
Research Article
DJ-1: A Potential Biomarker Related to Prognosis,
Chemoresistance, and Expression of Microenvironmental
Chemokine in HR-Positive Breast Cancer

Yinghong Xie ,1 Yuancheng Li ,2 and Mengzhu Yang 3,4

1Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
2Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs,
Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, Jiangsu, China
3Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
4Core Facility Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029,
Jiangsu, China

Correspondence should be addressed to Mengzhu Yang; yangmengzhu@njmu.edu.cn

Received 27 February 2023; Revised 13 July 2023; Accepted 25 November 2023; Published 13 December 2023

Academic Editor: Weicheng Hu

Copyright © 2023 Yinghong Xie et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

DJ-1 is significantly elevated in various malignancies. However, the clinical significance of DJ-1 in hormone receptor (HR)-positive
(HR+) breast cancer remains unclear. We evaluated DJ-1 expression in different databases and validated in vitro assay by RT-PCR
and western blot among HR+ breast cancer. The correlations between DJ-1 level and tumor-immune were calculated. Mutational
landscape, enriched signaling pathways, and drug sensitivity analyses were also assessed between DJ-1 high and low-expression
groups. DJ-1 was upregulated in HR+ breast cancer, and high DJ-1 expression was significantly linked with poor prognosis. DJ-1
was correlated with the expression and function of different immune cells. The low DJ-1 group showed sensitivity to paclitaxel and
docetaxel, while the high-expression group showed sensitivity to doxorubicin. CTLA4 and PD-L1 were more sensitive in high-DJ-1
group. It is involved in a range of pathways and might behave as a novel biomarker of prognostic value for the immune
environment and drug sensitivity in HR+ breast cancer.

1. Introduction

Globally, breast cancer is the most common cancer in
women and ranked the most common cause of cancer-
related mortality among women [1]. It is known to all that
the hormone receptor (HR) status, such as estrogen receptor
(ER) and progesterone receptor (PR), play important roles in
prognostic and treatment in breast cancer [2]. Tumor sub-
types with expression of either ER or PR in at least 1% of the
biopsied tumor cells are categorized as HR-positive (HR+)
subtypes [3]. This subtype accounts for the majority of all
breast cancers, approximately 65%–70%, and causes most of
the victims from this disease [4, 5]. The most important
molecule underlying the HR+/HER2− subtype is ERα, a
steroid HR and a transcription factor. When ERα is activated
by estrogen, it could activate oncogenic growth pathways in

breast cancer cells. Although endocrine therapy that blocks
the ER pathway has been developed for years and shows
great effectiveness [6], more dysregulated molecules that
may serve as novel treatment targets need to be identified.

DJ-1, known as one member of the peptidase C56 family,
was originally known for its protective role against oxidative
stress and cell death in Parkinsonism [7, 8]. Beyond that,DJ-1
has been reported in cancers. The evidence shows that DJ-1
may be involved in various mechanisms in cancer progres-
sion, including the inhibition of cellular apoptosis, redox
sensing, acting as a marker for chemotherapy resistance,
suppression of ferroptosis, regulating histone glycation, and
inhibition of autophagy [9–13]. It has been identified over-
expression in a range of cancer types, including breast can-
cer [14, 15], osteosarcoma [16], melanoma [17], colorectal
cancer [18], endometrial cancer [19], and esophageal cancer

Hindawi
Journal of Immunology Research
Volume 2023, Article ID 5041223, 15 pages
https://doi.org/10.1155/2023/5041223

https://orcid.org/0000-0003-3205-003X
https://orcid.org/0000-0002-4128-4180
https://orcid.org/0000-0002-1086-2267
mailto:yangmengzhu@njmu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/5041223


[20], indicating its role as oncogene. Previously, a study in
breast cancer cell lines has shown that NRG-I promotes the
decoupling of DJ-I with HER3 and activates the heterodimer-
ization of HER2/HER3 [21]. Scumaci et al. [22] reported that
phospho-DJ-1 can prevent glycation-induced histone dysre-
gulation, and its Akt-related hyperactivity sustains the prolif-
eration of cancer cells by preserving the epigenome landscape.
Nowadays, immunotherapy therapy has become a promising
strategy for breast cancer [23, 24], and DJ-1 might exert a
specific influence on immune cells. For instance, Treg homeo-
stasis can be maintained via pyruvate dehydrogenase activity
promoted by DJ-1 [25], and the loss of DJ-1 can reduce the
number of total CD4+ T cells while increasing fractional thy-
mic and peripheral nTregs [26].DJ-1 can also act as an immune
modulator through regulating the activation of several immune
cells, such as macrophages, mast cells (MCs), and T cells, via
reactive oxygen species (ROS)-dependent and/or ROS-
independent mechanisms [27]. However, the clinical signifi-
cance and role in the immune environment of DJ-1 among
HR+ subtypes still remains unclear. Thus, to evaluate the value
of the DJ-1 in HR+ breast cancer is fundamental.

To help elucidate the possible relationship between the
DJ-1 expression and HR+ patient clinical features, immune
environment, and chemosensitivity, we explored DJ-1 both
in silico and in vitro. Our results shed light on the importance
of DJ-1 in HR+ breast cancer as well as providing potential
relationships and mechanisms between DJ-1 and HR+ breast
cancer immunotherapy.

2. Materials and Methods

2.1. Study Population. A total of 940 patients, including 591
HR+ /HER2− subtypes from The Cancer Genome Atlas
(TCGA) breast cancer cohort, were included into our analy-
sis. The hormone-based subtypes were inferred from immu-
nohistochemistry results in the dataset. Their matched gene
expression matrix (version 2017-10-13), clinic information,
follow-up records, protein expression, and somatic mutation
were also obtained from the UCSC Xena hub (https://xena
browser.net/).

Another cohort containing 1,885 primary breast cancer
patients with follow-up time and gene expression profiles,
including 1,459 HR+/HER2− subtypes, from the Molecular
Taxonomy of Breast Cancer International Consortium
(METABRIC) project, was downloaded (https://www.me
rcuriolab.umassmed.edu/metabric) and utilized as external
validation cohort for DJ-1 expression and survival analysis.

We also used the publicly available datasets in the Onco-
mine database (https://www.oncomine.org/resource/main.
html) [28] to verify the DJ-1 expression between tumor
and normal breast cancer tissues.

2.2. Survival Analysis of DJ-1. The correlation between DJ-1
expression and breast cancer survival status was analyzed by
grouping HR+ subtype patients into high and low DJ-1
expression groups according to the median expression of
DJ-1. Overall survival (OS) and progression-free interval
(PFI)/relapse-free survival (RFS) were used as endpoints.
We used the Cox regression model in the R survminer

package (v0.4.9) to calculate and visualize the HR and Cox
P values. We adjusted common confounding factors, age,
and tumor stage as covariates during the regression.

2.3. Pathway Enrichment Analysis. To compare the biofunc-
tion difference between high and low DJ-1 expression groups
in the pathway level, we performed gene set variation analy-
sis (GSVA) analysis. We first downloaded classic cancer hall-
mark pathways from the MSigDB Collections (https://www.
gsea-msigdb.org/) and calculated GSVA pathway scores for
each sample in the TCGA and METABRIC cohort by the
gsva R package (v1.48.1). We then compared pathway scores
between DJ-1 high and low-expression groups by the limma
package.

2.4. Somatic Mutation Analysis. We compared significant
somatic mutation genes between high and low DJ-1 expres-
sion groups in TCGA patients. The maftools package
(v2.16.0) was used to calculate the tumor mutation burden
(TMB) and generate the genomic profile diagram.

2.5. Immune Infiltration Analysis. We performed single-
sample GSEA analysis on expression profiles to evaluate the
phenotypes of classic human infiltrating immune cells [29].
The relationship between deduced immune cell fractions and
DJ-1 expression was analyzed by Spearman correlation.

2.6. Drug Sensitivity Analysis. We used the R package pRRo-
phetic to assess the sensitivity of chemotherapeutic sensitivity
for HR+ breast cancer patients by estimation of IC50 (half
maximal inhibitory concentration). The pRRophetic algo-
rithm is based on the pharmacogenomics database of Cancer
Genome Project cell line data and the Cancer Cell Line Ency-
clopedia [30]. Generally, patients with high IC50 values are
less sensitive to the tested drug. We compared deduced IC50

values from chemotherapeutic agents approved by the FDA
between high and low DJ-1 groups. Also, we compared the
expression of target therapy-related biomarkers between
groups such as TMB, PD1, and CTLA4.

2.7. In Vivo Validation of DJ-1 Expression. All the cell lines
(MCF-10A, MCF-7, T-47D, SK-BR-3, BT-474, MDA-MB-231,
andMDA-MB-468) were obtained from ATCC. BT-474 and T-
47D were maintained in RPMI 1640 medium with 10% fetal
bovine serum (FBS) and 1% penicillin/streptomycin.MDA-MB-
468 was maintained in a Leibovitz’s-15 (L-15) supplemented
with with 10% FBS and 1% penicillin/streptomycin. The human
MCF-10A mammary nontumorigenic epithelial cells were cul-
tured in Dulbecco’s modified eagle medium (DMEM)/F12
medium (3 : 1) supplemented with 10% horse serum, 0.5μg/ml
hydrocortisone, 20ng/ml recombinant epidermal growth factor,
10μg/ml insulin and antibiotics. MCF-7, SK-BR-3, and MDA-
MB-231were cultured in aDMEMmediumwith FBS, penicillin,
and streptomycin. All cells were maintained in a humidified
atmosphere containing 5% CO2 and 95% air at 37°C.

The total RNA of whole-cell lysates was isolated using
Trizol reagent (Invitrogen, California, USA) according to the
manufacturer’s protocol and used in converting to cDNA
with a First-Strand Synthesis System for RT-PCR (Nuo Wei-
zan, China) according to the manufacturer’s instructions.
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Quantitative real-time PCR was performed with a Roche
LightCycler 96 Real-Time PCR System (Roche, Basel, Swit-
zerland). The primers are listed in Supplementary 1.

All protein samples were isolated from cell lines, and cell
samples were lysed in RIPA lysis buffer (Beyotime, China) sup-
plemented with the protease inhibitor (Roche). Protein concen-
tration wasmeasured using a bicinchoninic acid protein assay kit
(Thermo,USA). Proteins (30μg)were subjected to sodiumdode-
cyl sulfate–polyacrylamide gel electrophoresis separation on 10%
gels (Bio-Rad Laboratories, Hercules, CA), and proteins were
transferred to a nitrocellulose membrane. The membrane was
blocked with 5% milk powder for 1hr before incubation with
primary antibodies (DJ-1: Cell Signaling Technology, USA; Tubu-
lin: Proteintech, USA) and horseradish peroxidase-conjugated
secondary antibody. All western blot images were captured and
quantified by enhanced chemiluminescent reagent (Thermo, USA).

The immunohistochemistry images of DJ-1 protein were
downloaded from the human protein atlas through the Hpar
packages in R.

2.8. Statistical Analysis. All statistical tests were performed
using the Wilcoxon rank-sum test for continuous data and
the Spearman’s rank correlation for the estimation of corre-
lation. The Fisher’s exact test was used for categorical data

comparison. All statistical analysis was performed in R soft-
ware (v4.1.3). Two-sided P values< 0.05 were considered
statistically significant.

3. Results

3.1. DJ-1 Expression in Breast Cancer. In order to explore the
relationship betweenDJ-1 expression and breast cancer patients,
we analyzed the clinical characteristics of HR+ breast cancer
patients (Table 1). The expression of DJ-1 was significantly
higher in tumor samples compared to that in adjacent normal
counterparts, both in total breast cancer and HR+ subtypes
patients, respectively (Figures 1(a) and 1(b), P= 1.29×10−7 in
total patients and P= 7.64×10−7 in HR+ subtype). We then
conducted a meta-analysis of DJ-1 expression in the Oncomine
database with criteria as P<0:05, log2 fold change ≥1 and top
10% gene rank. We found that DJ-1 was upregulated in all 11
analyses (Figure 1(c)). Interestingly, our analysis revealed that
DJ-1 was increased in the HR+ subtype in contrast to the HR-
negative (HR−) subtype in both the TCGA database and
METABRIC databases (Figures 1(d) and 1(e)). The expression
of DJ-1 was different in various subtypes of breast cancer
(Supplementary 2). The immunohistochemistry results
between breast tumor and normal tissues by two different DJ-1

TABLE 1: Characteristics of HR+ patients between DJ-1 high and low groups in TCGA dataset.

Characteristics Low expression group High expression group N χ2 P

Age (years)
≤60 158 154 312 0.059 0.81
>60 138 140 278

AJCC stage
1 47 67 114 4.11 4.26× 10−2

2–4 243 226 469
T stage

T1 80 87 167 0.48 0.49
T2–4 216 207 423

N stage
N0 131 138 269 1.57 0.46
N1–3 162 151 313
Not availablea 3 6 9

Pathological subtype
Infiltrating ductal carcinoma 188 201 389 4.89 8.67× 10−2

Infiltrating lobular carcinoma 84 62 146
Other 24 32 56

Menopause statusb

Pre 77 59 136 3.63 0.30
Peri 8 10 18
Post 192 201 393
Not availablea 19 25 44

Race
Asian 9 17 26 18.84 2.94× 10−4

Black or African-American 22 52 74
White 238 196 434
Not availablea 27 30 57

aData not available. bPre, <6 months since LMP AND no prior bilateral ovariectomy AND not on estrogen replacement, Peri: 6–12 months since last menstrual
period; Post, prior bilateral ovariectomy OR >12 months since LMP with no prior hysterectomy. Bold values signify that P<0:05.
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FIGURE 1: DJ-1 expression in breast cancer: (a) differential expression of DJ-1 between breast cancer and normal samples in TCGA breast
cancer dataset; (b) differential expression of DJ-1 between HR+ subtypes tumor and normal samples in TCGA dataset; (c) meta-analysis of
DJ-1 expression in Oncomine database with criteria as P<0:05, log2 fold change ≥1 and top 10% gene rank; (d) and (e) expression of DJ-1
between HR+ and HR− breast cancer in TCGA breast cancer and METABRIC dataset.
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FIGURE 2: DJ-1 expression in breast cancer tissues and cells: (a) the immunohistochemistry (IHC) images between breast tumor and normal
tissues by two different DJ-1 antibodies from the human protein atlas were downloaded by the Hpar packages in R; (b) differential expression
of DJ-1 in HR+, HER2+, or TNBC subtypes patients tumor samples compared to normal counterparts, respectively; (c) and (d) differential
expression of DJ-1 in nontumorigenic breast epithelial cell line (MCF-10A), HR+/HER2− breast cancer cells (MCF-7 and T-47D), HER2+
breast cancer cells (SK-BR-3 and BT-474) or TNBC cells (MDA-MB-231 and MDA-MB-468) by qPCR and western blot.
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antibodies from The human protein atlas were also in
accordance with its differential expression in tumor.
Malignant cells generally displayed moderate to strong
cytoplasmic and nuclear immunoreactivity (Figure 2(a)). The
expression of DJ-1 was significantly higher in HR+ subtypes
patients tumor samples compared to normal counterparts but
not in HER2+ or triple-negative breast cancer (TNBC, HR−,
and HER2−) subtypes (Figure 2(b)). For validation, we
performed in vitro assay. We verified the significantly high
expression of DJ-1 in HR+ breast cancer cells (MCF-7 and
T-47D) compared to nontumorigenic breast epithelial cell
line (MCF-10A), HER2+ breast cancer cells (SK-BR-3 and
BT-474) or TNBC cells (MDA-MB-231 and MDA-MB-468)

in mRNA and protein level via qRT-PCR and western blot
assay (Figures 2(c) and 2(d)). All these results demonstrated
that DJ-1 was up-regulated in HR+ breast cancer.

Both in TCGA and METABRIC databases, PARK6,
PARK9, PARK13, and PARK15 are positively correlated
with DJ-1, while PARK8 is negatively correlated with DJ-1.
Further research is needed to explore the role of other PARK
family counterparts in HR+ breast cancer patients (Supple-
mentary 3).

3.2. Association between DJ-1 and Clinic Features in HR+
Breast Cancer Patients. Next, we explored the association
between DJ-1 expression and clinic survival in HR+ breast
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FIGURE 3: Association between DJ-1 and clinical characteristics in HR+ breast cancer patients. (a) Kaplan–Meier overall survival curve of low
and high DJ-1 expression group in 566 patients from TCGA HR+ breast cancer cohort; (b) Kaplan–Meier progression-free interval curve of
low and high DJ-1 expression group in 566 patients from TCGA HR+ breast cancer cohort; (c) Kaplan–Meier overall survival curve of low
and high DJ-1 expression group in 1,458 patients from METABRIC HR+ breast cancer cohort; (d) Kaplan–Meier relapse-free survival curve
of low and high DJ-1 expression group in 1,458 patients from METABRIC HR+ breast cancer cohort.
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FIGURE 4: Continued.
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cancer patients. Patients with lowDJ-1 expression were found
to have better OS and PFI/RFS in both the TCGA and
METABRIC databases (Figure 3). This analysis showed that
DJ-1 expression could predict the prognosis in patients with
HR+ breast cancer.

3.3. Association Analysis between DJ-1 Expression and the
Levels of Infiltrating Immune Cells and Chemokines/
Chemokine Receptors. Besides, we exhibited the landscape
of DJ-1 correlating with various infiltrating immune cells in
HR+ breast cancers. DJ-1 expression was negatively associ-
ated with Tcm, T.helper cells, Tgd, Macrophages, Eosino-
phils, Tem, Neutrophils, Th1.cells, Th2.cells, TFH, DC,
MCs (Figure 4(a)–4(c)). To further explore the role of DJ-1
in migration and immune cell function, we analyzed the cor-
relation between its expression and chemokines and their
receptors. The XC chemokine (XCR1), the CC chemokines
(CCR1, CCR4, CCR8, CCR9, CCR6, CCR2, CCR5, CCL24,
and CCL27), the CXC chemokines (CXCL5, IL8, CXCL12,
CXCL17, CXCR6, CXCL3, CXCL1, CXCR2, CXCR5, CXCL6,
CXCR4, and CXCL9) and the CX3C chemokine (CX3CR1)
were downregulated when DJ-1 expression level was
increased. However, three chemokines, including CCL26,
CCL25, and CCL11, were positively correlated with DJ-1
expression (Figure 4(d)).

3.4. Association of DJ-1 with Mutational Landscape in HR+
Breast Cancer.We evaluated the prevalence of somatic muta-
tion in high and low DJ-1 expression subpopulations.
Figure 5(a) shows 12 frequently mutated genes; APIK3CA,
TP53, and GATA3 ranked the first three mutational genes.

Figure 5(b) compared the significantly different somatic
mutations inDJ-1 high and low expression subsets; mutations
in TFAP2A, DLGAP2, and CCDC144A were most highly
enriched in high DJ-1 expression subpopulation. A total of six
mutations in TFAP2A were detected, including five missense
and one truncating (Figure 5(c)). The top 20 mutated genes in
HR+ breast cancer, HER2+ breast cancer, and TNBC patients
from the TCGA database were shown in Supplementary 4.

3.5. The Sensitivity in Immunotherapy and Chemotherapy.
The clinical effects of breast cancer can be influenced by
both drug chemosensitivity and drug resistance. Then, we
analyzed clinical value in different DJ-1 expressions via a
ridge regression model. Paclitaxel and docetaxel showed
more sensitivities in the low DJ-1 group (P= 6.21× 10−6

for paclitaxel and P= 3.70× 10−5 for docetaxel) (Figure 6(a)).
In contrast, doxorubicin was associated with higher sensitiv-
ity in the high DJ-1 group (P= 2.30× 10−5) (Figure 6(a)). We
further observed high TMB levels in DJ-1 high expression
group (P= 7.64× 10−16) (Figure 6(b)). CTLA4 and PD-L1,
both known as two immunosuppressants commonly used in
breast cancer, showed higher expression levels in DJ-1 high
expression group (P¼ 0:03 for CTLA4 and P= 1.11× 10−9

for PD-L1) (Figure 6(c)).

3.6. Functional Analyses. The functional annotation of DJ-1 in
HR+ breast cancer was further explored. By the GSVA analysis,
six pathways scores were found significant between high and low
DJ-1 expression groups in the TCGAdatabase (Figure 7(a)), while
nine pathways in the METABRIC database (Figure 7(b)). Taken
together, two pathways, complement and G2M checkpoint were
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significantly activated in theDJ-1 low-expressed subgroup in both
TCGA and METABRIC database (Supplementary 5).

4. Discussion

DJ-1, a multifaceted protein that was first identified in Par-
kinson’s disease, has been found with pleiotropic functions
in multiple diseases ranging from neurodegeneration to
ischemia-reperfusion injury [31, 32]. However, its role in
breast cancer, especially in different subtypes, remains
largely unknown. Thus, in this study, we profiled the expres-
sion of DJ-1 in different breast cancer subtypes and found
that DJ-1 expression was evaluated in HR+ subtype. We
mainly observed that high DJ-1 expression group in HR+
subtype was associated with poor prognosis, low expression
of chemokine receptor, high TMB, and more sensitivity to

paclitaxel and docetaxel, highlighting the therapeutic poten-
tial and biomarker value of DJ-1 in HR+ breast cancer
subtype.

Recently, DJ-1 exerted immune and inflammatory regu-
latory functions by regulating the activation of several
immune cells, such as macrophages, MCs, and T cells, which
has been supported by accumulating studies [26, 27]. How-
ever, there were few reports on the role of DJ-1 in tumor
immune microenvironment. In our research, DJ-1 expres-
sion was negatively associated with deduced fractions of
Tcm cells, TFH, DC, and MCs. Previous studies have found
that Tcm cells produce higher levels of cytokines and have
stronger cytotoxicity in vitro. In addition, Tcm cells had a
longer survival time in vivo, showing a better ability to inhibit
tumors [33]. Therefore, we suppose that the high expression
of DJ-1 might inhibit the invasion of Tcm cells in breast
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cancer and weaken its antitumor effect, thus promoting the
progress of breast cancer.

In the tumor microenvironment, chemokines and che-
mokine receptors interacted to regulate the migration of a
variety of immune cells into the tumor, thereby regulating
the immune response in tumors [34]. T helper 1 (TH1) cells
and natural killer (NK) cells had potent antitumor effects in
the tumor microenvironment. CXCL9 and CXCL10 can

recruited TH1 cells and NK cells into the tumors and played
a role in tumor inhibition [35, 36]. In our study, the low
expression of most of the chemokines, including CCL9 and
CCL10 in DJ-1 over-expressing HR+ breast cancer, might
reduce tumor-infiltrating immune cells and suppressed anti-
tumor immune responses.

The role of DLGAP2 and CCDC144A in malignant
tumors is still unclear, but previous studies have suggested
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FIGURE 7: Pathway enrichment analysis by GSVA analysis in TCGA database (a) and METABRIC database (b).
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that TFAP2A can promote or inhibit cancer progression in
tumors. TFAP2A, as a member of the AP-2 transcription
factor family proteins, orchestrated a variety of cell processes,
including cell growth, tissue differentiation, and apoptosis
[37]. Many studies have shown that TFAP2A overexpression
promotes the proliferation, migration, and invasion of breast
cancer cells [38, 39]. However, the specific mechanism of
TFAP2A in breast cancer remains unclear. The high muta-
tion rate of TFAP2A may lead to the increased expression of
DJ-1 to promote the progression of breast cancer. Further
research is needed to determine the specific mechanism.

The complement system is an important component of
the inflammatory response in innate immunity and adaptive
immunity. Complement proteins have an important role in
the cognate interaction between antigen-presenting cells and
T cells in immune response. For tumors, complement acti-
vation might be helpful in regulating T-cell response to
tumors [40, 41]. The disruption of cell cycle checkpoints
might allow cancer progression [42]. Sun et al. [43] found
that activation of the G2/M cell cycle checkpoint might be
resistance to CTL killing. Our study described a negative
correlation between complement and G2M checkpoint and
the DJ-1 expression; DJ-1 may be a key player in the inflam-
matory and immune responses.

Our results revealed that DJ-1 might play different roles
in different breast cancer subtypes, suggesting that DJ-1 may
be a specific marker for HR+ breast cancer, which providing
a theoretical basis for further study of the heterogeneity
between different subtypes. Moreover, DJ-1 may become a
predictive factor for precision treatment and immunother-
apy of HR+ breast cancer. However, the specific functional
role of DJ-1 in the immunotherapy of HR+ breast cancer
requires further in-depth experimental verification.

5. Conclusion

Overall, DJ-1 was upregulated in HR+ breast cancer samples,
and high DJ-1 expression was associated with clinical prog-
nosis, chemoresistance, and relevant immune features. Our
findings indicated that DJ-1 may act as a convincing prog-
nostic marker and a predictor of therapeutic responses.
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