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Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies and tissue
inflammation. Mesenchymal stem cells (MSCs) have emerged as a promising candidate therapy for SLE owing to the immuno-
modulatory and regenerative properties. Circulating miRNAs are small, single-stranded noncoding RNAs in a variety of body
fluids that regulate numerous immunologic and inflammatory pathways. Recent studies have revealed many differentially
expressed circulating miRNAs in autoimmune diseases including SLE. However, the role of circulating miRNAs in SLE has not
been extensively studied. Here, we performed small RNA sequencing analysis to compare the circulating miRNA profiles of SLE
patients before and after MSC transplantation (MSCT), and identified a significant decrease of circulating miR-320b level during
MSCT. Importantly, we found that the expression of circulating miR-320b and its target gene MAP3K1 was closely associated with
SLE disease activity. The in vitro experiments showed that decreased MAP3K1 level in SLE peripheral blood mononuclear cells
(PBMCs) was involved in CD4+ T-cell proliferation. In MRL/lpr mice, miR-320b overexpression aggravated symptoms of SLE,
while miR-320b inhibition could promote disease remission. Besides, MSCs regulate miR-320b/MAP3K1 expression both in vitro
and in vivo. Our results suggested that circulating miR-320b and MAP3K1 may be involved in CD4+ T-cell proliferation in SLE.
This trial is registered with NCT01741857.

1. Background

Systemic lupus erythematosus (SLE) is a chronic autoimmune
disease characterized by dysregulation of T and B lymphocytes
and loss of immune tolerance to self-antigens. CD4+ T-helper
cells play crucial roles in orchestrating immune responses by
providing costimulatory signals and cytokines, which contrib-
ute to autoantibody production and organ damage [1]. How-
ever, the pathogenesis of SLE is incompletely understood.
Recently, circulating miRNAs have been shown to play an
important role in SLE.

Circulating miRNAs are small, single-stranded noncod-
ing RNAs in a variety of body fluids that regulate numerous

immunologic and inflammatory pathways by inhibiting
mRNA translation or promoting mRNA degradation [2, 3].
SLE patients have unique miRNA signatures in peripheral
blood cells, plasma, and body fluids. Several circulating
miRNAs, such as miR-21, miR-155, miR-125a-3p, and
miR-146a, have been proposed as diagnostic and prognostic
biomarkers in SLE patients [4–7]. In lupus, CD4+ T cells are
critical drivers of the antibody response and tissue injury.
The dysregulated expansion of T follicular helper (Tfh) cells
and Th17 cells contributed to the pathogenesis of SLE [8].
Recent studies have shown that circulating miRNAs can
modulate the function and phenotype of T-cell subsets.
Circulating exosomal miR-17 from rheumatoid arthritis
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patients inhibited the induction of regulatory T cells (Treg)
via suppressing TGFBR II expression in vitro [9]. Further-
more, exosomal miR-142 was found to regulate CD4+ T-cell
immunometabolic dysfunction and exacerbate cardiac injury
in mice with experimental autoimmune myocarditis [10].
Circulating miR-221/222 reduced the number of peripheral
CD4+ T cells by inhibiting CD4 expression in colorectal can-
cer [11]. Besides, let-7i and miR-208b were found to regulate
Treg expansion [12, 13]. Despite these studies in other dis-
eases, the function and molecular mechanisms of circulating
miRNAs in lupus CD4+ T cells are not well understood.

Mesenchymal stem cells (MSCs) are multipotent nonhe-
matopoietic progenitors that can modulate various immune
cells such as T cells, B cells, dendritic cells, and macrophages
through cell–cell contact, cytokine secretion, and othermechan-
isms [14–18]. Due to their low immunogenicity and immuno-
modulatory properties, MSC transplantation (MSCT) has
been considered as a potential therapy for autoimmune dis-
eases. Clinical studies have demonstrated the safety and effi-
cacy of allogeneic umbilical cord-derived MSCs (UC-MSCs)
in SLE patients refractory or intolerant to conventional ther-
apies [19–22]. To date, there have been no reports about the
profiles of circulating miRNAs during MSCT, and the roles of
circulating miRNAs in mediating the immunomodulatory
function of MSCT in SLE remain unclear.

In this study, we investigated the circulating miRNA
profile in SLE patients pre- and post-MSCT, and identified
the potential diagnostic value of circulating miR-320b and its
target geneMAP3K1.We also explored the effects of MAP3K1
on CD4+ T-cell proliferation in vitro by downregulating
MAP3K1 expression in peripheral blood mononuclear cells
(PBMCs). Furthermore, we evaluated the in vivo role of
miR-320b by inhibiting its expression in the plasma of MRL/lpr
mice and observing the amelioration of SLE symptoms. These
results have important implications for the diagnosis and
treatment of SLE.

2. Methods

2.1. Subjects. From May 2018 to December 2022, 40 SLE
patients were enrolled in an allogeneic MSCT trial carried
out at the Department of Rheumatology and Immunology,
Nanjing Drum Tower Hospital, Affiliated Hospital of Medi-
cal School, Nanjing University. All enrolled patients fulfilled
at least four of 11 American College of Rheumatology criteria
for the classification of SLE. Plasma samples (n= 3) were
analyzed by miRNA sequencing, and plasma (n= 32) and
PBMCs (n= 7) samples were used for validation. Besides,
blood from 46 SLE patients and 30 sex- and age-matched
healthy controls was obtained from this hospital between
May 2019 and May 2020. Written informed consent was
obtained from all patients and healthy donors that provided
blood samples 10mL or more specifically for the study.
When only residual blood was used, written informed con-
sent was waived. The disease activity was evaluated accord-
ing to SLE Disease Activity Index (SLEDAI)-2K score [23].
The level of hemoglobin, serum albumin, serum 25-hydro-
xyvitamin D (25-(OH)D), and other clinical data of these

enrolled patients were collected and analyzed. In this research,
responders were patients with low disease activity states dur-
ing follow-up period, with the criteria of a SLEDAI score ≤3
on antimalarials, or alternatively SLEDAI ≤4, physician global
assessment (PGA) ≤1 with glucocorticoids (GC) ≤7.5mg of
prednisone and well-tolerated immunosuppressive agents.
Patients who did not meet either of the above criteria were
classified as nonresponders [24].

2.2. Preparation and Infusion of UC-MSCs. For clinical use,
UC-MSCs were prepared by the Stem Cell Center of Jiangsu
Province (Beike Biotechnology) as previously described [25].
In this study, 40 patients underwent MSCT. One million cells
per kilogram of body weight were administered by intrave-
nous infusion. The study protocol was registered on Clini-
calTrials.gov (identifier: NCT01741857). The demographics
and clinical characteristics of the patients were summarized
in Supplementary 1.

2.3. miRNA Library Construction, Sequencing, and Analysis.
Total RNA in plasma was extracted using TRIzol Reagent
(Invitrogen, Carlsbad, CA, USA). The library construction,
sequencing, and differential expression analysis were per-
formed by BGI Genomics Co., Ltd. (Shenzhen, China) on the
BGISEQ-500 platform. p-value< 0.01 and |log2FoldChange|
> 1 were set as the threshold. The target genes were predicted
by multiMiR (including miRecords, miRTarBase, TarBase,
DIANA-microT, ElMMo, MicroCosm, miRanda, miRDB,
PicTar, PITA, and TargetScan microRNA-target databases).
To annotate gene functions, target genes were aligned against
the Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Gene Ontology (GO) databases. GO and KEGG enrichment
analyses were performed using ClusterProfiler with R.

2.4. Quantitative Real-Time PCR. For plasma samples, small
RNA was extracted using the miRNeasy Serum/Plasma Kit
according to the manufacturer’s instructions, and 5.6× 108

copies of a Caenorhabditis elegans miRNA (cel-39) were
added to each sample as a spike-in control. The qRT-PCR
was performed with cDNA synthesized with miScript II RT
Kit, SYBR Green Master Mix (all purchased from QIAGEN,
Hilden, Germany) and specific miRNA primers (GenScript,
Nanjing, China). The relative expression of miRNAs was
determined and normalized to the expression of cel-39 and
calculated using the 2−ΔΔCt method.

Total RNAs from cultured cells or PBMCs were extracted
using TRIzol Reagent and reverse-transcribed into cDNA
using HiScript II Q RT SuperMix (Vazyme Biotech, Nanjing,
China). For miRNA detection, cDNA was synthesized with
Escherichia coli Poly(A) Polymerase (NEB, USA) and HiScript
II Q Select RT SuperMix (Vazyme Biotech, Nanjing, China).
The relative gene quantification was normalized to GAPDH
or U6. All primers were listed in Supplementary 1.

2.5. Western Blot Analysis. We used antibodies recognizing
human MAP3K1 (1 : 600, Proteintech, Wuhan, China) and
α-tublin (1 : 1000, Sigma, USA) to examine the concentra-
tions of proteins in HEK293T lysates. Images were captured
and analyzed by the Tanon-5200 Chemiluminescent Imag-
ing System.
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2.6. Dual-Luciferase Assay. The sequence of MAP3K1 3′-
UTR and 3′-UTR-mutant regions was synthesized and
cloned into the pmirGLO Dual-Luciferase miRNA vector
(Promega, Madison, USA) by GenScript Company (Nanjing,
China). HEK293T cells were cotransfected with the luciferase
reporter constructed (500 ng) together with miRNA mimics
or negative control (NC, 40 nM) using Lipofectamine 3000.
After 48 hr, the cells were washed and lysed in the passive
lysis buffer (Promega, Madison, USA). Firefly luciferase
(f-luc) and renilla luciferase (r-luc) activities were detected
by a dual-luciferase reporter assay system (Promega, Madi-
son, USA). Relative reporter activity was normalized to the
r-luc activity.

2.7. Lentivirus Infection. The specific siRNA of MAP3K1 and
scrambled siRNA control were designed and synthesized by
GenePharma (Shanghai, China). The shMAP3K1 plasmid
was constructed and synthesized using the pSIH vector by
GenScript Company (Nanjing, China). Lentivirus was pack-
aged by cotransfection of psPAX2, pMD2.G, and shMAP3K1
plasmids into HEK293T cells. PBMCs were cultured in a 96-
well plate in the presence of polybrene (1 : 1,000, Sigma-
Aldrich), with the addition of 30 μL lentivirus for 3 days.

2.8. UC-MSC and PBMCCoculture.UC-MSCs were obtained,
isolated, and preserved as previously described [18, 26]. The
cells were cultured with Dulbecco’s Modified Eagle Medium
(DMEM)/F12 supplemented with 10% fetal bovine serum
(FBS) and 100U/mL penicillin/streptomycin (Gibco, NY, USA).
In the coculture experiment, UC-MSCs (1.0× 104) were seeded
in 48-well culture plate overnight. PBMCs (4× 105 cells/mL)
from healthy controls were labeled with eFluor™ 450
(eBioscience, CA, USA) according to the manufacturer’s
protocol and cocultured with UC-MSCs directly, with the
addition of soluble anti-CD3 and anti-CD28 (1 μg/mL, all
purchased from Thermo Fisher Scientific, MA, USA) mono-
clonal antibodies. In RNase group, the cells were also treated
with RNase A (100μg/mL, NEB, USA). After 4 days, the cells
were harvested for the following detection by cytometry.

2.9. Cell Proliferation Assay. The procedure for lentivirus
infection and coculture has been described above. Then,
the cells were harvested and stained with phycoerythrin
(PE)-CF594-conjugated antihuman CD4, antihuman CD8
PerCP/Cy5.5, and eFluor™ 780 (eBioscience, CA, USA). In
mice, single-cell suspensions of spleens were prepared and
stained with antimouse CD4 FITC, PE-Cy7-conjugated anti-
mouse Ki67 (eBioscience, CA, USA), eFluor™ 780, anti-
mouse CD3a BUV395, and antimouse CD8a BV510 (BD
Pharmingen, USA). Data were collected by BD LSRFor-
tessa™ Flow Cytometer and analyzed by FlowJo software.

2.10. Animals. Fourteen female MRL/lprmice were purchased
from SLRC Experimental Animals Co., Ltd. (Shanghai, China)
andmaintained in a controlled environment (20Æ 2°C, 12-hr/
12-hr light/dark cycle) under specific pathogen-free conditions
at the Nanjing Drum Tower Hospital, Affiliated Hospital of
Medical School, Nanjing University. All animal studies were
approved by Animal Care and Use Committee of the hospital.

All procedures were performed in accordance with the guide-
lines of the hospital.

Sixteen-week-old MRL/lpr mice were divided into NC
(n= 5), miR-320b agomir (n= 4), and miR-320b antagomir
(n= 5) groups. A total of 20 nmol miR-320b agomirs, antag-
omirs, or NC were injected intravenously every 6 days for
four times. All mice were sacrificed 19 days after the first
administration. Agomirs, antagomirs, and NC were pur-
chased from RiboBio Co., Ltd. (Guangzhou, China). Urine
and blood samples were collected every week until the end of
the experiment. The concentrations of urinary protein were
measured using Bradford protein quantitation assay (KeyGen,
Nanjing, China). Cytokine concentrations were measured by
ELISA (MultiSciences Biotech, Nanjing, China) according to
the manufacturer’s instructions.

2.11. Renal Histopathologic Analysis. Murine kidneys were
fixed in 4% paraformaldehyde for 24 hr, embedded in paraf-
fin, and sectioned at 3 μm. The sections were stained with
hematoxylin and eosin (H&E), periodic acid–Schiff (PAS),
and Masson’s trichrome stain, respectively. The histological
scores for glomerular, interstitial, and perivascular lesions
were measured as previously described [27].

2.12. Immunofluorescence. Slides were washed with phosphate-
buffered saline (PBS) and fixed with 4% paraformaldehyde for
30min and measured with 0.2% Triton-X 100 for 10min.
Then, they were blocked with 5% bovine serum albumin and
incubated with Alexa Fluor 555-antimouse IgG (H+L) (Cell
Signaling Technology, MA, USA) for 1hr at room temperature.
For the staining of complement 3 (C3), frozen sections were
incubated with rabbit antimouse C3 (Abcam, MA, USA) fol-
lowed by the staining of secondary Alexa Fluor 488-antirabbit
IgG (H+L) (Proteintech, Wuhan, China). After three PBS
washes, the slides were counterstained with DAPI for 1min
and then observed under the Confocal Laser Scanning Micro-
scope FV3000 (Olympus, Tokyo, Japan).

2.13. Statistical Analysis. Statistical analysis was performed
with Prism 8 (GraphPad). The data are presented as the
meanÆSEM. Differences between pre- and post-MSCT sam-
ples were determined by paired Student’s t-test and the vari-
ance was normally distributed. Unpaired Student’s t-test was
used to detect the differences between the two groups. Pear-
son correlation analysis was used to evaluate correlations,
and p-values< 0.05 were considered as statistically significant.

3. Results

3.1. Circulating miR-320b Is Decreased after MSCT in SLE
Patients and Associated with Disease Activity. We performed
miRNA sequencing in plasma samples derived from three
SLE patients before and after MSCT and identified 104 upre-
gulated and 35 downregulated miRNAs (Supplementary 1, 2,
and 3). We validated the expression of specific miRNAs in
the plasma of an additional 30 SLE patients based on the
screening results, and found that the level of circulating
miR-320b was significantly decreased in post-MSCT samples
compared to pre-MSCT samples (p<0:05). Similarly, the
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miR-320b level also decreased in PBMCs of post-MSCT
group (p¼ 0:0501) (Figure 1(a)).

Moreover, miR-320b expression was significantly ele-
vated in the plasma of SLE patients compared with healthy
controls. The area under the curve (AUC) for miR-320b in
distinguishing SLE patients from healthy controls was 0.805
(Figure 1(b)). Our data showed that miR-320b level was
positively correlated with the SLEDAI score (Figure 1(c)),
indicating that circulating miR-320b may be involved in
the pathogenesis of SLE.

3.2. MAP3K1 Is a Direct Target of miR-320b. To identify
candidate miR-320b target genes, we found that the target
genes were mainly enriched in mitogen-activated protein kinase
(MAPK) signaling pathways by using TargetScan (http://www.
targetscan.org) and KEGG pathway analysis (Figure 2(a)).
Among the predicted targets, MAP3K1 mRNA and protein
levels were significantly lower in cells transfected withmiRNA
mimics (Figures 2(b) and 2(c)). Bioinformatic analysis pre-
dicted two highly conserved binding sites (1,286–1,292 and
1,758–1,763) in the MAP3K1 mRNA 3′-UTR (Figure 2(d)).
Luciferase reporter assays showed that miR-320b directly

regulated MAP3K1 expression by binding to two conserved
sites of 3′-UTR of the mRNA (Figure 2(e)).

3.3. MAP3K1 Level Is Decreased in SLE Patients and Involved
in CD4+ T-Cell Proliferation. Next, we detected MAP3K1
expression in PBMCs from healthy controls and SLE patients
and found that MAP3K1 was significantly decreased in SLE
patients. We then evaluated the diagnostic ability of MAP3K1
in SLE using ROC and obtain the AUC on MAP3K1 with a
value of 0.847 (Figure 3(a)). We also observed a significant
difference in MAP3K1 mRNA levels in PBMCs between SLE
patients with higher disease activity (SLEDAI> 8) and those
with lower activity (SLEDAI≤ 8) (Figure 3(b)). Moreover,
further analysis showed that MAP3K1 expression was nega-
tively correlated with SLEDAI and erythrocyte sedimentation
rate (ESR) levels (p<0:05), and positively correlated with
hemoglobin, serum albumin, and serum 25-(OH)D levels
(p<0:05). Besides, MAP3K1 expression showed a negative
tendency with the level of 24-hr urine protein (p¼ 0:0665)
(Figure 3(c)).

Previous studies have shown aberrant T-cell proliferation
in SLE patients and lupus mice [28]. We wondered whether
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FIGURE 1: Circulating miR-320b is decreased after MSCT in SLE patients and associated with disease activity. (a) miR-320b expression in
plasma and PBMCs of SLE patients before and after receiving MSCT. Plasma, n= 32; PBMC, n= 7. (b) Expression levels and ROC curve of
circulating miR-320b in HC and SLE groups. HC, n= 30; SLE, n= 46. (c) Association of circulating miR-320b expression with the SLEDAI
score of SLE patients. HC, healthy control; MSCT, mesenchymal stem cell transplantation; ROC, receiver operating characteristic; SLEDAI,
systemic lupus erythematosus disease activity index. ∗p<0:05, ∗∗p<0:01.
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MAP3K1 could play a role in regulating immune cell prolif-
eration. Then, we performed MAP3K1 expression knock-
down in HC PBMCs by shMAP3K1 lentivirus and found
elevated proliferation rate of CD4+ T cells (Supplementary 1
and Figure 3(d)). These data revealed that decreased MAP3K1
levels in SLE PBMCs may be involved in CD4+ T-cell
proliferation.

3.4. miR-320b Blockade Alleviates Symptoms of SLE and
Inhibits Proliferation of CD4+ T Cells in MRL/lpr Mice.
The role of miR-320b in MSCT of lupus mice was investi-
gated by injecting agomirs, antagomirs, or NC in MRL/lpr
mice (Figure 4(a)). The results showed that the spleen/body
mass index (Figure 4(b)), urine protein level (Figure 4(c)),
and plasma IL-6 level (Figure 4(d)) were significantly decreased
in the miR-320b antagomir group compared with those in
miR-320b agomir and NC groups. Renal impairments were
also ameliorated in miR-320b antagomir group, as shown
by reduced inflammatory cell infiltration, tubular atrophy,
fibrosis (Figure 4(e)), and less C3 and IgG deposition in the
peripheral capillary loops (Figure 4(f)). These in vivo findings
demonstrated that miR-320b blockade exerted therapeutic
effects in MRL/lpr mice.

We also detected the proliferation of T cells in different
organs and found that the proliferation rate of splenic CD4+
T cells in the miR-320b antagomir group was significantly
lower than that in the NC group (Figure 4(g)). Furthermore,
the injection of miR-320b antagomirs significantly increased
the mRNA levels of MAP3K1 in the spleens of these MRL/lpr
mice (Figure 4(h)). Thus, miR-320b blockade inhibited the
proliferation of splenic CD4+ T cells in MRL/lprmice. These
results suggest that miR-320b may play a crucial role in lupus
mice by regulating MAP3K1 expression.

3.5. MSCs Regulate miR-320b/MAP3K1 Expression Both In
Vitro and In Vivo. We compared MAP3K1 expression levels
in patient PBMCs before and after MSCT and found that
MAP3K1 expression was increased after MSCT (Figure 5(a)).
Additionally, we examined MAP3K1 levels in PBMCs from
MSCT patients who had been followed-up for 6months. The
data showed that MAP3K1 expression levels increased in five
patients who had the clinical response after MSCT, whereas
the level remained unchanged in three patients who had no
response (Figure 5(b)).

To explore whether MSCs can regulate miR-320b/
MAP3K1 expression in vitro, we conducted coculture experi-
ments using PBMCs and MSCs. We found that miR-320b
level was both significantly decreased in PBMCs (Figure 5(c))
and coculture medium (Figure 5(d)), and MAP3K1 mRNA
level was increased in PBMCs (Figure 5(e)). Besides, the cell
proliferation assay showed that MSCs inhibited CD4+ T-cell
proliferation (Figure 5(f)).

Next, we used RNase to abrogate the expression of miR-
NAs in the coculture supernatant. Compared with PBMCs

cocultured with MSCs without RNase, the proliferation rates
of PBMCs and CD4+ T cells were significantly decreased in
PBMCs with RNase (Figure 5(g)). These results suggested
that circulating miRNAs, including miR-320b, were involved
in the inhibitory effects of T-cell proliferation.

4. Discussion

SLE is a complex autoimmune disease characterized by the
production of autoantibodies and the involvement of multi-
ple organs. MSCT has been demonstrated as a safe and effec-
tive therapy for SLE. Although several circulating miRNAs
have been characterized as potential diagnostic markers or
therapeutic targets for SLE, whether circulating miRNAs
play functional roles in the pathogenesis of SLE remains
unclear. In our study, we found that MSCs regulate circulat-
ing miR-320b and miR-320b/MAP3K1 expression to restrain
CD4+ T-cell proliferation in SLE and lupus mice. These
results suggested that miR-320b may be a potential diagnos-
tic markers and target for the treatment of SLE.

Here, we performed small RNA sequencing analysis to
identify the differentially expressed circulating miRNAs dur-
ing MSCT. Our data showed that miR-320b was significantly
decreased in the plasma of SLE patients after MSCT. Impor-
tantly, miR-320b expression was associated with SLEDAI
and other clinical parameters. In SLE patients, circulating
miRNAs were reported to be related to disease activities
[7, 29–31] and associated with organ involvement, including
lupus nephritis and thrombopenia [32–37]. These miRNAs
have been characterized as potential diagnostic markers or
therapeutic targets. Therefore, our results indicated that
miR-320b may serve as new potential diagnostic biomarker
for SLE.

In recent studies, miR-320b has been reported to sup-
press cell proliferation, migration, and invasion in various
cancers [38]. However, there are few studies on miR-320b in
immune diseases, including SLE. To further explore the bio-
logical function of miR-320b in SLE, we screened out and
analyzed the expression of miR-320b target gene MAP3K1.
MAP3K1 is a member of the MAP3K superfamily that con-
trols the MAPKK-MAPK signaling cascades and regulates
various aspects of cell biology, most notably cell prolifera-
tion. Lupus T cells exhibit autoreactive and activated inflam-
matory phenotype, which contribute to the pathogenesis of
SLE [28]. Herein, we used the miRNA agomir/antagomir in
vivo and found that antagomir treatment alleviates the symp-
toms of LN and inhibits the proliferation of CD4+ T cells in
MRL/lpr mice. The knockdown of MAP3K1 promoted the
proliferation of T cells in vitro. This inhibitory effect
strengthened the potential clinical significance of miR-320b
and downstream target MAP3K1 in SLE. One study has
similarly shown that knockout of MAP3K1 can promote
cell proliferation during retinal development [39]. They sug-
gested that MAP3K1 suppressed the expression of cyclin D1

in red. (e) Luciferase activity assays were performed to assess whether the regulatory effect of hsa-miR-320b requires the predicted binding
sites in the MAP3K1 mRNA 3′-UTR in HEK293T cells. For miR-320b, the respective binding sites were individually mutated in pMIR1286
(Mutant1), pMIR1758 (Mutant2), and both two sites (Mutant3). n= 3 per group. ∗p<0:05, ∗∗p<0:01.
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and CDK4/6, thereby inhibiting E2F activity for gene expres-
sion and DNA replication G1 to S-phase transition in divid-
ing cells. Despite these data, MAP3K1 was also reported
involved in CD40 ligand-induced cyclin D2 expression and
proliferation in B cells [40]. MAP3K1 may negatively regu-
late the CDK-RB-E2F pathway in multiple cell types. Our
findings suggested that MAP3K1 also represented potential
diagnostic biomarkers and miR-320b/MAP3K1 may be
involved in the CD4+ T-cell proliferation in SLE. However,
the regulatory effects and molecular mechanisms need fur-
ther investigation.

Previous studies have shown that MSCs have an inhibi-
tory effect on the proliferation and cytokine secretion of
T cells. Cytokines like transforming growth factor-β (TGF-
β), nitric oxide (NO), prostaglandin E2 (PGE2), and indo-
leamine-2,3-dioxygenase (IDO) were involved in the MSC-
mediated T-cell suppression [14]. Our group also reported
that MSCs suppress the proliferation of T cells through a
CD8+ T cell/IFN-γ/IDO axis [15]. In this study, we found
that MSCs regulated miR-320b/MAP3K1 expression both in
vitro and in vivo and were possibly involved in the inhibitory
effects of T-cell proliferation.

Recent researches suggest that MSCs can exhibit thera-
peutic effects through regulation of miRNAs in autoimmune
diseases. In SLE, MSCT rescued bone marrow-derived MSCs
function in MRL/lpr mice by transferring Fas and down-
stream miR-29b/Dnmt1/Notch epigenetic cascade [41].
Despite these findings, the molecular mechanisms of MSCs
in the regulation of circulating miRNAs remain elucidated.
Circulating miRNAs are secreted into the extracellular space
by different cell types, in the form of lipid or lipoprotein
complex, such as microvesicles and exosomes [42]. They
are delivered to circulating cells or other tissue cells [43, 44]
and play a role in cell–cell communication [45]. In recent
studies, miRNAs were mainly secreted or transferred from
MSC-derived extracellular vesicles (EVs) to regulate the bio-
logical functions of cells. MSCs engineered to overexpress
miRNA-let7c attenuated kidney damage and fibrosis in
mice with unilateral ureteral obstruction through miRNA
transfer [46]. In septic mice, IL-1β-pretreated MSCs trans-
ferred exosomal miR-146a to macrophages, leading to M2
polarization and improved survival rate [47]. However,
MSC-derived EVs did not include miR-320b (data not
shown), and miR-320b expression in plasma and PBMCs
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MSCT. n= 8. (b) The changes in MAP3K1 expression in responders (n= 5) and nonresponders (n= 3) during MSCT. (c–f ) PBMCs fromHC
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was both decreased in patients receiving MSCT. There are
some possible speculations regarding the changes of miR-
320b expression during MSCT. Some MSC-derived miRNAs
may regulate DNA methyltransferase expression, such as
DNMT1, DNMT3a, etc. [48] We suggest that some miRNAs
from MSCs may regulate circulating and cellular miR-320b
expression through DNAmethyltransferase in PBMCs. MSC-
derived lncRNAs may target miR-320b and downregulate its
expression, thereby regulating MAP3K1 expression in
PBMCs [49]. Therefore, further investigations are needed to
clarify the underlying mechanisms of MSCs-regulated circu-
lating miRNAs in the treatment of SLE.

There are still several limitations in this study. First of all,
the molecular mechanisms of miR-320b/MAP3K1 axis in the
pathogenesis and treatment of SLE remain unclear. Besides,
although many miRNAs have been characterized as diagnos-
tic and prognostic biomarkers for SLE, further research is
urgently needed regarding their clinical and therapeutic
effects. To date, no clinical research has been conducted on
miRNA therapy for the treatment of SLE. This may be due to
the insufficient safety of this therapy and the difficulty in
ensuring targeted delivery of miRNA. Thus, further experi-
ments are needed to clarify the functional roles and underly-
ing mechanisms of miR-320b/MAP3K1 in SLE.

5. Conclusion

In conclusion, our findings suggested that circulating miR-
320b and its target gene MAP3K1 represent potential diag-
nostic biomarkers and may be involved in the CD4+ T-cell
proliferation in SLE. These results provide new insights into
the pathogenesis of SLE and suggest potential targets for the
treatment of this disease.
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