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Background. The long-term prognosis of gastric cancer (GC) remains poor due to postoperative recurrence and metastasis. The
increasing evidence show that the lymph node ratio (LNR) serves as an independent prognostic factor in patients with GC. In this
study, we aimed to develop a prognostic signature for GC based on LNR.Methods. Survival analysis was conducted by comparing
low- and high-LNR groups according to the optimal cutoff value of LNR, which was identified by receiver operating characteristic
(ROC) curve analysis. Then, we identified the differentially expressed genes (DEGs) related to LNR in the training cohort of GC.
Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression were performed to construct the
risk score signature. We then evaluated the risk score signature from the viewpoints of survival, clinic-pathological characteristics,
tumor microenvironment (TME), tumor mutation burden (TMB), and immunotherapeutic and chemotherapeutic efficacy.
Results. High LNR was significantly correlated with poorer prognosis and was an independent predictor of recurrence in patients
with GC. Then, an eleven-gene signature that could predict the prognosis of GC patients was developed based on LNR-related
DEGs in the training cohort, and the results were further confirmed in external independent cohort. In addition, the high-risk
group showed aggressive clinicopathological characteristics, specific TME status, low TMB, and low immunotherapeutic sensitiv-
ity. Conclusions. The present study constructed an eleven-gene prognostic signature based on LNR to predict the prognosis of
patients with GC and facilitate the development of individualized treatment strategy.

1. Introduction

Gastric cancer (GC) serves as one of the most commonly
diagnosed solid malignant tumors and ranks fourth in cancer-
related death rates around the world [1]. Surgery is the main
treatment in GC, and the mortality of GC has indeed decreased
with the development of medical treatment and surgical tech-
niques over the past few decades. However, recurrence and
metastasis remain the main causes of GC death, and the long-
term prognosis for these patients is still unsatisfactory due to
lack of effective therapeutic strategy [2]. Besides, the majority of
GC patients are diagnosed at advanced tumor stage because of
lack of specific early symptoms and biomarkers, which worsen
the prognosis of GC [3]. Thus, exploring novel biomarkers

for the identification of higher-risk patients and directing the
application of adjuvant therapy regimens is important.

Lymph node metastasis is the most common pathway
of metastasis for GC, which results in poor prognosis. The
5-year survival rate for patients diagnosed with early stage is
about 95%, while the 5-year survival rate sharply declines to
not more than 45% for patients with advanced stage [4, 5].
Tumor invasion (T stage) and nodal status (N stage) are
currently the most important prognostic factors in surgically
treated GC, and the TNM staging system established by the
American Joint Committee on Cancer (AJCC) and the Inter-
national Union for Cancer Control (UICC) has been widely
used to determine the stage of GC and its prognosis [6].
N stage is determined by the number of regional lymph
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nodes with metastases and a minimum of 15 lymph nodes to
be removed during gastrectomy is required for the accurate
diagnosis of the tumor stage in GC [6]. However, certain
factors have led to an insufficient number of lymph nodes
being dissected in clinical practice, thereby hampering the
clinical application of the AJCC staging system in GC [7].
Thus, the lymph node ratio (LNR) staging system, which is
defined as the ratio of metastatic lymph nodes to the total
lymph nodes examined, was developed and has been pro-
posed as a valuable prognostic factor that is superior to the
AJCC/UICC system [7, 8]. Emerging evidence exist that LNR

serves as an independent prognostic indicator of survival in
patients with GC [9, 10]. In general, these studies indicated
that the lymph node status is one of the key prognostic
factors in GC, which deserves further exploration.

To date, no high-throughput studies have explored the
potential prognostic roles of lymph node status-related signa-
tures in GC. In the present study, we aimed to develop a novel
prognostic signature for predicting the overall survival of GC
patients based on LNR. To the best of our knowledge, this is
the first study to construct a prognostic model correlated with
LNR in GC. The workflow for this study is shown in Figure 1.

High-LNR group

Low-LNR group

Gastric cancer Prognostic value of LNRUCSC Xena public database
(clinical information)

TCGA GDC database
(transcriptome data)
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immune cell
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response prediction Drug-response prediction
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External validation in GEO cohort

Gene Expression Omnibus

FIGURE 1: Flowchart of this study.
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2. Materials and Methods

2.1. Data Collection. Complete clinic-pathological parame-
ters of 384 GC patients were obtained from the UCSC
Xena (https://xenabrowser.net/datapages/) database [11, 12].
RNA-seq profiles of 375 GC tissues and 32 normal tissues
were downloaded from The Cancer Genome Atlas (TCGA,
https://portal.gdc.cancer.gov/) [13]. Similarly, the mutation
information of 431 GC patients was also downloaded from
the database and combined into a mutation annotation for-
mat (MAF) file for further analysis. In addition, the micro-
array expression data and corresponding clinic-pathological
information of 433 GC patients were downloaded from the
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/) project for external validation cohort [14].

2.2. Identification of DEGs Related to LNR in GC. LNR was
defined as the number of metastatic lymph nodes divided by
the total number of retrieved lymph nodes. The optimal
cutoff value of LNR was calculated by ROC analysis, and
patients with GC were divided into low- and high-LNR
groups according to the cutoff value. Then, LNR-related
genes which are differentially expressed between low- and
high-LNR groups were identified using the “Limma” package
in R based on the Wilcoxon rank-sum test. The screening
criteria were defined as | log2 (fold change) | >0.585 and
adjusted P-value< 0.05. Besides, we performed Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis on these LNR-relatedDEGs to get an insight
into their biological function based on Database for Anno-
tation, Visualization and Integrated Discovery (DAVID,
https://david.ncifcrf.gov/) project [15].

2.3. Construction and External Validation of the Prognostic
Signature. Univariate Cox regression analysis was applied
to assess the prognostic value of LNR-related genes, and
genes with P<0:01 were identified as prognostic genes
and were incorporated into least absolute shrinkage and
selection operator (LASSO) regression. LASSO regression
is an algorithm usually used for fitting selecting variables
in high-dimensional generalized linear models [16]. We
then constructed a risk score model on the basis of the
expression levels and the risk coefficients (β) of prognostic
genes identified by LASSO regression. The formula of the
risk score for each patient is listed as follows: risk score =
β(Gene1)× Exp(Gene1) + β(Gene2)× Exp(Gene2) +… + β(Geneγ)×
Exp(Geneγ). GC patients were classified into low- and high-
risk groups according to the optimal cutoff value of the risk
score. Kaplan–Meier survival analysis, univariate Cox regression
analysis, and multivariate Cox regression analysis were applied
to assess the predictive capability of the risk score signature. In
addition, independent cohort from the GEO database was used
for external validation of the predictive performance of our
constructed signature.

2.4. Clinical Relevance Analysis. The correlations between the
risk score and the clinic-pathological parameters of the train-
ing cohort were analyzed to determine the association of the
LNR-based prognostic signature with other characteristics.

2.5. Construction of a Predictive Nomogram. Nomograms are
useful and accessible tools used for predicting survival and
have been developed for predicting the prognosis of multiple
tumor types [17]. In the present study, we constructed a
nomogram to predict 1-, 3-, and 5-year survival of GC
patients based on the clinical parameters and risk score signa-
ture. The calibration curve was conducted to assess the pre-
diction probabilities of the nomogram. Subsequently, the ROC
curve and the decision curve (DCA) were plotted to compare
the performance of single and combined models [18].

2.6. Tumor Mutation Burden in Different Subgroups. The
“Maftools” package was applied to illustrate the genetic
mutation differences between the low- and high-risk groups
by waterfall plot [19]. Moreover, tumor mutation burden
(TMB) of each patient was derived, and its correlation with
risk score and prognosis of GC patients was evaluated.

2.7. Immune Microenvironment Analysis. ESTIMATE algo-
rithm assesses the level of infiltrating stromal and immune
cells in the tumor microenvironment (TME) by calculating
stromal and immune scores on the basis of specific gene
expression signatures [20]. In this study, we performed
Kaplan–Meier survival analysis to evaluate the correlation
between the scores and the prognosis of GC patients.
The correlation between the risk score and ESTIMATE
score also be analyzed based on the Wilcoxon test.
Besides, we explored the correlation between the tumor-
infiltrated immune cell (TIIC) and risk score based on
currently acknowledged algorithms, including XCELL,
TIMER, QUANTISEQ, MCPcounter, EPIC, CIBERSORT,
and CIBERSORT-ABS. Finally, the relationship between
the risk score and immune checkpoint biomarkers (ICB)
was assessed.

2.8. Tumor Immune Dysfunction and Exclusion Analysis.
Tumor immune dysfunction and exclusion (TIDE) is a compu-
tational algorithm tomodel two primarymechanisms of tumor
immune escape—T-cell dysfunction and T-cell exclusion—
which has been proved to be an effective method to predict
immune checkpoint inhibitor response in cancer treatment
[21]. Therefore, we applied TIDE platform (http://tide.dfci.ha
rvard.edu) to calculate the TIDE scores of each GC patient
and assessed their correlation with the LNR-based risk score
signature.

2.9. Drug Sensitivity Prediction. Drug sensitivities for GC
patients were evaluated through the Genomics of Drug
Sensitivity in Cancer (GDSC, https://www.cancerrxgene.org)
project, a public resource for information on drug sensitivity
in cancer cells and molecular markers of drug response [22].
The half-maximal inhibitory concentration (IC50) values cal-
culated by using the “pRRophetic” package in R were defined
as the sensitivity indicators of the chemotherapy drugs, and
the differences of IC50 values of the chemotherapy drugs
between the low- and high-risk groups were estimated [23].

2.10. Statistical Analysis. All statistical analyses were com-
pleted by the R software (version 4.1.1). Kaplan–Meier sur-
vival analysis and log-rank test were used to compare the
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prognosis of different subgroups. The optimal cutoff for sur-
vival analysis was determined by the R package “survminer”.
Univariate and multivariate analyses were applied to identify
independent prognostic indicators. The Wilcoxon rank-sum
test was applied for the analysis of categorical variables.
The χ2 test was used to determine the differences in clinic-
pathological features in different subgroups. A P-value< 0.05
was considered statistically significant.

3. Results

3.1. Clinical Significance of LNR in GC Patients. First, we
used the value of the area under curve (AUC) to assess
the predictive performance of LNR in all GC patients. The
AUC value of LNR was 0.658 (95% CI (0.604–0.701)),
and LNR of 0.318 at the maximum end was taken as the
optimal cut-off value to distinguish low- and high-LNR
groups (sensitivity = 60%, specificity = 66.34%) (Figure 2(a)).
The time-ROC curve showed that the AUC value of 1-, 3-,
and 5-years overall survival (OS) were 0.658, 0.694, and 0.661,
respectively (Figure 2(b)). We also compared the AUC value
of LNRwith other clinical parameters and found that LNR had
themost considerable AUC value (Figure 2(c)). Kaplan–Meier
survival analysis showed that high LNR was significantly cor-
related with shorter OS and disease-free survival (DFS) than
low LNR (Figures 2(d) and 2(e)). We further performed uni-
variate and multivariate Cox regression to evaluate the prog-
nostic effects of LNR and other common clinic-pathological
features, including age, gender, grade, and stage. The results
showed that LNR could serve as an independent prognostic
factor to predict the OS of patients with GC (Figures 2(f)
and 2(g)).

3.2. Identification of DEGs Related to LNR in GC. A total of
202 DEGs were identified between the low- and high-LNR
groups with the criteria of | log2 (fold change) | >0.585 and
adjusted P-value< 0.05. Among them, 184 DEGs were upre-
gulated in the high-LNR groups, whereas 18 DEGs were
downregulated (Supplementary 1). The expression pattern
of these DEGs was depicted in the heatmap (Figure 3(a)),
and the results also revealed that T stage, N stage, M stage,
pathologic tumor stage, age, grade, vital status, and micro-
satellite status were different in a significant manner between
the low- and high-LNR groups. As shown in Figure 3(b) and
Supplementary 2, GO annotation analysis revealed these
LNR-related genes were mainly enriched in immune response
(GO:0006955), immunoglobulin production (GO:0002377),
and inflammatory response (GO:0006954). KEGG pathway
enrichment analysis found these genes were mainly enriched
in the Wnt signaling pathway (hsa:04310) and calcium signal-
ing pathway (hsa04020) (Figure 3(c) and Supplementary 3).

3.3. Construction and Verification of the LNR-Based Prognostic
Signature. Forty-three DEGs significantly correlated with
the prognosis of GC patients were identified by univariate
Cox regression analysis (Figure 4(a)). Then, these prognosis-
related genes were conducted into LASSO regression analysis
to eliminate overfitting, and eleven feature genes (SOX14,
RNF43, PRICKLE1, SNCG, GPX3, SYN1, MS4A4A, TFPI2,

GRP, SLC7A2, NT5E) were obtained to construct a prognostic
signature (Figures 4(b) and 4(c)). The coefficients of each gene
in the prognostic signature were displayed in Figure 4(d) and
the risk score of each GC patient in the TCGA cohort was
calculated. Ultimately, GC patients were classified into low-
(n=289) and high-risk (n=81) groups according to the
optimal cut-off value of risk score (2.308). The Kaplan–Meier
survival analysis found that the OS of the high-risk group
was significantly worse than that of the low-risk group
(Figure 5(a)). The risk plot and scatter plot illustrated that
the survival rate and survival time decreased with the increase
in the risk score. (Figure 5(b)). In addition, univariate and
multivariate Cox analyses showed that the risk score serves as
a prognostic factor and was independent of age, gender, grade,
tumor stage, and LNR (Figures 5(c) and 5(d)).

Moreover, we performed external validation to evaluate
whether the LNR-based risk signature has clinical applica-
tion value. We calculated the risk score of each patient in the
external validation cohort according to the calculation for-
mula derived from TCGA. Then, GC patients were divided
into low- and high-risk groups according to the optimal cut-
off value of risk score and the prognosis between the patients
in low- and high-risk groups showed to be a significant dif-
ference (Figure 5(e)–5(h)). These results confirmed the clin-
ical application value of the LNR-based signature.

3.4. Correlation of the LNR-Based Prognostic Signature with
Clinical Features. The correlation between the risk score and
the clinical parameters of the GC patients was then analyzed.
As shown in the band diagram (Figure 6(a)) and scatter plots
(Figure 6(b)), there were positive correlations between the
risk score and tumor grade, LNR, microsatellite instability
(MSI) status, and tumor stage. In general, these results indi-
cate that high-risk score was significantly correlated with
aggressive clinic-pathological characteristics.

3.5. Construction of a Nomogram to Predict Prognosis. Tak-
ing all the clinic-pathological characteristics and risk scores
into consideration, we constructed a comprehensive nomo-
gram to predict the prognosis of GC (Figure 7(a)). The
nomogram showed that the risk score contributed signifi-
cantly to the prognosis. The corresponding calibration plots
in 1-, 3-, and 5-year proved that the performance of the
nomogram was best in predicting the OS of GC patients
(Figure 7(b)). Additionally, the prognostic capacity of the
nomogram and other single features were demonstrated by
the AUC value of the ROC curve. The results revealed that
the nomogram showed the largest AUC (0.755) compared
with other single features (Figure 7(c)). Finally, the DCA
analysis demonstrated that the nomogram showed the best
net benefit for predicting the prognosis of GC (Figure 7(d)).

Taken together, these results suggest that our constructed
nomogram confers excellent predictive potential for progno-
sis of GC patients.

3.6. Somatic Mutations in Different Subgroups Based on LNR-
Based Signature. Somatic mutation serves as one of the sig-
nificant elements in carcinogenesis and progression. Thus,
we assessed the correlation between the LNR-based signature
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FIGURE 2: Clinical significance of LNR inGC. (a) The ROC curve for the LNR and the threshold (0.318) was taken as the cut-off value to distinguish
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(f) Univariate Cox regression of LNR and clinical parameters in GC. (g) Multivariate Cox regression of LNR and clinical parameters in GC.
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and mutation profile in GC patients. As shown in the box
plot, the level of TMB was significantly higher in the low-risk
group than that in the high-risk group (Figure 8(a)), and the
Pearson correlation analysis corroborated that the risk score
was negatively correlated with TMB (R= –0.32, P= 2.7e-10)
(Figure 8(b)). Survival analysis revealed that GC patients
with high TMB showed better prognosis than those with
low TMB (Figure 8(c)). Moreover, we further evaluated the
effect of risk score and TMB on OS of GC patients consider-
ing the synergistic effect of them and found that the predictive

ability of risk score was independent of TMB (Figure 8(d)).
Genes that had the most frequent mutation in low- and high-
risk groups were shown in Figures 8(e) and 8(f).

In sum, the above results demonstrate that the risk score is
a predictive biomarker for prognosis of GC patients that is
independent of TMB and can effectively predict the TMB status.

3.7. The Relationship between the Prognostic Signature and
ImmuneMicroenvironment.We applied ESTIMATE algorithm
to calculate the TME scores (immune score, stromal score, and
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ESTIMATE score) of each GC patient in the TCGA project.
Survival analysis found that higher stromal score and ESTIMATE
score were significantly correlated with a much poorer OS rate
among GC patients, while immune score showed no significant
correlation with OS (Figure 9(a)–9(c)). Then, we explored the

correlation between the patient’s TME scores and risk scores.
The results revealed that immune score, stromal score and
ESTIMATE score of the high-risk group were obviously
higher than those of the low-risk group (Figure 9(d)–9(f)).
In terms of TIIC, Spearman correlation analysis indicated that
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the high-risk group was more positively correlated with TIICs
(Figure 9(g)). As expected, we also found the high-risk group
was more positively correlated with ICBs, which usually are
expressed on the surface of TIIC and suppressed its function
(Figure 9(h)).

3.8. Prediction of Immunotherapy and Chemotherapy
Responsiveness. We further investigated the correlation of
the LNR-based signature with immunotherapy and chemo-
therapy responsiveness in GC. Patients in the high-risk group
were featured by higher TIDE scores (P<0:001, Figure 10(a)),
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higher dysfunction score (P<0:001, Figure 10(b)), and
higher exclusion score (P<0:001, Figure 10(c)) compared
with those in the low-risk group. Besides, the low-risk group
was predicted to hold a higher proportion of immunothera-
peutic responders compared with the high-risk counterpart
(Figure 10(d)). Furthermore, the patients in the high-
risk group were featured by lower proportion of MSI-H

(Figure 10(e)) and high-TMB (Figure 10(f )) compared
with those in the low-risk group. These findings indicate that
GC patients with high-risk scores exhibited less responsive-
ness to the immunotherapy, which may be responsible for the
poor prognosis. The drug sensitivity analyses found that the
IC50 of bleomycin, JNK inhibitor VIII, lapatinib, paclitaxel,
and sunitinib were remarkably decreased in patients with
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high-risk scores, while the IC50 of methotrexate in high-risk
group was significantly elevated (Figure 10(g)). These results
suggest that the LNR-based signature has the potential ability
to predict the sensitivity of chemotherapy drugs.

4. Discussion

GC ranks as the fourth leading cause of cancer-related death
rate around the world, which seriously threatens the health
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of the public and causes a heavy burden to the social econ-
omy. Because GC is a heterogeneous disease, patients with
the same clinical stage showed a different prognosis. There-
fore, it is usually difficult to use the traditional TNM staging
system to precisely forecast the clinical outcomes of GC [24].
Lymph node metastasis acts as the most common metastasis
pathway for GC, and LNR has been proven to be an inde-
pendent prognostic risk factor for GC. The present study
aimed to develop a prediction model by analyzing the gene
sequencing data from a large sample based on LNR.

We first identified 202 LNR-related genes from the
TCGA project and eleven of which were filtered out to con-
struct a prognostic signature for GC through univariate Cox

analysis and LASSO analysis. It is reassuring that a number
of studies have been devoted to investigate the specific bio-
logical functions of the eleven LNR-related genes included in
the signature. For instance, SOX14, which is a member of the
SOXB2 subgroup of transcription factors implicated in neu-
ral development, has been found to be overexpressed in cer-
vical cancer cells and could promote cell proliferation and
invasion by activating the Wnt/β-catenin pathway [25].
RNF43 was reported to be significantly downregulated in
gastric cancer and could suppress cell proliferation via induc-
ing cell apoptosis [26]. PRICKLE1 is a cell polarity protein
that is significantly overexpressed in GC cell lines from met-
astatic lesions compared with those from the primary tumor,
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with the silencing of PRICKLE1 significantly inhibiting
tumor metastasis through blocking mTOR signaling path-
way in vitro [27]. SNCG, also known as BCSG1, is a member
of the synuclein neuronal protein family. Yanagawa et al.
[28] reported that abnormal expression and demethylation
of SNCG in GC was significantly correlated with lymph node
metastasis and advanced tumor stage. GPX3 hypermethyla-
tion in GC was reported to be significantly correlated with
lymph node metastases and tumor relapse [29]. MS4A4A is a
member of the membrane-spanning, four domain family,
which has been identified as a novel cell surface marker for
M2-like macrophages and plasma cells [30]. TFPI2 is a
Kunitz-type serine proteinase inhibitor that has been identi-
fied as a tumor-suppressor gene, and aberrantly promoter
hypermethylation of TFPI2 in GC contributed to tumor pro-
gression [31]. Overexpression of GRP and its receptors have
been demonstrated in various cancer types including GC,
and GRP has also been shown to act as a potent mitogen
for cancer cells of diverse origins both in vitro and in animal
models of carcinogenesis [32]. NT5E has been observed to be
highly expressed in GC tissues, and overexpression of NT5E
was obviously correlated with advanced clinical stage, lymph
node metastasis and distant metastasis in GC patients,
with the silencing of NT5E significantly suppressing cell
proliferation, migration, and invasion of GC cells in vitro
[33]. SLC7A2 is essential for transportation of arginine,
lysine, and ornithine, and genetic polymorphisms in the
SLC7A2 gene are significantly correlated with colorectal can-
cer development and progression [34]. However, the role of
SYN1 in GC is rarely reported, and its role deserves further
exploration. Our study found that all of these eleven genes
were significantly correlated with the lymph node metastasis
status of GC. Considering that traditional methods of pre-
dicting prognosis with single biomarkers or clinical data lack
high sensitivity and specificity, our study comprehensively
considered the expression patterns and prognostic values of
these eleven LNR-related genes to generate a prognostic sig-
nature in GC. Excitingly, external validation cohort further
confirmed the universal applicability of the LNR-based prog-
nostic signature in clinical practice.

We also explored the correlation of the LNR-based risk
score signature with the activity of immunity in TME of GC.
As a result, high-risk score was significantly correlated with
high stromal and immune scores, which means GC patients
in the high-risk group possess higher levels of infiltrating
stromal and immune cells in TME compared with those in
low-risk group. A previous study has indicated that the infil-
trating stromal cells and immune cells, together with various
cytokines they secreted in TME, have the capability to mod-
ulate tumorigenesis and progression [35]. Thus, we further
assessed the correlation between the abundances of TIICs
and the risk score signature and found that most immune
cells showed a positive correlation with the risk score. Fur-
thermore, most of the ICBs also showed a significant posi-
tive correlation with the risk score, which indicated that
the activity of immunity was more active in high-risk GC
patients.

In the last few years, immunotherapy has achieved great
progress as anticancer therapy for several solid tumors by
reactivating the host immune response to tumors [36].
The success of immunotherapy has changed the treatment
landscape of several cancers including GC. For example,
pembrolizumab, a humanized IgG4 monoclonal antibody
against programmed cell death-1 (PD-1), combined with
trastuzumab as the first-line chemotherapy for patients
with HER-2 positive advanced GC has received approval
by the Food and Drug Administration (FDA) [37]. Another
anti-PD-1 antibody, nivolumab, also showed satisfactory
efficacy in the treatment of advanced GC [38]. However,
due to the great heterogeneity in individuals, only a limited
number of GC patients achieved the clinical benefit of immu-
notherapy, and the development of novel marker is urgently
needed. Currently, the most commonly used clinical biomar-
kers for GC immunotherapy include MSI [39], TMB [40],
and ICB [37, 38]. Besides, emerging evidence proposed that
the TIDE score is a promising biomarker that could predict
immunotherapy responsiveness based on pretreatment tumor
profiles [21]. In the present study, we explored the correlation
of the LNR-based risk signature with tumor immunotherapy
responsiveness in GC based on MSI, TMB, ICB, and TIDE.
As a result, we found that the proportion of immunotherapy
responders was significantly higher in the low-risk group
compared to the high-risk group. In sum, these results indi-
cate that the LNR-based risk signature has the potential to
help oncologists select GC patients who are more likely to
benefit from immunotherapy, but whether patients in the
low-risk group are more suitable for corresponding immuno-
therapy than the high-risk group remains for further experi-
mental verification, the evaluation of which will be time-
consuming.

5. Conclusion

To summarize, the present study successfully demonstrated
that a novel signature constructed by genes that significantly
correlated with the status of lymph node metastasis could
predict prognosis for patients with GC and might help in
distinguishing those who could benefit from antitumor
immunotherapy.
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