3(g) and 3(h)).
Taken together, our results suggested that FYB1 was essential
for the survival of T-ALL cells.

3.4. FYB1 Knockdown Inhibits the Progression of Leukemia in
the Xenotransplantation Model. Effects of inhibiting FYB1
expression have been evaluated in vitro, we therefore pro-
ceeded to evaluate this in vivo. To this end, Jurkat cells with
or without knocked-down FYB1 were transplanted into
Nod–Scid mice (Figure 4(a)). Leukemia burden was deter-
mined by in vivo fluorescence imaging assay. As shown in
Figures 4(b) and 4(d), knocking down FYB1 significantly
decreased the expansion of Jurkat cells in vivo at three
time points, compared to control. In line with this, the fluo-
rescence in the liver and spleen of mice transplanted with
FYB1 KD Jurkat cells was significantly lower than control
(Figure 4(c)). And percentage of Jurkat cells with knocked-
down FYB1 was significantly lower in PB, liver, spleen, and
bone marrow when compared to control (Figure 4(g)).
Besides, HE staining also showed much less of Jurkat cells
with knocked-down FYB1 in the bone marrow and liver
(Figure 4(h)). Moreover, knocking down FYB1 led to better
survival rate (43Æ 2.0 days) than control (38Æ 1.2 days)
(P ¼ 0:0026) (Figure 4(e)). No obvious loss of body weight
was observed (Figure 4(f)). All the above results suggested
that knocking down FYB1 led to a marked delay in leukemia
progression in vivo.

3.5. FYB1 Activates IGLL1 in T-ALL Cell Lines. To reveal the
potential targets of FYB1 responsible for T-ALL cell prolifer-
ation, we performed RNA-seq in J-gamma1 cells with or
without knocking down FYB1 (GEO ID: GSE197450). About
1,051 DEGs were identified after knocking down FYB1 gene,
including 757 downregulated genes and 294 upregulated
genes (P<0:05 and Log2 (fold change) >0.5 or Log 2(fold
change) <−0.5, Figure 5(a) and Supplementary 3. IGLL1 was
among the top 20 downregulated genes (Figure 5(b)) and
was one of the 17 genes shared between DEG and SE-driven
genes (Figure 5(c). Also, SE was observed crossing IGLL1
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FIGURE 1: Continued.
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gene body in these 7T-ALL cell lines, determined by ChIP-
Seq data (Figure 5(d), Track 1–7). Moreover, downregulated
IGLL1 was confirmed after knocking down FYB1 by western
blot (Supplementary 2). All these results point to IGLL1 as a
potential downstream target of FYB1 signaling.

3.6. IGLL1 Knockdown Interferes with T-ALL Cell
Proliferation and Promotes Apoptosis. To further explore the
role of IGLL1 in T-ALL, we analyzed the CCLE dataset (https://
portals.broadinstitute.org/ccle) and found that the expression of
IGLL1 was highly expressed in T-ALL (Figure 6(a)). To evaluate
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FIGURE 1: ChIP-Seq H3K27ac datasets analysis of T-ALL cell lines, AML cell lines, and hematopoietic stem and progenitor cells (HSPCs).
(a) PCA was performed for 7T-ALL cell lines, three AML cell lines, and three HSPCs based on the H3K27ac signals identified in each sample.
Each circle represents a sample, and each color represents the type of sample. (b) Cluster analysis results of 7T-ALL cell lines, three AML cell
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FIGURE 3: FYB1 knockdown inhibited the proliferation of T-ALL cells in vitro. (a and b) shRNA-mediated knockdown efficiency of FYB1 in
the J-gamma1, 6 T-CEM and Jurkat cell lines was evaluated by qRT-PCR (a) and western blotting, respectively (b). (c) Downregulation of
FYB1 significantly inhibited the proliferation of J-gamma1, 6T-CEM and Jurkat cell lines evaluated by imaging assay. (d) Downregulation of
FYB1 significantly inhibited the proliferation of J-gamma1, 6T-CEM and Jurkat cell lines evaluated by cell proliferation assay. (e) Down-
regulation of FYB1 increased the apoptosis of J-gamma1 and 6T-CEM cells. (f ) The cleavage of PARP, cleaved-caspase-3 and caspase-8 were
enhanced due to downregulation of FYB1 in the J-gamma1, 6T-CEM and Jurkat cells. (g and h) Overexpression of FYB1 enhanced the
proliferation of J-gamma1 and Jurkat cells.
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FIGURE 4: Continued.
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the biological characteristics of IGLL1, three independent
shRNAs (Table 1) were used to knockdown IGLL1 in two
T-ALL cell lines (J-gamma1 and 6T-CEM). As shown in
Figure 6(b), efficient knocking down of IGLL1 was achieved
by shRNA #2. We first assessed the effects of knocking down
IGLL1, resulting in marked suppression of cell proliferation
(Figure 6(c)). In agreement with this, decreased cell density
was confirmed by imaging assay (Figure 6(d)), at least partially
due to arrested cell cyle withmore cells in G1 phase and less cells
in G2/M phases (Figure 6(f)). Moreover, knocking down IGLL1
demonstrated synergistic effect with that of knocking down
FYB1 (Supplementary 2). Besides, we also determined the effects
of knocking down IGLL1 on the apoptosis and found enhanced
apoptosis in J-gamma1 and 6T-CEMcells as a result of knocking
down IGLL1 (Figure 6(e)). In addition, concomitant down reg-
ulation of PARPwas also observed (Figure 6(b)). Taken together,
these results showed that IGLL1 was an important regulator for
the proliferation and survival of T-ALL cells.

4. Discussion

As an invasive hematological malignancy, T-ALL was char-
acterized of heterogenous phenotypes and genetics. The past
decades have seen improved treatment outcome, thanks to
intensified combination therapy. However, around 20% of
T-ALL patients would experience relapse and relapsed/refrac-
tory T-ALL patients have even worse prognosis [24–26].
Therefore, exploring the biology of T-ALL holds the promise
to achieve a better therapeutic strategy for T-ALL.

Over the past decade, mounting evidence has shown that
SE, associated with the pathogenesis of various solid tumors
and hematological malignant tumors, plays a significant role
in the regulation of key oncogenes [27–31]. In this study, we
found that the expressions of several genes (CDK6, CCND3,

ETV6, and FYB1) associated with T-ALL were driven by SE
through exploring public H3K27ac ChIP-seq data. CDK6
serves as a key regulator of hematopoietic and leukemia
stem cell activation [32], important for the survival of
T-ALL cells. Genetically knocking out or pharmacological
inhibition of CDK6 can prevent activated Notch signaling
from inducing leukemia, indicating that CDK6 serves as a
downstream effector of Notch signaling [33]. As being well-
known drivers of cell cycle progression, D-type cyclins (D1,
D2, and D3) are essential for tumorigenesis, which provides a
basis for targeting therapy in tumors [34]. Reports have
shown that CCND3 is very important for the proliferation
and survival of ALL [35]. ETV6 (also known as TEL) gene,
encoding a transcription inhibitor, plays a key role in hema-
topoiesis and embryonic development. Acting in a dominant
negative manner, ETV6 mutations have been reported in
various hematological malignancies in the reproductive sys-
tem, including B-ALL as the most common one in children,
and other hematological malignancies such as T-ALL, MDS,
and AML [36, 37].

Acting as an essential adapter of the FYN and LCP2
signaling network, FYB1 is critical in bridging T-cell signal-
ing to remodeling of the actin cytoskeleton and important for
the fitness of normal T cell. However, whether FYB1 is essen-
tial for the fitness of T-ALL cells is largely unknown [12, 38].

Crucial for TCR signaling transduction, FYB1 has been
reported for its involvement in the pathogenesis, invasion,
andmetastasis of various solid tumors [15–17]. However, there
is no functional study in hematological malignant diseases. In
this study, we found that T-ALL specific SE at FYB1 gene locus,
highlighting that FYB1might be transcriptionally driven by SE
(Figure 2(a)). In line with this, FYB1 was highly expressed in
T-ALL according to the CCLE database (Figure 2(b)). More-
over, we have confirmed that the expression of FYB1 protein in
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FIGURE 4: FYB1 knockdown inhibited the growth of T-ALL cells in vivo. (a) Schematic diagram of in vivo experiments. (b, d) Jurkat cells
expressing luciferase transfected with control or FYB1 knockdown were injected into Nod–Scid mice via tail vein injection; and the Night
OWL in vivo imaging system was used to monitor the leukemia burden of each group on the 25th, 30th, and 35th day after injection.
Quantified results of fluorescence were shown by the bar graph in panel D. (c) Fluorescence of livers and spleens from control and FYB1
knockdown groups was determined, and quantified results were shown by the bar graph. (e) Downregulation of FYB1 resulted in better
survival rate compared to control group. P ¼ 0:0026. (f ) No significant difference of body weight was observed between control and FYB1
knockdown group. (g) Percentages of Jurkat cells in liver, peripheral blood (PB), bone marrow (BM), and spleen from control and FYB1
knockdown groups were determined by hCD45 flow cyteometry and quantified results were shown by the bar graph. (h) Representative HE
staining of bone marrow and liver in control and FYB1 knockdown groups (zoom factor: 200). Scale bars: 100 μm.
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the T-ALL cell lines was much higher than that in the non-T-
ALL cell lines (Figures 2(c) and 2(d)). These results suggested
that high expression of FYB1 might be closely related to the
proliferation of T-ALL cells and the occurrence and develop-
ment of this disease. However, it is still unclear how FYB1
promotes the pathogenesis of T-ALL. Our study showed that
downregulation of FYB1 effectively inhibited the growth of
T-ALL cells both in vitro and in vivo by inhibiting cell prolifer-
ation and promoting apoptosis (Figures 3 and 4). In contrast,
overexpression of FYB1 promoted the proliferation of T-ALL
cells.

Among the top genes that were downregulated due to
knocking down FYB1 and IGLL1 was also driven by T-ALL

specific SE (Figure 5(d)). In consistence, IGLL1 was also highly
expressed in T-ALL (Figure 6(a)). As a member of the immu-
noglobulin gene superfamily, upregulation of IGLL1 has been
reported in many solid tumors [39, 40], but its function is
largely unknown. In this study, we found that knocking
down IGLL1 significantly inhibited the proliferation and
growth of T-ALL cell lines by increasing the apoptosis rate
and blocking its cell cycle. To sum up, all these results showed
that IGLL1was an important downstream effector of FYB1 and
together with FYB1 was essential for the survival of T-ALL
cells. Of course, more efforts, i.e., FYB1 ChIP-seq, are war-
ranted to show the direct regulatory relationship between
FYB1 and IGLL1.
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Generally, our results indicate that FYB1-IGLL1 axis
might play important roles in the pathogenesis of T-ALL,
providing new insights for the biology of T-ALL. Given its
role in controlling cell proliferation and apoptosis, FYB1-
IGLL1 represents an interesting target for T-ALL therapy.

Data Availability

The data used and/or analyzed during the current study are
available from the corresponding author on reasonable
request (GSE197450).
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