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Background. Rheumatoid arthritis (RA) is a common chronic inflammatory autoimmune disease with a multifactorial etiology.
Peripheral blood is the main channel of the immune system, and peripheral blood mononuclear cells (PBMCs) are the immune cells
that initiate the autoimmune inflammatory process. However, there are few reports on themechanisms of peripheral blood immunity in
RA. Methods. ScRNA-seq was performed on four RA samples and integrated with single-cell transcriptome data from four healthy
control samples downloaded from publicly available databases for analysis. Results. A total of 52,073 cells were used for descending
clustering analysis to map RA peripheral blood immune cells at single-cell resolution. Redimensional clustering analysis of four major
immune cells (T cells, monocytes, B cells, and natural killer cells) revealed that double-negative T (DNT) cells were significantly altered in
abundance and function. And a number of genes (including SOCS3, cAMP-responsive element modulator (CREM), B2M, MTFP1,
RSRP1, and YWHAB)were specifically downregulated inDNT cells. RAT cells, especially DNT cells, exhibit significantmetabolic defects
and dysfunction, mainly in the form of inhibition of oxidative phosphorylation, ATP synthesis, and major histocompatibility complex
(MHC)-I-mediated antigen presentation. In addition, cellular communication networks were established, and it was evident that RA is
significantly attenuated in the number and intensity of cellular communication. Monocytes and T cells play key roles in the process of the
immune inflammatory response through CCL and MHC-related pathways. Conclusions. This study describes the landscape of the
peripheral blood immune system and cell communication in RA, characterizes the abundance of PBMCs, gene expression profiles,
and changes in signaling pathways in RApatients, and identifies several key cell subpopulations (DNT and classicmonocytes) and specific
genes (SOCS3, CREM, B2M, MTFP1, RSRP1, and YWHAB). Meanwhile, we propose that classic monocytes in peripheral blood may
migrate to sites of inflammation in synovial tissue under the chemotaxis of the chemokines CCL3 and CCL3L1, differentiate into
macrophages, secrete proinflammatory cytokines, and thus participate in the inflammatory response. These findings provide new insights
for the future elucidation of the peripheral blood immune mechanisms of RA and the search for new clinical therapeutic targets.

1. Introduction

Rheumatoid arthritis (RA) is a common antigen-mediated,
multifactorial, systemic, inflammatory, chronic progressive
autoimmune disease. It is characterized by chronic erosive

arthritis, which manifests as a chronic inflammatory disease
of the joint tissues [1–4]. RA causes the destruction of carti-
lage and bone tissue in the joints, ultimately leading to joint
deformity and loss of mobility [5, 6]. The incidence is at least
twice as high in women as in men, and the peak age of onset
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is between 50 and 60 years [2]. Studies have shown that RA is
mainly caused by a series of immunopathological reactions
triggered by the stimulation of the action of environmental
factors, with infections, immune abnormalities, and genetic
factors being the main factors closely associated with the
pathogenesis of RA. In addition, abnormal immune system
function is considered key to the development of RA [7].
Numerous drugs have been used to treat RA, but these drugs
are both toxic and ineffective [8]. Therefore, there is an
urgent need to elucidate the immune mechanisms that drive
RA.

The persistence of autoantibodies, such as rheumatoid
factor, anticitrullinated protein antibody (ACPA), and antic-
arbamylated protein antibody, is an important feature of RA,
and these antibodies appear in the blood before the onset of
disease symptoms [9–11]. Orange et al. [12] found that pre-
inflammatory mesenchymal cells precede flares in RA
patients by 1–2 weeks. They appear in the blood and subse-
quently invade the joint to induce synovial inflammation.
Argyriou et al. [13] performed an in-depth study of CD4+
T cells in synovial fluid and peripheral blood of European
patients with RA by single-cell sequencing combined with
single-cell immunome library sequencing and identified two
peripheral helper T-cell subsets and one cytotoxic CD4+ T-
cell subset associated with RA. Wu et al. [14] constructed
cellular profiles of peripheral blood and synovial tissues for
different subtypes of RA patients and systematically analyzed
the differences in immune status between ACPA− and ACPA
+ RA patients. In conclusion, these studies suggest that the
immune microenvironment of the peripheral blood is signifi-
cantly altered before the onset of clinical symptoms in RA and
that key cell populations and cytokines in the peripheral blood
may be important in driving the development of RA. These
studies have provided a preliminary understanding of the
peripheral immune landscape of RA, but the study of individual
cell populations is not fully developed; for example, themechan-
isms of cell–cell interactions and the relationship between cells
and the pathogenesis of RA are still not elucidated.

Here, we used single-cell RNA sequencing technology to
analyze peripheral blood mononuclear cells (PBMCs) from
RA patients and healthy individuals to characterize the com-
position, proportion, gene expression profile, and changes in
signaling pathways of peripheral immune cells in RA patients.
In contrast to previous studies, we further investigated the
cellular communication of RA PBMCs to investigate the
ligand-receptor pairs that play a key role in the pathogenesis.
Thus, this studymay help further elucidate themechanisms of
RA development and provide a theoretical basis for disease
staging, the discovery of new therapeutic targets, and the
identification of early diagnostic markers for this disease.

2. Materials and Methods

2.1. Sample Acquisition. According to the 2010 ACR/EULAR
RA classification criteria and clinical diagnostic findings, a
total of four RA patients were recruited from Xinyang,
Henan Province. Detailed patient information is available
in Supplementary 1. All RA patients were not treated with

any DMARDs or immunosuppressive drugs. Meanwhile, we
obtained scRNA-seq data of PBMCs from four healthy
individuals from the GEO database (https://www.ncbi.nlm.
nih.gov/geo/, accession number: GSE175499) [15]. The
healthy control samples were also obtained from Xinyang,
Henan Province. RA patients and healthy control samples
are identical in terms of sample isolation and preservation
methods, sequencing platforms, and reagents. The study
was approved by the Institutional Review Board of Xinyang
Normal University (XFEC-2021-028), and written informed
consent was obtained from each patient.

2.2. PBMC Isolation. Peripheral blood samples from both
patients and healthy individuals were isolated using the
Ficoll-Hypaque density gradient centrifugation method for
PBMCs isolation, and sample preparation was performed at
room temperature. Cell counts were performed on each sample
to determine the sample quality, the viability of all samples was
greater than 90%, and cell activity and concentration of the
samples met the requirements of the subsequent experiments.

2.3. 10× Genomics Single-Cell RNA Sequencing. Single-cell
3′-gene expression libraries were generated in the patient and
healthy individual samples strictly following the protocol of the
Chromium Single Cell 3′v3 Library Kit (10x Genomics). All
generated libraries were high-throughput sequenced using the
Illumina Nova 6000 PE150 platform. In our study, library
preparation and sequencing were performed by Shanghai OE
Biotech. Co., Ltd.

2.4. Data Preprocessing. Raw data (raw reads) of control and
RA PBMCs samples generated from high-throughput sequenc-
ing were in fastq format and were demultiplexed and mapped
to the human genome (build GRCh38) using CellRanger
(10x Genomics, version 6.1.1). This software quantifies high-
throughput single-cell RNA data by identifying barcode mar-
kers that distinguish cells in the sequence and uniquemolecular
identifier (UMI)markers for different mRNAmolecules within
each cell and provides cell quality control statistics, such as
number, median gene value, and sequencing saturation.

Based on the initial quality control evaluation by Cell-
ranger, the data were further quality controlled using the
Seurat software package [16]. Theoretically, most of the cells
expressing the number of genes, number of UMI, and per-
centage of mitochondrial transcript expression will be con-
centrated in a certain region, so we filtered low-quality cells
according to the distribution of the three indicators: nUMI,
nGene, and percentage of mitochondria. The specific quality
control scheme was as follows: cells with the number of genes
greater than 200, the number of UMI greater than 1,000, the
log10GenesPerUMI greater than 0.7, and the percentage of
mitochondrial UMI less than 30% were retained as high-
quality cells. In addition, we used DoubletFinder [17] soft-
ware to check the data for potential doublets in all cells and
remove them.

We then normalized the single-cell count matrix data to
account for the effect of library sequencing depth. We nor-
malize and scale the single-cell gene expression data using
functions in the Seurat package. It is normalized using the
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“NormalizeData” function with the normalization method
set to “LogNormalize.” Specifically, it is normalized by divid-
ing the number of features per gene per cell by the total
number of features per cell, multiplying by scale.factor
(default 10,000), and then using log1p for logarithmic con-
version. Then, we removed sources of nonsignificant varia-
tion by regressing the cell–cell variation in gene expression
driven by batch, the number of UMIs detected, and mito-
chondrial gene expression, which was achieved by the “Sca-
leData” function. Finally, the corrected expression matrix
was used as input for further analysis.

2.5. Dimensionality Reduction and Single-Cell Clustering. To
eliminate batch effects between samples, the canonical corre-
lation analysis method of the Seurat package was used for data
integration [16]. We used the “FindIntegrationAnchors” [18]
and the “IntegrateData” functions in the R toolkit, Seurat, to
assess batch effects in the data and perform corrections.
Highly variable genes (HVGs) were screened using the Find-
VariableGenes function in the Seurat package, and the expres-
sion profiles of HVGs were subjected to principal component
analysis dimensionality reduction analysis. The results were
visualized in two dimensions using UniformManifold Approx-
imation and Projection (UMAP).

2.6. Cluster Marker Identification and Cell-Type Annotation.
Marker gene identification was performed using the FindAll-
Markers function of the Seurat package [16]. The genes that
were differentially upregulated in each cell classification rel-
ative to other cell populations were the potential marker
genes for each cell classification and were visualized using
the VlnPlot and FeaturePlot functions. Cell types annotation
was performed using the SingleR package [19], based on the
public single-cell reference expression quantification public
dataset in combination with the CellMarker database (http://
bio-bigdata.hrbmu.edu.cn/CellMarker/) and published
related literature. The correlation between the expression
profile of the cells to be identified and the reference dataset
was calculated. The cell type with the highest correlation in
the reference dataset was assigned to the cells to be identified,
eliminating to some extent the interference of human sub-
jective factors. The identification principle is to calculate the
Spearman correlation between the expression profile of each
cell in the sample and the expression profile of each cell
annotated in the reference dataset and to select the cell
type with the highest correlation with the expression of the
sample cell in the dataset as the final cell type to be identified.

2.7. Identification of Differentially Expressed Genes (DEGs)
and Functional Enrichment Analysis. DEGs were screened
using the FindMarkers function in the Seurat package [16],
and differentially significant genes were screened based on a
p-value less than 0.05 and differential multiplicity greater
than 1.5-fold. Gene ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analyses of dif-
ferentially significant genes were performed using a hyper-
geometric distribution test.

2.8. Proposed Time-Series Analysis. Cell differentiation tra-
jectories were inferred using the Monocle2 (v2.9.0) package

[15]. First, the “importCDS” function of the Monocle2 pack-
age was used to convert from Seurat objects to CellDataSet
objects, and the genes used to order the cells were filtered by
the “differentialGeneTest” function (ordering gene, q.
val< 0.01). Then, the “reduceDimension” function was used
to reduce the clustering, and finally, the “orderCells” function
was used to infer the differentiation trajectory.

2.9. Functional Enrichment Analysis. In this study, we used
gene set variation analysis (GSVA). The background gene set
files were first downloaded and assembled from the KEGG
database (https://www.kegg.jp/) using the GSEABase package
(v1.44.0). Then, individual cells were scored for pathway
activity values using the GSVA package (v1.30.0) [20].
Finally, the LIMMA package (v3.38.3) was used to calculate
the differences between different subgroups of signaling
pathway activity. Also, GO and KEGG enrichment between
the two groups was also performed by gene set enrichment
analysis (GSEA) [21] using the C5 GO gene set and the C2
KEGG gene set (v7.2) from theMSigDBdata (http://www.gsea-
msigdb.org/gsea/msigdb). In addition, we also performed GO
and KEGG analyses were performed by Metascape (https://me
tascape.org/gp/index.html) [22]. Partial results were visualized
by using Hiplot (https://hiplot.com.cn), which is a comprehensive
web platform for scientific data visualization.

2.10. Construction of the Protein–Protein Interaction (PPI)
Network. The PPI network model was constructed using
the STRING platform (https://string-db.org/) [23]. The
organism was set to “Homo sapiens,” and the minimum
protein interaction threshold was set to “low confidence
(0.150)”. For the other parameters, the default settings
were used to obtain the PPI network. The topological
properties of the PPI network were analyzed using the
network analysis function of Cytoscape software [24], and
the node degree distribution and betweenness centrality of
the network were calculated.

2.11. Cell Communication Analysis. The R package CellChat
(v 1.1.3) [25] was used to analyze intercellular ligand-
receptor interactions. First, the normalized expression
matrix was imported, and then the CellChat object was cre-
ated using the “create CellChat” function. The default
parameters for the “identify Over Expressed Genes,” “iden-
tify Over Expressed Interactions,” and “project Data” func-
tions were used for preprocessing operations. Potential
ligand-receptor interactions were computed using the func-
tions “compute CommunProb,” “filter Communication”
(min.cells = 10), and “compute CommunProb Pathway.”
Finally, the intercellular communication networks were
aggregated using the “aggregateNet” function.

2.12. Statistical Analysis. Wilcoxon rank-sum test was used
to detect DEGs in the scRNA-seq data, with p-values
adjusted for false discovery rate. For the other data, statistical
analysis was performed using Student’s t-test in GraphPad
Prism. Data are expressed as the meanÆ SD, with statistical
significance is indicated by an asterisk: ∗p<0:05, ∗∗p<0:01,
and ∗∗∗p<0:001.
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3. Results

3.1. Single-Cell Profiling of PBMCs in RA. We performed an
integrated analysis of single-cell transcriptome data from
healthy individuals (Ctrl, n=4) and RA patients (RA, n=4)
to characterize the single-cell profiles of PBMCs (Figure 1(a)).
We briefly summarized and evaluated the data, and after
removing low-quality cells using quality control indicators,
such as mitochondrial gene expression, median gene number,
and valid UMIs, a total of 52,073 high-quality single-cell gene
expression data (including 26,294 Ctrl PBMCs and 25,779 RA
PBMCs) were screen. On average, each cell contains transcript
reads of 1,601 genes, with an average UMI number of 5,068 and
an average number of reads of 66,649, and these data are used
for subsequent analysis (Supplementary 9). We identified seven
clusters using UMAP unsupervised clustering based on each
cellular gene expression profile, combining the SingleR package,
the CellMarker dataset, and known typical cell marker genes
(CD3D, CD3G, NKG7, FCGR3A, CD79A, CD79B, CD14, and
CD300E, etc.) (Supplementary 2). These cells were annotated as
T cells, monocytes, natural killer (NK) cells, B cells, erythro-
cytes, neutrophils, andmast cells (Figures 1(b) and 1(c)). Mean-
while, after merging the data, cells from RA and Ctrl were
evenly distributed in each cell group (Supplementary 10). The
typical signature genes were specifically highly expressed in
each of the major cell types, all of which have distinct gene
expression patterns (Supplementary 10).

In addition, we observed a higher proportion of T cells, NK
cells, monocytes, and B cells among all cells based on the statis-
tical analysis of cell abundance (Figure 1(d), Supplementary 3).
Compared with Ctrl samples, the proportion of T cells was
increased in RA samples, and the proportions of monocytes
and NK cells were decreased. However, no significant difference
was observed in the proportions of major cell types in the
PBMCs from Ctrl and RA samples (Figure 1(e)).

3.2. Metabolic Defects and Dysfunction of T Cells Occur in
RA. First, we examined the single-cell transcriptome charac-
teristics of the highest proportion of T cells. According to
fold change >1.5 and p-value< 0.05, we identified 325 DEGs
(RA vs. Ctrl, 210 upregulated genes and 115 downregulated
genes) (Supplementary 4, Supplementary 11). GSVA revealed
differences in the activity score of each cell signaling path-
way. We found that pathways related to amino acid synthesis
and metabolism (e.g., histidine and tryptophan metabolism,
valine, leucine, and isoleucine biosynthesis, and glycine, ser-
ine, and threonine metabolism) were activated in T cells in
RA, whereas oxidative phosphorylation, thermogenesis and
some other pathways related to energy metabolism were
inhibited (Supplementary 11). T cells were divided into six
specific stable cell subclusters to further evaluate the changes
in T-cell characteristics. Based on the expression of marker
genes (CD3D, CD4, CD8D, CD8B, TRDC, FCGR3A, NKG7,
GZMA, GNLY, CCR7, SELL, LTB, GPR183) in each subclus-
ter, we defined these subpopulations as NKT cells, CD8+
cytotoxic T cells, CD4 CD8 double-negative T cells (DNT),
CD4+ memory T cells, CD8+ naïve T cells and CD4+ naïve
T cells (Figures 2(a) and 2(b)). We then compared the dif-
ferences in the proportions of T-cell subtypes between Ctrl

and RA samples. Notably, the proportion of DNT was sig-
nificantly higher in the RA samples, and the proportions of
the other cell subtypes were reduced in RA but not signifi-
cantly different (Figure 2(c), Supplementary 3). To further
elucidate the molecular differences between the RA and Ctrl
samples, we performed a differential gene enrichment analy-
sis and a functional enrichment analysis. A total of 674 upre-
gulated genes and 610 downregulated genes (fold change>1.5
and adjusted p-value< 0.01) were found in RA T cells
compared to Ctrl T cells (Figure 2(d) and Supplementary 5).
Interestingly, the expression of metallothionein-related genes
was significantly reduced among all downregulated genes in T
cells. This was particularly true in DNT cells, where MT2A,
MT1X, MT1E, and MT1G were significantly downregulated
(Figure 2(d), Supplementary 12). This suggests an abnormal
mitochondrial function of T cells in RA. Similarly, GSEA
revealed that oxidative phosphorylation, ATP synthesis-
coupled electron transport, antigen processing, and presenta-
tion of exogenous peptide antigen by major histocompatibility
complex (MHC) class I were inhibited in RA T cells (Figures 2
(e) and 2(f)). These results illustrate the metabolic defects and
dysfunction of T cells in the disease state. In addition, we found
that DNTswere significantly altered in both number and func-
tion during this process, suggesting that we can explain the
mechanism of RA by alterations in DNT metabolism and
explore new metabolic immune checkpoints.

3.3. Single-Cell Transcriptome Profiling of Monocytes. Mono-
cytes are among the most important immune cells. They not
only present antigens and activate self-reactive T cells but also
migrate into synovial tissues to differentiate into macrophages,
produce proinflammatory factors, and further transform into
osteoclasts involved in joint destruction in RA patients [26].
We examined the DEGs between the RA and Ctrl samples and
screened a total of 307 upregulated genes and 337 downregu-
lated genes (fold change> 1.5 and p-value< 0.05) (Supplemen-
tary 6, Supplementary 13). The upregulated DEGs were mainly
involved in inflammatory responses, cytokine-mediated sig-
naling pathways, apoptotic processes, and the regulation of
neutrophil chemotaxis. The downregulated DEGsweremainly
enriched in type I interferon signaling pathways, interferon-
gamma-mediated signaling pathways, immune system pro-
cesses, and neutrophil degranulation (Supplementary 13). To
gain insight into the molecular differences between RA and
Ctrl samples, we further classified monocytes into classic
monocytes (CD14+, CD16−) and nonclassic monocytes
(CD14+, CD16+) based on the expression of CD14 and
CD16 in the cells (Figures 3(a) and 3(b), Supplementary 13).
Classic monocytes are mainly associated with processes, such
as inflammatory response, response to cytokines, positive reg-
ulation of cytokine production, and positive regulation of cell
death. Nonclassic monocytes are mainly involved in processes
such as cytokines response, cellular response to cytokine stim-
ulation, leukocyte activation, regulation of cell activation, and
assembly of protein-containing complexes (Supplementary 13).
Compared with the Ctrl samples, the proportion of classic
monocytes was increased in the RA samples, and the propor-
tion of nonclassic monocytes was correspondingly decreased.

4 Journal of Immunology Research



Single-cell sequencing Data analysisSingle-cell suspension preparationSample collection

Genomics
10

Whole blood

PBMCs

Normal control n = 4

RA patients  n = 4
Source Target Source

ðaÞ

UMAP_1

U
M

A
P_

2

T cell
Monocyte
NK
B cell

Erythroid cell
Neutrophil
Mast cell

ðbÞ

Ex
pr

es
sio

n 
le

ve
l

High

Low

CD3D CD3G NKG7 FCGR3A

CD79A CD79B CD14 CD300E

UMAP_1

U
M

A
P_

2

ðcÞ
Ctrl

T cell
60.07%

17.42%

15.57%

0.60%

Monocyte

NK

B cell 5.85%

Erythroid cell
Neutrophil

0.41%
Mast cell 0.08%

RA

74.94%

8.44%

9.48%

T cell

Monocyte

NK
B cell 6.98%

Erythroid cell 0.10% Mast cell 0.06%

ðdÞ

1.0

Pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

Ctrl

T cell Monocyte NK B cell

RA
ðeÞ

FIGURE 1: A single-cell transcriptome atlas of PBMCs in RA. (a) Ctrl and RA PBMC sample collection and processing procedures used for
scRNA-seq analysis. (b) UMAP clustering distribution of 52,073 single cells. Each dot represents one cell, and each color represents the cell
type. (c) Expression of marker genes in the four major immune cell types (T cells, NK cells, B cells, and monocytes). (d) Statistics of the
proportion of each cell in the Ctrl and RA samples. (e) The box plot shows the change in the proportion of each cell type for the Ctrl and RA
samples. Differences in the distribution of cell types between the two groups are marked with ∗pvalues, and p values were calculated using a t-
test (from left to right, p values are 0.1320, 0.3801, 0.3073, 0.4849, 0.0308, 0.2579, 0.9159). ∗p<0:05, ∗∗p<0:01, ∗∗∗p<0:001.

Journal of Immunology Research 5



U
M

A
P_

2

Ctrl
RA

UMAP_1

NKT CD4+ memory T 
CD8+ cytotoxic T CD8+ naive T 
DNT CD4+ naive T 

GroupCelltype

ðaÞ

NKT

CD8+ cytotoxic T 

DNT 

CD4+ memory T 

CD8+ naive T 

CD4+ naive T 

CD
3D CD

4

CD
8A

CD
8B

TR
D

C

FC
G

R3
A

N
KG

7

G
ZM

A

G
N

LY

CC
R7

SE
LL LT

B

G
PR

18
3

ðbÞ

Pr
op

or
tio

n

Pr
op

or
tio

n

0%

20%

40%

60%

80%

100%

Ctrl
RA

0.0

Ct
rl

RA

0.2

0.4

0.6

N
KT

CD
8+

 cy
to

to
xi

c T

D
N

T

CD
4+

 m
em

or
y 

T

CD
8+

 n
ai

ve
 T

CD
4+

 n
ai

ve
 T

∗∗

ðcÞ

KLF6

NKTCD8+ cytotoxic T CD4+ memory T DNT CD8+ naive T CD4+ naive T

SMAD7
SLC38A2 FOSTNF
NFKBIA

TRDC
MTRNR2L12

FOSB

TRGC1
RPS4Y1

PMAIP1

MTRNR2L12

TNFAIP3
RGCC

MT2A
MT1E

MT1X

PMAIP1

FOSB

IFIT2

DUSP2
MTRNR2L12

MT2A

MT1E
MT1X

JUNB

KLF6

S100A4

FOSB
NASP

MTRNR2L12

TNFAIP3KLF6
NFKBIA

MT2A
MT1X

SMAD7

JUNB

LMNA

RPS26

RPS26

NFKBIA

MTRNR2L12

TNFAIP3
YPEL5

GADD45B
TRA2B

PPP1R15A
KLF6

TXNIP

MTRNR2L12

NFKBIA

JUNB

SMAD7

MT2A

MT1XRPS4Y1
RPS26

−5.0

−2.5

0.0

2.5

5.0

Celltype

A
vg

 lo
g 2

 F
C

Adjust p-value < 0.01
Adjust p-value ≥ 0.01

ðdÞ

CD
4+

 m
em

or
y 

T 

CD
8+

 n
ai

ve
 T

 

CD
4+

 n
ai

ve
 T

 

CD
8+

 cy
to

to
xi

c T
 

D
N

T 

N
KT

−2 −1 0 1 2

Establishment of protein localization to
endoplasmic reticulum
Cotranslational protein targeting to membrane
Thymic T-cell selection
Respiratory electron transport chain
ATP synthesis coupled electron transport
Oxidative phosphorylation
Antigen processing and presentation of 
peptide antigen via MHC class 1
Antigen processing and presentation of 
exogenous peptide antigen via MHC class 1
T-cell-mediated cytotoxicity
Nadh dehydrogenase complex assembly
Response to copper ion
Aerobic electron transport chain
Foam cell differentiation
Lipid storage
Negative regulation of ossification
Negative regulation of BMP signaling pathway
Regulation of lipid storage
Negative regulation of lipid storage
Protein demethylation
Negative regulation of lipid localization
Toll-like receptor 4 signaling pathway
Dosage compensation
Perk-mediated unfolded protein response
Positive regulation of cartilage development
Response to muscle stretch
Positive regulation of cholesterol efflux
Regulation of macrophage derived
foam cell differentiation

NES

ðeÞ
FIGURE 2: Continued.

6 Journal of Immunology Research



However, these changes were not significantly different
(Supplementary 3, Supplementary 13). GSVA results showed
that Wnt signaling pathway, ubiquitin-mediated protein
hydrolysis, and phosphatidylinositol signaling system were
activated in classic monocytes in RA samples, and platelet
activation, leukocyte transendothelialmigration, and endocrine
and other factors regulating calcium reabsorption were acti-
vated in nonclassic monocytes in RA samples (Figure 3(c)).

To further explore the state of monocytes under different
conditions, trajectory analysis was performed to elucidate the
transcriptional transition between RA and Ctrl. State 1 was
mainly composed of two types of monocytes in Ctrl samples,
and State 2 was mainly composed of classic monocytes in Ctrl
samples. However, State 3 showed that classic monocytes were
mainly derived from Ctrl and RA samples (Figure 3(d)). Next,
we performed differential expression analysis on State 3 cells
and identified a total of 251 upregulated DEGs and 190 down-
regulatedDEGs (Figure 3(e)); notably,most of these genes were
also present in all monocyte DEGs (Supplementary 13). KEGG
enrichment analysis revealed that upregulated DEGs were sig-
nificantly enriched in the RA pathway (Figure 3(f)). Detailed
analysis of genes enriched in RA-related pathways revealed that
the expression of CCL3, CXCL8, CCL3L1, and CCL2was upre-
gulated in RAmonocytes, while the expression of some human
leukocyte antigen (HLA) genes was downregulated (Figure 3(g),
Supplementary 13).

3.4. Functional and Pathway Enrichment Analysis of NK Cell
and B Cell. Next, we reclustered the NK cells and further
classified them into mature NK, memory NK, and immature
NK based on the expression of KLRC2, PRF1, FCGR3A, and
KLRC1 (Supplementary 14). Mature NK cells are the most
abundant type in both RA and Ctrl samples (Supplementary
3, Supplementary 14). Although there was no significant dif-
ference in the proportion of cells, both groups showed
unique functional enrichments. Mature NK cells in RA sam-
ples were mainly enriched in the regulation of RNA splicing,
response to cytokines, and apoptosis pathways, whereas
mature NK cells in Ctrl samples were mainly associated
with lymphoid and leukocyte-mediated immunity, immune
effector processes, and antigen processing and presentation

(Supplementary 14). Compared to Ctrl samples, the proportion
of memory NK cells was decreased, and the proportion of
immature NK cells was increased in RA samples. However,
these differences were not significant (Supplementary 14).
Notably, memory NK cells in RA are more involved in pro-
cesses such as cellular response to cytokine stimulation, apo-
ptosis, and positive regulation of cytolytic processes. Immature
NK cells are more enriched in processes such as chromatin
organization, histonemodification, and chromatin remodeling.
Both memory and immature NK cells in Ctrl samples are
associated with NK cell-mediated processes such as cytotoxic-
ity, regulation of cell activation, and positive regulation of
immune responses (Supplementary 14).

Similarly, we applied unsupervised clustering to partition all
3,337 B cells identified by UMAP. Based on the expression of
CD79A, CD79B, and some other knownmarker genes, a total of
three B-cell subtypes were identified, including naïve B cells,
memory B cells, and plasma cells (Supplementary 15). Naïve B
cells andmemoryB cells were themore abundant B-cell subtypes
in both Ctrl and RA samples (Supplementary 3, Supplementary
15). B cells in Ctrl samples were mainly involved in processes
such as phagosomes, antigen processing, presentation of exog-
enous peptide antigens, and lymphocyte-mediated immunity.
In contrast, B cells from RA patients were more involved in
pathways such as apoptosis, regulation of RNA splicing, and
regulation of mRNA metabolic processes (Supplementary 15).

3.5. Reduced Intercellular Communication in PBMCs of
Patients with RA. Cellular interactions between immune cells
play a key role in the cellular activation that ultimately leads
to the development of disease symptoms in RA patients. We
then constructed a cell–cell interaction map by correlating
ligands with their corresponding receptors. This map depicts
all altered interactions in RA samples compared to normal
samples. In Ctrl samples, we identified 96 significant ligand-
receptor pairs in 14 cell subpopulations that were distributed
across 41 signaling pathways, including the MHC-I, MIF,
CLEC, MHC-II, CD99, GALECTIN, ITGB2, RESISTIN,
CD22, and CD45 pathways (Supplementary 16). Seventy-
one significant ligand-receptor pairs were identified in RA
samples and were distributed in 29 pathways, including the
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FIGURE 2: The scRNA profiles for T cells in Ctrl and RA samples. (a) UMAP clustering distribution of T cells. Each dot represents one cell.
From left to right, each color represents cell type and sample type. (b) Violin plot showing the expression of major marker genes. (c) Statistical
and differential change analysis of T-cell proportions in the Ctrl and RA samples (statistical analysis performed as above). (d) Differential
expression analysis of T-cell subpopulations. (e, f ) GSEA shows enrichment pathways in T cell subpopulations. ES, enrichment score; NES,
normalized enrichment score.
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MIF, MHC-I, CLEC, CD99, ADGRE5, GALECTIN, MHC-II,
THBS, ICAM, ANNEXIN, CD22, and CD45 pathways
(Supplementary 18). We identified four groups of signaling
pathways based on structural similarity and functional
similarity, respectively (Supplementary 16, Supplementary 18).

Comparing the interaction networks of the two groups,
we found that the total number of interactions between dif-
ferent cells was reduced, and the intensity of the interactions
was attenuated in the RA samples compared to the Ctrl
samples (Figure 4(a)). Furthermore, both the number and
intensity of interactions between CD4+ memory T cells and
CD4+ naïve T cells were increased. The number of interactions
betweenmemory B cells and naïve B cells, andmemoryNK cells
was increased, but the intensity was decreased (Figure 4(b)). In
Ctrl samples, CD4+ naïve T cells were the major receiving cell
population, and nonclassic monocytes were the major sending
cell population (Supplementary 16). In RA samples, both the
receiving and the sending signals were dominated by classic
monocytes (Supplementary 18). Next, we identified conserved
and environment-specific pathways by comparing the informa-
tion flow of each pathway enriched by cell population interac-
tions. We ranked the important pathways based on the
difference in total information flow in the inferred network
between Ctrl and RA samples. The MHC-I, CLEC, and MIF
pathways were the major enriched pathways identified in Ctrl
samples, and the IFN-II and LIGHT pathways were the major
enriched pathways identified in RA samples (Figures 4(c) and 4
(d), Supplementary 17, Supplementary 19). In addition, we iden-
tified a total of 15 upregulated signaling ligand-receptor pairs
(including CCL3-CCR1, CCL3L1-CCR1, IFNG-IFNGR1:
IFNGR2, TNF-TNFRSF1B, etc.) (Supplementary 7) and 68
downregulated signaling ligand-receptor pairs (including
CCL5-CCR1, MIF-CD74:CXCR4, MIF-CD74:CD44, IL16-
CD4, etc.) (Supplementary 8) based on differential gene expres-
sion analysis by comparing ligand-receptor pairs and the com-
munication probabilities between RA and Ctrl samples for each
cell group pair. These results indicated that the intercellular
communication in the PBMCs of RA patients was significantly
decreased.

3.6. Construction of a T Cell and Monocyte-Based Regulatory
Network for RA. Notably, T cells and monocytes interacted
most strongly with other cell types. Combined with the
results of functional enrichment analysis and cellular abun-
dance, we constructed a T-cell and monocyte-based RA reg-
ulatory network. As shown in Figure 5, we further analyzed
the interacting ligand-receptor pairs in CCL- and MHC-
related pathways. In the MHC-I pathway, CD8+ T cells act
as the major receptor cells through CD8A and CD8B binding
to ligand proteins from other cells with HLA class I proteins
and HLA class II proteins. As described in previous results,
HLA class I proteins interact with SOCS3, B2M, and
YWHAB, and HLA class II proteins interact with CC and
CXC family chemokines in monocytes. In contrast, in the
MHC-II pathway, classic monocytes function mainly through
their cell surface CD4 receptor proteins in combination with
HLA-DRB1 and HLA-DPB1 from CD8+ cytotoxic T cells and
HLA family proteins from themselves. In addition, as receptor

cells, classic monocytes express relatively high levels of CCR1,
which regulates the CCL pathway by binding to CCL3, CCL5,
and CCL3L1 of NK cells, NKT cells, CD8+ cytotoxic T cells,
and themselves. Taken together, our results predict that T cells
and monocytes have a critical role in the development of RA
through antigen presentation and CCL-related pathways.

3.7. SOCS3, B2M, and YWHAB are Significantly
Downregulated Specifically in DNT Cells. Previously, we fur-
ther subdivided the four major immune cells (T cells, mono-
cytes, B cells, and NK cells) into 14 cell subpopulations.
Statistical analysis of the abundance of these cell subpopula-
tions revealed that DNT cells were more predominant and
significantly increased in RA samples. However, the down-
regulated DEGs showed a more pronounced functional
enrichment. The functional and gene expression character-
istics of DNT cells were, therefore, further investigated. By
differential expression analysis, a total of 190 genes were
upregulated and, 112 genes were downregulated (Fold
Change> 1.5, p-value< 0.05) (Figure 6(a)). Furthermore,
the upregulated genes are mainly associated with the regula-
tion of RNA splicing, apoptosis, and regulation of the mRNA
metabolism process. While the downregulated genes are
mainly involved in processes such as cytokine signaling in
the immune system, the adaptive immune system, antigen
processing and presentation, and positive regulation of leuko-
cyte cell–cell adhesion (Figure 6(b)). Comparing with other
cells, we identified six genes specifically downregulated in
DNT cells (log2FC<−1, p-value< 0.05), namely cAMP-
responsive element modulator (CREM), SOCS3, RSRP1,
B2M, MTFP1, and YWHAB (Figure 6(c), Supplementary 20).
Notably, CREM, SOCS3, RSRP1, and MTFP1 were
upregulated in PBMCs of RA samples but significantly
downregulated in the DNT cells of Ctrl samples
(Supplementary 20). PPI network analysis of these genes and
their related genes revealed direct or indirect interactions
among SOCS3, B2M, YWHAB, and CREM (Figure 6(d)).
Among them, SOCS3, B2M, and YWHAB also interact with
the JAK family and the HLA family. In addition, SOCS3, B2M,
and YWHAB are involved in some critical processes, such
as adaptive immune system, antigen processing and
presentation, interferon-gamma signaling, and regulation of
leukocyte activation (Figure 6(e)). Cell communication
analysis revealed that in RA patients, DNT cells interact
with T cells, B cells, NK cells, and classic monocytes mainly
throughMIF, MHC-I, CLEC, THBS, GALECTIN, CD22, and
ADGRE5 pathways (Supplementary 20). In RA patients, the
probability of ligand-receptor-to-regulatory communication
of the relevant pathways was reduced in all cases
(Supplementary 21). Taken together, these results suggest
that despite the low percentage of DNT cells, they may play
an essential role in disease pathogenesis.

4. Discussion

RA is a common chronic inflammatory autoimmune disease
affecting approximately 1% of the world’s population. Its
etiology is linked to a variety of factors, including environ-
mental, genetic, autoimmune, and more. But no matter how
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FIGURE 4: Comparative analysis of cell communication networks in Ctrl and RA samples. (a) Comparison of the number and strength of
interactions of cellular communication networks of cells in Ctrl and RA PBMCs. (b) Heatmap showing the difference in intensity and
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advanced the treatments and tools, there is no cure for RA,
which causes pain, disability, and emotional, social, and eco-
nomic challenges. The etiology of RA is not fully understood.
In the clinical setting, the immune response plays an impor-
tant role; peripheral blood is the main channel of the
immune system, and PBMCs are the immune cells that ini-
tiate the autoimmune inflammatory process [27]. Previous

studies have reported that peripheral blood immune cell sub-
sets are severely dysregulated in number and function in RA
patients [28], but the mechanisms of peripheral immunity in
RA remain unclear. Therefore, a comprehensive investiga-
tion of the peripheral blood immune cell profile in RA is
essential to elucidate the peripheral immune mechanisms
of RA.
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Using scRNA-seq, we described the immune landscape
and systematically characterized the cellular and molecular
characteristics of the major immune cells (T cells, mono-
cytes, B cells, and NK cells) in the peripheral blood of RA
and normal individuals. Although there are relevant studies
on scRNA-seq of RA PBMCs, they differ from our study,
especially geographical differences and clinical typing of
patients. We performed a dimensional clustering analysis
of these four immune cells, identified a DNT cell that was
significantly altered in abundance and function, and cap-
tured a set of significantly altered genes that may serve as
potential targets in RA. This study also revealed that T cells
in RA undergo metabolic defects and dysfunction, mainly in
the form of inhibition of oxidative phosphorylation, ATP
synthesis, and MHC-I-mediated antigen presentation. In
addition, cell communication analysis further explored the
major roles played by these immune cells in the cell commu-
nication network, the synergistic effects between cells, and
the dynamic changes of cell communication under different
conditions, and we found that RA is significantly weakened
in the number and intensity of cell communication, in which
monocytes and T cells play an important role. These results
suggest that T cells and monocytes are significantly altered at
the single-cell transcriptomic level during the development
of RA.

As a major player in the inflammatory process, T cells
play a key role in the pathogenesis of RA. It has been
reported that T cells are dysfunctional and metabolically
defective in RA patients [29–32]. In our work, we filtered
out low-quality and low-viability cells based on the percent-
age of mitochondrial genes, and we found in our results that
the expression of metallothionein-related genes was signifi-
cantly downregulated in T cells. Metallothioneins are
involved in the regulation of mitochondrial pathophysiologi-
cal processes through various pathways, such as mitochon-
drial redox, respiratory chain electron transfer, apoptotic

signaling, enzyme activity, metal ions, membrane transition
pore, mitochondrial DNA, and mitochondrial production,
and have apparent protective effects against mitochondrial
dysfunction [33]. These features suggest the possible pres-
ence of abnormal mitochondrial function in T cells in the
peripheral blood of RA patients, which is consistent with
previous studies. Mitochondria are sites of energy produc-
tion involved in calcium homeostasis, lipid synthesis, apo-
ptosis, and cell cycle processes. They are major producers of
reactive oxygen species and metabolic intermediates pro-
duced in the TCA cycle [34]. It has been shown that meta-
bolic abnormalities within the T cells of RA patients that
disrupt reactive oxygen species signaling cause T-cell over-
proliferation and contribute to the conversion of T cells into
RA-causing proinflammatory T cells. Thus, they drive the
initiation and development of arthritis and autoimmune
responses [35–37]. Cornelia [38] found that T cells from
RA patients have an impaired TCA cycle due to the absence
of the mitochondrial protein SUCLG2, which leads to the
accumulation of excess acetyl coenzyme A and causes acety-
lation of the microtubule system, ultimately promoting the
migratory behavior of T cells and disrupting the body’s
immune tolerance. Conversely, inhibition of microtubule
acetylation in patient T cells attenuated cell migration, and
further experiments confirmed that it had histoprotective
effects against synovial inflammation in a humanized mouse
model. Again, it was confirmed that abnormal mitochondrial
metabolism in T cells is closely associated with the develop-
ment of RA.

In addition, the results of GSVA showed that some
amino acid metabolism (histidine, tryptophan, glycine, ser-
ine, and threonine) and amino acid synthesis (leucine and
isoleucine) related pathways were enhanced in RA patients.
Both threonine and tryptophan are involved in the regula-
tion of cellular stress responses. Also, they affect the metab-
olism of interleukins, tumor necrosis factors (TNF), and
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lipopolysaccharides by participating in pathways such as
protein phosphorylation and lipoprotein glycosylation [39].
Tryptophan metabolism has also been reported to be closely
related to the defense mechanisms of the inflammatory pro-
cess in RA [40]. In addition, abnormal leucine and glycine
metabolism may lead to immune imbalance in RA patients
and accelerate RA disease progression [41, 42]. Weyand
found that T cells in RA have defective mitochondria by
studying cellular and mouse models, and further screening
of T-cell mitochondrial products revealed that T cells in RA
are deficient in aspartate [30]. A decrease in aspartate, a
messenger molecule between mitochondria and the endo-
plasmic reticulum, leads to an endoplasmic reticulum stress
response and consequently overproduction of TNF, resulting
in a metabolic defect that renders T cells highly efficient
proinflammatory effector cells [31, 32]. In summary, T cells
in RA show abnormalities in glucose metabolism, lipid
metabolism, mitochondrial metabolism, and amino acid
metabolism, suggesting that we can study the metabolic
checkpoints of T cells and reveal the mechanism of RA
from the alteration of T-cell metabolism to provide a refer-
ence for RA auxiliary diagnosis and treatment.

In contrast to previous studies, we identified a class of
cells, DNT cells, among the T cells that were not only func-
tionally significantly attenuated but also had a significantly
increased proportion of cells. We speculate that DNT cells
may play a key role in the initiation of the autoimmune
inflammatory process and that the increase in their propor-
tion may be compensatory to compensate for their func-
tional deficiency. Of course, this speculation requires
further experiments to confirm. The presence of small
amounts of CD4−CD8− T cells has been reported in syno-
vial tissue [14], possibly from peripheral blood. The ability of
DNT not only to escape activation-induced cell death but
also to be one of the major sources of pathogenic cytokines,
such as IL-17, suggests to us that DNT may be at the root of
the difficulty in eradicating autoimmune diseases [43, 44].
The expansion of DNT cells and the demonstration of path-
ogenic or regulatory effects have been observed in patients
with autoimmune diseases, including systemic lupus erythe-
matosus [45, 46], autoimmune lymphoproliferative syn-
drome [47], and Sjögren’s syndrome [48, 49]. However,
reports on the mechanism of DNT action in RA are rare.
In addition, studies have evaluated the feasibility, safety, and
efficacy of allogeneic DNT as a CAR T-cell therapy platform,
confirming that DNT is a promising universal T-cell agent
for the treatment of multiple clinical tumors [50]. Therefore,
it is feasible to investigate the mechanism of action of DNT
in RA, explore new therapeutic targets, and design drugs and
therapeutic regimens for them.

By comparing the DEGs in each cell type, we identified
six genes that were specifically downregulated in DNT
cells: SOCS3, CREM, B2M, MTFP1, RSRP1, and YWHAB.
Among them, we found that CREM expression was upregu-
lated in peripheral blood. Targeted bisulphite sequencing
and reverse transcription-PCR experiments revealed that
the CREM promoter was hypomethylated, and the expres-
sion of CREM was upregulated in RA [51]. The CREM is a

cAMP-controlled transcription factor closely associated with
the regulation of the immune system. CREM is involved in
the pathogenesis of systemic lupus erythematosus (SLE) [52,
53], in addition to various immune-mediated validation pro-
cesses. In particular, it affects many target genes in T cells
(IL-2, IL-17, IL-21, and the TH2 cytokines IL-4 and IL-13)
through transcriptional and epigenetic regulation [54, 55].
Most of these potential target genes have been implicated
in the pathogenesis of arthritis [55, 56]. CREM plays a criti-
cal role in the metabolism, function, and fate of T cells [57].
It has been shown that T cells in SLE patients have a reduced
ability to produce IL-2 in response to antigenic stimuli, lead-
ing to their susceptibility to viral and bacterial infections [58].
In patients, CREM is the main reason for the downregulation
of IL-2 expression in T cells [59, 60]. Similarly, we found that
SOCS3 expression was upregulated in the whole blood of RA
patients [61], which is consistent with previously reported
results. However, we found that SOCS3 expression was down-
regulated in DNT cells. Themain reason for this result may be
the different sequencing units of bulk RNA-seq and scRNA-
seq. SOCS3, a cytokine signaling inhibitor, is involved in the
regulation of inflammatory processes and activation of
JAK/STAT signaling, and SOCS3 is involved in the regulation
of inflammation in RA through the cholinergic anti-
inflammatory pathway [62]. Induction of its expression can
reduce synovial inflammation [63], but its regulatory role in
RA peripheral blood has not been confirmed. Overall, the role
of these key genes in RA has been reported to a greater or
lesser extent, but their specific mechanisms of action still need
to be investigated in more detail. In our study, we found that
RA T cells were dysfunctional, mainly manifested by inhibi-
tion of the antigen presentation pathway of MHC class I
molecules. B2M, a component of MHC class I, is involved
in the regulation of HLA class I molecules and is significantly
downregulated in DNT cells, which may contribute to the
defective class I antigen presentation. In addition, we found
interactions among YWHAB, SOCS3, B2M, and CREM, sug-
gesting that these genes may be important contributors to T-
cell dysfunction and metabolic abnormalities and may serve
as potential therapeutic targets for RA.

Furthermore, we constructed intercellular communica-
tion networks for PBMCs from healthy individuals and RA
patients separately. Both the number and strength of intercel-
lular interactions were significantly reduced in PBMCs from
RA patients. And we identified key cell populations that may
drive disease pathogenesis as well as important signaling
changes. Studies have shown that peripheral blood-derived
classic monocytes can differentiate into macrophages and
infiltrate the synovial tissue or joint fluid of RA patients and
that prolonged activation of macrophages promotes inflam-
matory responses. Combined with existing studies, we con-
structed a model of the changes in cellular interactions of
blood in RA (Figure 7) [12, 14, 64].

Macrophage CCL3 expression was significantly upregu-
lated in RA synovial tissue, but CCR1 expression was absent.
In the peripheral blood of RA patients, classic monocyte
CCL3 and CCL3L1 expression was significantly upregulated,
with no significant changes in CCR1 expression levels. As
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shown in Figure 7, peripheral blood NK cells and T cells
interacted with classic monocytes via CCL5-CCR1, and clas-
sic monocytes interacted with each other via CCL3L1-CCR1
and CCL3-CCR1, and our interaction results showed that the
communication intensity of the former was decreased and
the communication probability of the latter was increased. In
addition, the classic monocytes in peripheral blood inter-
acted with other cells through the MHC-II pathway, and
the communication intensity of this pathway was attenuated
in RA. The expression of HLA class II genes, the major ligand
in the MHC-II pathway, was significantly downregulated in
classic monocytes in RA, and there was a relationship
between this class of genes and inflammatory factors such
as TNF and IL1B, and chemokines such as CCL3 and
CCL3L1, and chemokines such as CCL3 and CCL3L1.

Prior to the development of synovitis in RA patients, the
autoimmune tolerance outside the joint is disrupted, and the
autoimmune process is initiated, during which some cells or
cytokines from the peripheral blood infiltrate into the synovial
tissue or joint fluid and promote the inflammatory response.
Whether this process is associated with CCL3 and CCL3L1 is

still unclear. Based on these results, we hypothesize that clas-
sic monocytes in peripheral blood may migrate to sites of
inflammation in synovial tissue under the chemokines
CCL3 and CCL3L1, differentiate into macrophages, secrete
proinflammatory cytokines, and thus participate in the
inflammatory response (Figure 8). We will also follow-up
with further research on this hypothesis.

Our study also has some limitations and shortcomings. On
the one hand, our limited sample size may cause some bias
in the results. On the other hand, our study still needs
more adequate functional experimental validation. However,
through this study, we also identified some cell subpopulations
(DNT, classic monocytes) and genes (SOCS3, CREM, B2M,
MTFP1, RSRP1, and YWHAB) of research significance. Mean-
while, we propose that classic monocytes in peripheral blood
may migrate to sites of inflammation in synovial tissue under
the chemotaxis of the chemokines CCL3 and CCL3L1, differ-
entiate into macrophages, secrete proinflammatory cytokines,
and thus participate in the inflammatory response. We believe
that our work will contribute to the understanding of the
peripheral immune landscape of RA patients and provide a
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valuable resource for future in-depth exploration of the patho-
genesis of RA and the search for potential therapeutic targets.
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