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Insights into the Roles of B Cells in Patients with Sepsis
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Sepsis is a life-threatening yet common disease, still posing high mortality worldwide. Sepsis-related deaths primarily occur during
immunosuppression; the disease can hamper the numbers and function of B cells, which mediate innate and adaptive immune
responses to maintain immune homeostasis. Dysfunction of B cells, along with aggravated immunosuppression, are closely related
to poor prognosis. However, B cells in patients with sepsis have garnered little attention. This article focuses on the significance of
B-cell subsets, including regulatory B cells, in sepsis and how the counts and function of circulating B cells are affected in patients
with sepsis. Finally, potential B-cell-related immunotherapies for sepsis are explored.

1. Introduction

Sepsis is a complex disease. Although its etiology has been
most recently defined as “a dysregulated host response to
infection” [1], different patients may have prior exposure
to different pathological processes, such as trauma, burns,
or acute abdomen [2]. Also, the pathogens that cause such
infections may vary, such as bacteria, viruses, or fungi [3].
Historically adopted etiological therapies primarily focused
on the removal or drainage of the infectious foci and the use
of antibiotics. Current approaches also pay attention to help-
ing patients recover normal immune function [4, 5].

Patients with sepsis experience immune disorders that can
be divided into two processes: pro-inflammatory response
and immunosuppression, which occur sequentially or simul-
taneously [6]. Advances in medical care have helped most
patients with sepsis survive pro-inflammatory outbreaks;
deaths in patients with sepsis occur mainly during immuno-
suppression [7, 8]. Immunosuppression is an important cause
of late death in early survivors of sepsis and remains difficult
to treat [9, 10]. Many studies have shown that lymphocyte
failure contributes to immunosuppression in sepsis [2, 4, 10].

B cells are an important subset of lymphocytes that mediate
adaptive and innate immune responses by producing antibodies,

presenting antigens, and secreting cytokines [11, 12]. They
are also able to interact with other innate and adaptive
immune cells and affect each other’s function during sepsis
and inflammation [13–15]. Although B cells are the founda-
tion of immune homeostasis, and B-cell failure will inevitably
trigger or exacerbate immunosuppression [4, 16], most stud-
ies have focused on how other immune cells change during
sepsis while neglecting B cells. B cells play a more important
role in sepsis than previously thought [17]; for example, both
pathogen clearance and survival were reduced in B-cell-defi-
cient septic mice, and supplemental B cells improved the
survival rates of Rag1-deficient mice [18]. Other studies con-
ducted in patients with sepsis or septic shock have associated
peripheral blood B-cell depletion and decreased serum IgM
levels with poor prognosis. Relieving B-cell depletion and
alleviating the decrease of IgM levels likely reduce immuno-
suppression and improve patient outcomes [19–21]. Clarify-
ing the mechanisms of B-cell immunity in sepsis is
prerequisite to developing immunotherapies that can success-
fully treat immunosuppression.

2. The Development and Activation of B Cells

Bone marrow serves as the primary location for B-cell
growth and storage. Here, hematopoietic stem cells give
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rise to diverse B-cell lineages, which then move through vari-
ous developmental phases, such as pro-B cells, pre-B cells, and
immature B cells [22–24]. Most immature B cells leave the
bone marrow after their heavy and light-chain immunoglob-
ulin (germline) genes rearrange to form the fully functional B-
cell receptor (BCR) and completely differentiate in the
periphery to form transitional B cells [24, 25]. Most of these
cells are self-tolerant, with few autoreactive cells that undergo
clonal deletion or receptor editing in the periphery and even-
tually develop into naïve B cells [24, 26, 27]. Naïve B cells
circulate in the peripheral blood and lymphoid tissues, con-
tinue to activate and differentiate when they encounter a

homologous antigen, and die within a few days if they do
not encounter the homologous antigen [28].

Naïve B cells can be divided into two groups: B1 and B2
cells (Figure 1). The former consists of B-1a and B-1b sub-
sets, and the latter consists of marginal zone (MZ) and fol-
licular (FO) B cells [29]. Mature B cells migrate to peripheral
lymphoid tissue and can become active when encountering
homologous antigens in a sepsis setting. Their activation
response can be divided into two distinct pathways that
occur in the absence or presence of T-cell help, respectively.

In general, B1 and MZ B cells are activated independently
of helper T cell (Th) help. They can rapidly differentiate into
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FIGURE 1: Development and differentiation of B-cell lineage. B cells originate from progenitors that derive from stem cells and undergo
multiple developmental stages, with the B1 subset from fetal liver and the B2 subset from bone marrow. The B1 subset is composed of B-1a
and B-1b subsets, and the B2 subset is comprised of marginal zone (MZ) and follicular (FO) B cells. The B1 subset and MZ B cells belong to
the innate B cells that can be activated independently of T cells and differentiate rapidly into short-lived plasmablasts, which produce low-
affinity antibodies without entering the germinal center (GC). On the other hand, FO B cells can interact with activated naive T cells at the
T–B border. If the interaction is insufficient, activated B cells differentiate into short-lived plasmablasts that produce low-affinity antibodies.
However, if the interaction is sufficient, they can also differentiate into GC B cells. GCs are composed of dark and light zones, and high-
affinity clones eventually exit the GCs and differentiate into memory B cells and long-lived plasma cells that secrete high-affinity antibodies.
Tfh, follicular helper T. FDC, follicular dendritic cell.
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short-lived plasmablasts without entering the germinal center
(GC) to quickly build the body’s first line of defense against
infection before FO B cells play a role [30–33]. In response to
bacterial components, MZ B cells exhibit a high sensitivity
and are capable of producing antibodies swiftly and sustain-
ably [34]. Further, they can secrete IL-6, as well as CXCL1/
CXCL2, within 3–4 hr following Staphylococcus aureus infec-
tion, contributing to the recruitment of neutrophils to the site
of infection, thereby facilitating the speedy elimination of
invading pathogens [35]. B-1a cells, on the other hand, are
noted for secreting natural IgM and IgG3 to neutralize endo-
toxins, thereby playing a crucial role in purging pathogenic
substances from circulation and improving sepsis [36].

FO B cells become active when the BCR recognizes anti-
gens and key helper signals from antigen-specific Th cells.
The antigen binds to the BCR and triggers the necessary gene
expression program in the cell, which then leads to T–B-cell
interactions through the expression of multiple chemokine
receptors and corresponding ligands. If the interaction is
insufficient, activated B cells do not enter the GC but develop
into extrafollicular plasma cells, producing mainly IgM
immunoglobulins that coordinate innate immunity and ini-
tiate GC responses. If the interaction is sufficient, the acti-
vated B cells return to lymphatic follicles for rapid cloning
and expansion to form GC (Figure 1). Centroblasts divide to
form centrocytes, migrate outward from the dark zone to
form the light zone, interact with dendritic cells and follicular
helper T (Tfh) cells, then differentiate into memory B cells
and plasmablasts [30, 37–40]. In septic mice, Tfh cells have
been shown to help prevent the depletion of FO B cells [41].

3. The Significance of B Cells in Sepsis

FO B cells, conventional B cells in the adaptive immune
system, are the most numerous of all B-cell lineages.
Although FO B cells also participate in T-cell-independent
(TI) IgM responses, they are mainly differentiated with the
help of T lymphocytes into long-lived plasma cells and class-
switched memory B cells that produce high-affinity IgG anti-
bodies and mediate the classical humoral immune response
[30]. Long-lived plasma cells consistently produce high-
affinity antibodies, and although they do not express antigen
receptors and cannot sense antigens, they continue to release
their products as high-affinity antibody factories as the first
line of defense against reinfection [42–44]. Class-switched
memory B cells express specific antigen receptors that trigger
a memory response when the antigen is encountered again.
During reinfection, memory B cells rapidly differentiate and
continue to supply high-affinity antibodies to the blood at
the level of existing antibodies, effectively preventing antigen
challenge [45]. Secondary infections are less likely to occur
due to immune memory or even at all in healthy individuals
[44]. However, many memory B cells are depleted in patients
with sepsis, hindering humoral immunity and therefore
increasing the risk of secondary infection. Indeed, depletion
of memory B cells and low antibody levels are closely related
to poor patient outcomes, suggesting that an intact humoral
immune response is important in sepsis [46–49].

The onset of the FO B-cell-mediated adaptive immune
response develops at least 5–7 days after the initial infection.
This delay can be fatal if blood or mucosal infection occurs
before this time. B1 cells and MZ B cells compensate for this
limitation, as they mediate an innate immune response by
producing IgM, IgG, and IgA antibodies through a faster TI
pathway [32, 50]. B1 cells can not only respond to some TI
antigens but also recognize the surface antigens of some
Gram-negative bacteria. They can either manage infection by
secreting antibodies mainly composed of low-affinity IgM or
govern intestinal defense against pathogens by secreting IgA.
Moreover, B1 cells can enter the GC for class switching and
somatic hypermutation when self-regulation is disordered and
produce high-affinity IgG antibodies [51–53]. Remarkably,
B-1a cells have reduced excessive inflammation during sepsis
by producing large amounts of IL-10 and granulocyte-
macrophage colony-stimulating factor in a mouse model of
sepsis [54–56]. Studies have also shown that mice with bacte-
rial sepsis have significantly fewer B-1a cells, and B-1a
cell-deficient mice are more prone to infection and death.
Supplemental B-1a cells can significantly reduce systemic
inflammation and improve the survival rates of septic mice [57].

Like B1 cells, MZ B cells can quickly respond to some TI
antigens, secrete the first wave of innate immune response
antibodies, and modulate the function of T cells and dendritic
cells by secreting various cytokines. MZ B cells help regulate
rapid systemic anti-infective immunity in host defense
responses, dominating the early stages of pathogen eradication
[58, 59]. Mice lacking MZ B cells produce fewer antibodies in
the early stages after pathogens invade circulation [60, 61]. In
addition, MZ B cells can connect the innate immune system
and adaptive immune system by initiating low-affinity anti-
body responses, and they cooperate with lymphocytes and
antigen-presenting cells in T-cell-dependent and TI immune
responses [62, 63]. Of note, the role of MZ B cells in the
inflammatory response remains controversial [64, 65]. On
the one hand, MZ B cells can secrete pro-inflammatory cyto-
kines such as IL-6 and C-C motif chemokine ligand 2, which
exacerbate the inflammatory response [66]. Pro-inflammatory
cytokines produced by MZ B cells can aggravate lipopolysac-
charide (LPS)-induced systemic inflammatory responses, and
mice lackingMZB cells are resistant to LPS-induced endotoxic
shock [64]. On the other hand, MZ B cells may suppress
inflammatory responses during the early stages of infection by
producing IL-6, which inhibits the production of tumor necrosis
factor-α and, therefore, the systemic inflammatory response
[67]. MZ B cells are also the cells with the strongest ability to
produce inflammatory inhibitory factor IL-10 in vitro [68].

Collectively, the adaptive and innate immune functions
of B cells play an important role in sepsis, and the two aspects
are closely related. While the abundance of high-affinity anti-
bodies secreted during the adaptive immune response is
essential to fighting infection, the role of the innate immune
response should not be underestimated [22]. It is well estab-
lished that sepsis can cause abnormalities in the counts and
functions of B cells [16]. These abnormalities, in turn, inevi-
tably lead to impaired immune functions mediated by B cells,
resulting in an inability to effectively stifle the attack of
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pathogens, weakening the protective effect on the body and
exacerbating the deterioration of sepsis.

4. Regulatory B Cells in Sepsis

Regulatory B cells (Bregs) are a specialized subset of B cells
with immunomodulatory functions. The precise source of
Bregs remains unknown, however, it has been observed
that nearly all subsets of B cells can differentiate into Bregs
[69]. They play an important role in maintaining immune
homeostasis and tolerance by producing anti-inflammatory
cytokines and suppressing inflammatory responses [70].

Breg counts are disturbed in sepsis. Umakoshi et al. [71]
found the frequency of CD1d+CD5+ Bregs in the peripheral
blood of cecum ligation and puncture mice increased at 6 hr
and returned to baseline at 7 days. The emergence of Bregs
accompanied by B lymphocytopenia was the first observable
event in sepsis, potentially resulting in immunoparalysis. In a
mouse model of endotoxic shock, it was observed that the
percentage of CD5+CD1dhi Bregs decreased. Transfer of
CD5+CD1dhi Bregs from healthy wild-type (WT) mice
offered protection against severe endotoxic shock [72]. In
patients with sepsis, the percentage of IL-10-producing Bregs
decreased significantly compared to healthy controls, and this
decrease was more pronounced in nonsurvivors than in sur-
vivors [73]. Moreover, a transient depletion of memory B cells
and Bregs from the circulation was observed in experimental
endotoxemia in humans [74].

Bregs may exert a protective effect through their anti-
inflammatory function in sepsis. It has been noted that the
expression of IL-10 in CD5+CD1dhi Bregs was remarkably
reduced in severe septic shock mice in response to endotoxin.
In addition, the adoptive transfer of CD5+CD1dhi Bregs from
healthy WT mice (but not from IL-10-deficient mice) led to
the downregulation of IFN-γ secretion in CD4+ T cells, pro-
tecting against endotoxic shock. This highlights the significant
therapeutic potential of IL-10-producing Bregs in mitigating
endotoxic shock [72]. Furthermore, research has shown that
IL-35-expressing B cells can regulate Th17 cell function and
suppress inflammation. Injection of recombinant IL-35 or
IL-35þ Bregs into mice has been observed to resolve inflam-
mation by suppressing effector Th1 and Th17 cell responses
while simultaneously regulating Treg-cell responses [75, 76].

The changes in Bregs observed in sepsis suggest a poten-
tial role for Bregs in the pathogenesis and outcome of sepsis.
The reduction and functional impairment of Bregs may con-
tribute to excessive and dysregulated inflammation in sepsis,
leading to poor prognosis.

5. Alterations of Circulating B-Cell Counts in
Patients with Sepsis

Reduced lymphocyte counts are closely associated with
immunosuppression in sepsis and the prognosis [21]. The
numbers of B cells and their subsets decline in sepsis but
remain debatable. For instance, some studies have reported
a decrease in the total number of B cells in the peripheral
blood [77, 78], but their counts did not significantly change

in other cases [46]. Peripheral blood samples are most ana-
lyzed in studies on B cells of patients with sepsis. Table 1 and
Table S1 highlight findings from studies on peripheral blood
B cells.

Table 1 includes studies that quantified changes in
peripheral blood B-cell counts in patients with sepsis. Two
meta-analyses reported changes in the overall count of cir-
culating B cells within 24 hr of onset, but their results did
not exactly match because different studies were included
[19, 20]. Both reported that circulating B-cell counts in
dead patients were significantly lower than in surviving
patients, suggesting that B-cell counts are closely related
to patient prognosis, which was confirmed in other studies
[16, 48]. However, comparisons of patients with healthy con-
trols were inconsistent: one meta-analysis showed no signif-
icant difference in circulating B-cell counts between patients
and controls [19], while the other reported significantly
fewer B cells in patients than in controls [20]. The latter
was supported by three other studies [16, 79, 80], and similar
results were obtained at other time points (48 hr after admis-
sion and days 3, 4, 7, and 8 after onset) [16, 77–80]. Ulti-
mately, most studies indicate lower peripheral blood B-cell
counts in patients with sepsis, which is closely related to
prognosis. An experimental human endotoxemia model
also supports this conclusion [74]. Besides, another study
found that the splenic B-cell counts of patients with sepsis
were significantly reduced compared with traumatic or criti-
cally ill patients without sepsis—greater B-cell loss was
linked to persistent sepsis [81].

Table S1 includes studies that monitored how the counts
or percentage of peripheral blood B-cell subsets change in
patients with sepsis. The selected B-cell subsets and their defi-
nitions varied across studies. Results differed even for naïve B
cells with relatively uniform nomenclature and surface mar-
kers: two studies reported a lower percentage of naïve B cells in
patients than in controls [46, 80], and one study found no
significant difference in percentages between patients and con-
trols [78], and one study reported a higher percentage in
patients than in controls [79]. These studies offer some valu-
able insights despite their inconsistencies. For example, sepsis
indeed affects the B-cell compartment, whose different subsets
are uniquely affected. Therefore, future studies should address
the subsets separately rather than describing B cells as a whole.

B-cell counts decrease due to a decrease in the source,
increased exhaustion, or both. Studies have shown that B-cell
depletion is not due to impaired bone marrow production
[48, 77] but rather apoptosis [4, 79]. The activation of B cells
in patients with sepsis is unsustainable and accelerates apopto-
sis [79, 80], as shown by a mouse model of sepsis [82, 83].
B cells in humanized mice also show characteristic signs of
apoptosis observed in human patients with sepsis [84]. Sensi-
tivity to apoptosis may differ across subtypes, and highly sen-
sitive memory B cells may experience more severe apoptosis
[85]. The pathways of B-cell apoptosis are also diverse, includ-
ing endogenous and exogenous apoptosis [86]. Additionally,
patients with sepsis have fewer antigen-presenting T cells in
their secondary lymphoid organs, which may impair B-cell
maturation and deplete B cells [81, 87, 88]. Besides, circulating
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B-cell counts may also decrease because B cells flock to the site
of inflammation during infection.

6. Changes of B-Cell Functions in Patients
with Sepsis

The B cells in patients with sepsis not only change in num-
bers but also functions (Figure 2). The main function of
B cells is to secrete a variety of antibodies to eliminate patho-
gens. Patients with sepsis show abnormal serum immuno-
globulin levels, which indicate high mortality [89, 90]. Levels
of various immunoglobulin subtypes can also change in
patients with sepsis. One study found that 16 of 21 patients
with septic shock developed hypoimmunoglobulinemia,
where levels of IgG and/or IgM decreased [91]. Another
study reported that levels of IgG, IgM, and IgA decreased
in 61%, 40%, and 4% of 62 patients with septic shock, respec-
tively [89]. This means the level of any immunoglobulin
subtype decreases in a patient-specific way, and not every
type will decrease in a single patient. Overall levels of IgM
decreased in the sepsis patient group when compared to
healthy controls, whereas the IgG and IgA levels do not
significantly differ. This result has been further verified
in vitro [16, 47]. Decreased IgM levels were also found in a
larger study that included 332 patients. Here, IgM levels were

significantly lower in patients with sepsis or septic shock
compared with healthy controls and were significantly
higher in survivors than in nonsurvivors [92]. Furthermore,
two meta-analyses invariably reported decreased IgM levels
within 24 hr in patients with sepsis, which was associated
with reduced survival [19, 20]. Overall, decreased levels of
IgM are widely implicated in patients with sepsis and poor
prognosis.

CD27+ B cells are the main antibody-secreting cells, and
CD27+CD21hi B cells have a stronger IgM-producing capac-
ity than CD27+CD21lo B cells [93, 94]. Our recent study
found no significant difference in the expression levels of
IgM on the surface of B-cell subsets between patients with
septic shock and healthy controls, indicating that IgM levels
decreased not because of immunoglobulin class switching.
Moreover, the IgM levels positively correlated with the num-
ber of CD27+CD21hi resting memory B cells in patients with
septic shock [16]. Therefore, their decrease could be attrib-
uted to the depletion of resting memory B cells. Impaired
immunoglobulin assembly may also contribute [95]: the
heavy and light chains of immunoglobulins are produced
and assembled in B cells or plasma cells, and when more
light chains than heavy chains are produced intracellularly,
the excess light chains are released into the blood. Abnormally
elevated concentrations of circulating light chains (free κ and λ

TABLE 1: Changes in circulating B-cell counts in patients with sepsis/septic shock.

Reference Year Design/sample size Blood collection time Results

[16] 2020
Prospective cohort study; survivors
(n= 57), nonsurvivors (n= 24), healthy
controls (n= 13)

Days 1, 3, and 7 of
septic shock onset.

On days 1, 3, and 7, B-cell counts were
lower in patients than in healthy controls;
on day 7, it was lower in nonsurvivors
than in survivors

[19] 2019
Meta-analysis; seven studies∗ (1999–2017)
were included, and sample sizes ranged
from 21 to 181

Within 24 hr of
sepsis/septic shock
onset

There was no significant difference in
B-cell counts between patients and
healthy controls, but lower in
nonsurvivors than in survivors

[20] 2018
Meta-analysis; seven studies∗ (1999–2013)
were included, and sample sizes ranged
from 21 to 291

Within 24 hr of
sepsis/septic shock
onset

B-cell counts were lower in patients than
in healthy controls and were lower in
nonsurvivors than in survivors

[48] 2020
Prospective cohort study; survivors
(n= 23), nonsurvivors (n= 17)

Within and after 24 hr
of sepsis onset

At both time points, B-cell counts were
lower in nonsurvivors than in survivors

[77] 2019
Prospective cohort study; ICU patients
(n= 105, sepsis (n= 52), nonsepsis
(n= 53)), healthy controls (n= 63)

At the time of ICU
admission and 48 hr
after admission

At both time points, B-cell counts in ICU
patients were lower than those in healthy
controls; there was a decreasing trend in
the sepsis group compared with the
nonsepsis group, but there was no
significant difference

[78] 2018
Prospective cohort study; patients
(n= 138)

Day 3 of septic shock
onset

B-cell counts in patients were lower than
the clinical laboratory age-matched
reference value

[79] 2017
Prospective cohort study; patients with
septic shock (n= 24)

Days 1 and 7 of septic
shock onset

At both time points, the B-cell counts in
patients with sepsis were lower than the
population median

[80] 2020
Prospective cohort study; patients with
sepsis (n= 10), healthy controls (n= 10)

Days 1, 4, and 8 of
sepsis onset

At all three time points, the relative
percentage of B cells in patients was lower
than in healthy controls

 

∗The studies involved in meta-analysis are no longer discussed separately. ICU, intensive care unit.
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chains) have been observed in patients with sepsis, suggesting
impaired immunoglobulin assembly [96, 97]. Furthermore,
any given immunoglobulin normally has either two light
chains κ or λ: mature B cells produce only one class of Ig light
chains [98, 99]. However, B cells with both light-chain κ and λ
emerged in the blood of patients with sepsis, and higher num-
bers of B cells expressing both light-chain κ and λ were posi-
tively correlated with free light-chain κ and λ levels [95].

Several other B-cell functions change in sepsis. For exam-
ple, during sepsis, the expression levels of human leukocyte
antigen-DR decrease in B cells, and the expression levels of
PD-1, PD-L1, CD95, and CD80 increase. These phenotypic
changes may not only impair the ability of B cells to present
antigens but also affect prognosis [80, 100, 101]. Furthermore,
the activation and proliferation of circulating B cells in patients
with sepsis decrease and tend to failure [102, 103]. Besides,
B cells in septic mice abnormally secrete cytokines, resulting
in insufficient innate immune response and increasedmortality
[18]. Overall, these multifaceted changes in B-cell functions do
not occur independently and likely affect each other. Altered
functions may further deplete B-cell counts and vice-versa to
promote immunosuppression in patients with sepsis.

7. B-Cell-Related Immunotherapy in Sepsis

B-cell-related immunotherapies for sepsis focus on replenish-
ing the numbers and functions of B cells. Apoptosis exhausts
many immune cells, including B cells, and likely contributes
to sepsis-induced immunosuppression, and its extent relates
to the severity and prognosis [104, 105]. Asmentioned earlier,
B cells in sepsis show increased expression of CD95 and PD-1.
Down-regulating their expression or blocking their binding

to ligands may improve the survival rate of septic mice
[106–110]. Another strategy includes treatment with anti-
CD40, IL-15, or IL-30 to upregulate the expression of anti-
apoptotic protein Bcl-2 in B cells [109, 111–113]. Caspase-3 is
a key enzymewhose activation is a prerequisite to endogenous
and exogenous apoptotic pathways; inhibition of its activity
has been shown to enhance the survival of septic mice
[114–116]. Besides, B cells can also be recovered in septic
mice by inhibiting caspase-1, a protein that mediates pyrop-
tosis. Therefore, inhibiting pyroptosis may also be promising
[117–119]. Besides, hematopoietic stem cell (HSC) rejuvena-
tion therapies, such as FOXOs and CASIN, could contribute
to the regulation of cell growth and survival, increase the
pools of common lymphoid progenitor cells, and restore the
B-cell counts in the body. This indicates that similar therapies
and drugs for HSC rejuvenation could be a promising strategy
for restoring B-cell loss [120, 121]. Moreover, animal studies
have shown that supplementing specific B-cell subsets
through immunotherapy, such as introducing B-1a cells or
CD5+CD1dhi Bregs, can efficiently reduce inflammatory reac-
tions and prevent organ damage. These results suggest that
immunotherapy to reverse B-cell depletion can reduce the
harm caused by sepsis [55, 57].

Immunoglobulin supplementation can compensate for
the reduced secretion of antibodies by B cells in patients
with sepsis. IgG is the main antibody component in serum
and body fluids, accounting for about 80% of the total serum
immunoglobulin. Although intravenous IgG-only polyclonal
immunoglobulin has been suggested to treat sepsis, it has not
been proven beneficial [119, 122], even in a large study
(n= 624) [123]. Polyclonal immunoglobulins could also be
supplemented because they are rich in IgM and IgA
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FIGURE 2: Changes of circulating B cells in patients with sepsis. Significant alterations in both the counts and function of circulating B cells
were observed in patients suffering from sepsis.
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(IgGAM). A meta-analysis of 19 trials involving more than
1,500 patients with sepsis evaluated the efficacy of IgGAM
and found that it significantly reduced mortality [124].
IgGAM therapy has also improved outcomes of patients
with sepsis across studies [125, 126]. However, the efficacy
of IgGAM must be further verified in larger clinical studies.

It is important to be vigilant about the impact of “sepsis
heterogeneity” during immunotherapy. As previously men-
tioned, patients may have been exposed to different pathogenic
factors or infected with various microorganisms. Additionally,
theymay have varying degrees of severity, be at different disease
stages, or have different comorbidities. These variables make
immunotherapy challenging. Therefore, personalized treatment
should be prioritized when conducting immunotherapy.

8. Conclusions

B cells primarily arise in the bone marrow and mature in the
periphery. They differentiate into antibody-secreting cells and
memory B cells when they encounter antigens. The B1, MZ,
and FO B-cell subsets play vital roles in anti-infective immu-
nity and therefore sepsis as well. Bregs have immunomodula-
tory functions and may play a protective role in sepsis. Most
studies report depleted numbers of circulating B cells in
patients with sepsis who suffer from poorer prognoses. Different
subsets of B cells are not consistently affected across patients,
though their general depletion could be to activation-related
apoptosis and maturation disorders. Sepsis also impairs B-cell
functions. Decreased serum IgM levels are a hallmark of sepsis
and poor prognosis. B cells manifest abnormal functions in
several ways that could relate to their abnormal counts, and
both factors promote immunosuppression. Current promising
B-cell-related immunotherapies include reducing depletion or
replenishing B cells as well as supplementing with IgGAM.
Future studies should paymore attention to B-cell subsets rather
than B cells as a whole because sepsis affects the former incon-
sistently. Finally, immunotherapies for sepsis should prioritize
individualization.
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