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Systemic lupus erythematosus (SLE) is a complex autoimmune disease. Approximately one-third to two-thirds of the patients with
SLE progress to lupus nephritis (LN). The pathogenesis of SLE and LN has not yet been fully elucidated, and effective treatment for
both conditions is lacking. The endoplasmic reticulum (ER) is the largest intracellular organelle and is a site of protein synthesis,
lipid metabolism, and calcium storage. Under stress, the function of ER is disrupted, and the accumulation of unfolded or
misfolded proteins occurs in ER, resulting in an ER stress (ERS) response. ERS is involved in the dysfunction of B cells, macro-
phages, T cells, dendritic cells, neutrophils, and other immune cells, causing immune system disorders, such as SLE. In addition,
ERS is also involved in renal resident cell injury and contributes to the progression of LN. The molecular chaperones, autophagy,
and proteasome degradation pathways inhibit ERS and restore ER homeostasis to improve the dysfunction of immune cells and
renal resident cell injury. This may be a therapeutic strategy for SLE and LN. In this review, we summarize advances in this field.

1. Introduction

Systemic lupus erythematosus (SLE) [1, 2] is an autoimmune
disease associated with multiple factors, including genetic,
environmental, and lifestyle factors. Multiple systems and
organs are involved in SLE and are driven by abnormal
innate immunity and adaptive immunity. The accumulation
of autoantibody deposition in the kidney leads to renal
inflammation and the destruction of renal structure and
function, which is termed lupus nephritis (LN) and is the
main cause of morbidity and mortality in SLE patients [3].

More than 1million patients with SLE exist in China, which
ranks as the country with the highest number of SLE patients in
the world. Compared with European and American populations,
the incidence of SLE in the Chinese population is higher, the
onset age is earlier, and the disease ismore severe [4, 5]. Currently,
the pathogenesis of SLE and LN remains unclear, although a large
number of studies have shown that it may be related to genetic,
environmental, and drug factors, lymphocyte abnormalities,
abnormal complement activation, and autoantibody production

[6, 7]. The treatment of SLE is extremely challenging with
slow progress, because of the difficulty of early and precise
prevention, and the use of therapies that mainly rely on hor-
mone and immunosuppressive strategies [8–10]. Therefore, it
is imperative to identify the pathogenic mechanisms and
explore new therapies for SLE and LN.

The endoplasmic reticulum (ER) is the largest intracellu-
lar organelle and is a site for protein synthesis, lipid metabo-
lism, and calcium storage. Disruption of ER homeostasis
activates the unfolded protein response (UPR), in which
unfolded or misfolded proteins accumulate in the ER, result-
ing in an ER stress (ERS) response [11]. ERS is involved in
the pathogenesis of SLE and LN via the activation of immune
cells through multiple inflammatory signaling pathways and
mediating the injury of renal resident cells [12, 13] This
review aims to summarize the recent progress in understand-
ing the role of ERS in the occurrence and development of
SLE and LN and emphasize the potential of targeting ER as a
therapeutic strategy for SLE and LN.
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2. Overview of ERS

The ER is the largest organelle in eukaryotic cells. It is com-
posed of interconnected tubular and lamellar lumens that
form a network of interconnected ducts [14, 15]. The ER is
a highly dynamic organelle that is a site for the synthesis,
folding, modification, packaging, transport, and integration
of various molecules that contribute to stress responses, such
as proteins, lipids, phospholipids, cholesterol, and oligosac-
charides. It is also a reservoir of calcium ions [14, 16].

When stimulated by the endogenous or exogenous fac-
tors, such as ischemia and hypoxia, infection, drug toxicity,
and calcium imbalance, unfolded or misfolded proteins in
the ER rapidly accumulate, which activates the UPR. The
ERS response is induced to maintain the ER balance
[17–19]. In the physiological state, three classical ERS pathway
sensors on the ER membrane, inositol-requiring enzyme-1
(IRE1), protein kinase R- (PKR-) like ER kinase (PERK), and
activated transcription factor 6 (ATF6), bind to glucose-
regulated protein 78 (GRP78, also known as BiP), which inacti-
vates the downstream signaling pathways. When ERS occurs,
GRP78 dissociates from the ERS sensors IRE1, ATF6, and
PERK, and binds to unfolded proteins that then activate IRE1,
PERK, and ATF6 signaling pathways via different downstream
target genes to enhance the correct folding of proteins, to pro-
mote the degradation of misfolded proteins, and reduce the cell
damage [20, 21]. However, persistent ERS initiates apoptosis to
eliminate the damaged cells [22].

In addition to the UPR, other ER quality control (ERQC)
systems are present inside the cell, such as the ER-associated
protein degradation (ERAD) and autophagy–lysosome pathway
[11, 16]. The ER does not contain a degradation apparatus;
therefore, most misfolded proteins produced by ERS are mislo-
cated on the membrane and degraded by the cytosolic 26S pro-
teasome via the ERAD pathway or by the autophagy–lysosome
pathway. Some misfolded proteins are also transported to lyso-
somes for clearance by the ER-to-lysosomal-associated degrada-
tion pathway [23, 24].

2.1. IRE1α Pathway. The IRE1α pathway is the most con-
served in the UPR, with dual enzyme activity involving
IRE1α and IRE1β present in the mammals [21]. When ERS
occurs, IRE1 oligomerization induces the kinase domain that is
autophosphorylated to form a dimer, which catalyzes the cleav-
age and activation of the X-box binding protein 1 (XBP1)
mRNA into XBP1s. After entering the nucleus, the transcription
of stress proteins in the ER lumen and ERAD is upregulated,
and finally ERS is alleviated [25]. In addition, Phospho-IRE1α
(P-IRE1α) can degrade the ribosome-related mRNA by depen-
dent decay (RIDD), which hinders the transcription and trans-
lation of unfolded proteins and reduces the ERS. However,
during sustained ERS, P-IRE1α can recruit tumor necrosis factor
receptor-associated adaptor protein 2 (TRAF2), which promotes
inflammation and apoptosis by phosphorylating the c-Jun
N-terminal kinase (JNK) pathway and activating the nuclear
factor-κB (NF-κB) signaling pathway [25, 26].

2.2. PERK Pathways. The mode of activation of the PERK
pathway is similar to that of IRE1α. The N-terminus of the

PERK protein can sense ERS signals, and the C-terminus has
filament/threonine protein kinase domain, but no endonu-
clease activity. When ERS occurs, PERK dissociates from
GRP78 and can phosphorylate eukaryotic initiation factor
2α (elF2α) to inhibit cyclin D1 translation specifically, thereby
inhibiting protein synthesis and reducing protein accumula-
tion in the ER [19]. Moreover, phosphorylated elF2A can
enhance the translation of ATF4, GRP78, and other mRNAs
to promote protein folding in the ER to restore ER homeosta-
sis [27]. When ERS persists, the PERK pathway upregulates
the expression of the C/EBP homologous protein gene
(CHOP) and promotes P-EIF2α dephosphorylation, and
inhibits its reverse transcription, resulting in the induction
of apoptosis-related genes encoding BCL2-interacting media-
tor of cell death and p53-upregulated modulator of apopto-
sis [28–30].

2.3. ATF6 Pathways. ATF6 is a DNA transcriptional activa-
tion protein that contains a basic zinc-finger domain (BZIP).
The protein localizes to the ER membrane. There are two
ATF6 subtypes in mammals, ATF6α and ATF6β, with mul-
tiple GRP78-binding sites and two Golgi localization signals,
which can sense stress signals [25]. When ERS occurs,
ATF6α dissociates from GRP78 and is transferred to the
Golgi apparatus via vesicle trafficking. It is cleaved by Site-
1 and Site-2 proteases in the Golgi apparatus, which releases
the BZIP domain that then migrates to the nucleus, where it
binds to ATF/CRE and ERS response elements. ER chaper-
one gene transcription, ERAD protein translation, and lipid
biosynthesis are then induced to alleviate ERS [26, 31].

3. ERS in Immune Cells in SLE and LN

ERS plays an important role in the immune system. An
abnormal ERS pathway is closely related to autoimmune
diseases [32]. A large number of autoantibodies produced
in SLE can aggravate the ER burden and activate the ERS
[33, 34]. Studies have found that ERS affects the survival,
activation, differentiation, and effector functions of immune
cells, including B cells, macrophages, T cells, dendritic cells,
and neutrophils, resulting in a dysregulation of immune
homeostasis and generating autoimmune diseases [35–37].
Clinical studies have also found that ERS-related proteins
IRE1, PERK, and CHOP are downregulated in SLE patients,
and XBP1 and midbrain stellate cell-derived neurotrophic
factor (MANF) are upregulated, suggesting that these pro-
teins may be involved in the pathogenesis of SLE [38]. ERS in
immune cells in SLE and LN is summarized in Figure 1.

3.1. ERS in B Cells. Many studies have found that the patho-
genesis of SLE is closely related to the B cell abnormalities
and the production of autoantibodies [39]. Antibodies that
target the ERS-related protein GRP78 can be detected in the
blood of SLE patients, and the expression of GRP78 and
XBP1 is increased in plasma cells that secret antibodies, sug-
gesting that the ERS may promote the differentiation of
B cells into plasma cells to increase the secretion of antibo-
dies [40, 41]. It has also been reported that activation of the
IRE1–XBP1 pathway is required for ER expansion and
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antibody secretion by the plasma cells [42, 43]. Gene expres-
sion profile analysis have shown that XBP1-deficient B cells
could not upregulate most of the genes encoding the secreted
antibodies. Knockdown of XBP1 in mice significantly inhib-
ited plasma cell differentiation and decreased IgM synthesis
and antibody secretion [44, 45]. In XBP1 and IRE1 knockout
mice, the secretion of immunoglobulin IgG by plasma cells
was significantly reduced [46].

Interestingly, although ATF6 was activated in B cells stim-
ulated by lipopolysaccharide (LPS), ATF6 deficiency does not
affect antibody secretion in B cells in contrast to the IRE1XBP1
pathway [47]. Similarly, PERK knockdown in mice had no
considerable effect on B cell differentiation and antibody secre-
tion [30, 48]. ERS apoptosis-related genes such as CHOP,
caspase-4, calmodulin calponin, and Calp were markedly
increased in patients with SLE [49, 50]. The expression of
CHOP increases during the early differentiation of B cells
and IgM is produced in the apoptotic response mediated by

the CHOP. IgM secretion was also significantly reduced after
CHOP knockdown in B cells [51, 52]. These findings indicate
that CHOP not only participates in the differentiation of B cells
into plasma cells but also promotes the antibody secretion of
the B cells.

3.2. ERS in Macrophages. The relationship between SLE path-
ogenesis and macrophages is mainly characterized by multi-
ple cell phenotypes and dysfunction [53]. A number of recent
studies have found that polarization imbalance and abnormal
activation of M1/M2 macrophages are closely related to the
occurrence and development of SLE. Immune complex form-
ing microparticles (MP-IC) [54], extracellular vesicles [54],
and high-mobility group protein B1 (HMGB1) [55] were
found to contribute to the polarization of M1 macrophages,
which play a pro-inflammatory role in the pathogenesis and
severity of SLE [56]. When the balance between M1/M2 phe-
notypes was restored, SLE disease activity was improved,
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FIGURE 1: A schematic diagram of ERS in immune cells in SLE and LN. An abnormal ER stress (ERS) pathway is closely related to the
autoimmune diseases, such as SLE and LN. ERS promotes B cells differentiate into plasma cell and increased antibody secretion by activating
IRE1–XBP1 and CHOP pathways. TLR promotes the production of proinflammatory cytokines in macrophages by activating the
IRE1αXBP1 pathway. ERS can also activate the ATF6 pathway to further activate the NF-κB inflammatory pathway and promote the
secretion of inflammatory factors in macrophages. ERS drives T cell differentiation by activating the IRE1XBP1 pathway and can also activate
the CHOP pathway to promote the T cell apoptosis. ERS participates in the formation and release of neutrophil extracellular traps (NETs)
and the production of inflammatory cytokines in neutrophils. ERS participates in antigen presentation and cytokine secretion of DCs by
activating the IRE1XBP1 and CHOP pathways.
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resulting from the elevated anti-inflammatory activity of
macrophages [56].

It has been reported that the toll-like receptor (TLR)
signaling pathway in macrophages can activate the ERS
response. XBP1s is a positive regulator of TLR responses in
macrophages. TLR2 and TLR4 can activate the IRE1α–XBP1s
pathway to produce the pro-inflammatory cytokines, such as
interleukin-6 (IL-6), tumor necrosis factor (TNF), and inter-
feron-β (IFN-β) [57, 58]. The specific knockdown of XBP1 in
macrophages resulted in decreased production of IL-6, TNF,
and IFN-β, while in contrast, overexpression of XBP1 resulted
in increased IFN-β production [18, 59]. In addition, the acti-
vation of IRE1α-dependent glycogen synthase kinase 3β
(GSK3β) via the IRE1α–XBP1 pathway is related to the pro-
duction of IL-1β. GSK3β can inhibit the cleavage of XBP1 and
the transcription of TNF, thereby attenuating the ERS-
mediated inflammatory response [60]. In vitro, the downre-
gulation of ATF6 in macrophage inhibited NF-κB activity
and, consequently, reduced the TNF-α and IL-6 production
in these cells [18, 61]. These findings suggested that the ERS
response may promote the differentiation of macrophages
into the M1 type, activate the NF-κB inflammatory pathway,
and increase the secretion of inflammatory factors involved in
the progression of SLE through TLR signaling.

3.3. ERS in T Cells. In recent years, it has been found that
during ERS, autoimmune cells can induce the immune
responses by recognizing unfolded or misfolded proteins as
antigens, which can promote the development of autoim-
mune diseases [62, 63]. T lymphocytes are the main effector
cells in cellular immunity and produce cytokines to mediate
inflammatory responses by changing their function and phe-
notype. However, a little is known about the driving force of
behind T-cell differentiation within this plastic spectrum
[64]. Franco et al. [65] and Kemp and Poe [66] showed
that the ERS response includes antigen recognition during
initial T cell differentiation, which may be the key event
driving the plastic differentiation of T cells. ERS can activate
primary CD4+ T cells and cause them differentiate into Th1,
Th2, Th9, Th17, Th22, Tfh, and Treg cells, as well as other
cell subsets by promoting major histocompatibility complex
(MHC) Class II antigen-presenting cells (APCs). Lineage-
specific cytokines are produced to change the functional
phenotypes of these immune cells [67, 68].

Clinical studies have shown an abnormal UPR in T cells in
patients with SLE, suggesting that T lymphocytopenia may be
related to ERS, which can regulate T cell differentiation through
metabolic pathways [69–71]. Increased expression of CHOP and
decreased expression of GRP78 may contribute to the apoptosis
of T cells in patients with SLE [69]. Other studies have found that
the ERS-related protein XBP1 is essential for T cell differentia-
tion and plays a key role in the differentiation of Th17 cells and
CD8+T cells [18, 72]. ERS inhibitors (such as 4-phenylbutyric
acid, 4-PBA) can significantly reduce the levels of anti-dsDNA
antibodies and serum TNF-α, which delays the progression of
SLE [73, 74]. ERS and autophagy-coupling pathways mediate
Th17 activation promoted by peptididylarginine deiminase
type 2 [75].

3.4. ERS in Neutrophils. In addition to their antimicrobial
function, neutrophil extracellular traps (NETs) are involved
in the progression of autoimmune diseases through the acti-
vation and differentiation of macrophages, dendritic cells,
and T cells [76, 77]. Studies have found that NET formation
is closely related to the SLE pathogenesis [78, 79]. The ribo-
nucleoprotein immune complex (RNP-IC) found in SLE
induces NET formation by promoting the mitochondrial reac-
tive oxygen species (ROS) production [80, 81]. Low-density
granulocytes (LDGs) are a subpopulation of pro-inflammatory
neutrophils found in patients with SLE and are involved in the
pathogenesis of lupus by disrupting endothelial cells and
increasing the production of pro-inflammatory cytokines and
type I interferon [82].

ERS has been reported to be involved in the NET forma-
tion and release in neutrophils [83]. In the neutrophils iso-
lated from the blood of patients with SLE, increased activity
of IRE1α was detected. In multiple SLE mouse models, inhi-
bition of IRE1α reduced NET release and delayed disease
progression [33]. In addition, studies have shown that
IRE1α activates neutrophil antimicrobial activity, including
the production of IL-1β and the formation of NETs through
increased production of ROS and activation of caspase-2
[84]. Tumurkhuu et al. [85] showed that inflammatory mar-
kers were significantly upregulated in neutrophils isolated from
patients with SLE with diffuse alveolar hemorrhage (DAH) and
that ERS-related genes were highly expressed in alveolar epi-
thelial cells. Additionally, coculture of human neutrophils and
a human lung epithelial cell line (BEAS-2B) showed that the
neutrophils from patients with SLE significantly upregulated
the ERS-related indicators in epithelial cells as compared to the
neutrophils from healthy controls, suggesting that NETs play
an important role in SLE complicated with DAH by inducing
an ERS response [85].

3.5. ERS in Dendritic Cells. Dendritic cells (DCs) are the most
functional APCs in humans. General antigen presentation
can be divided into several stages: adhesion, antigen-specific
activation, costimulation, cytokine production, and signal
transduction [86]. DCs are equivalent to messengers that
transmit antigen information to activate T cells [87, 88].
DCs internalize protein antigens as peptides that enter the
ER and bind to histocompatibility type I (MHC-I) protein
complexes, which are then transported to the cell surface for
cross-presentation [89]. The UPR sensor IRE1 is a key regu-
lator of APC homeostasis, and XBP1 plays an important role
in DCs development and survival [90]. Studies have shown
that the IRE1α–XBP1 pathway is continuously activated in
infiltrating DC under ERS conditions, which can deplete
MHC-I heavy chain mRNA and reduce antigen cross-
presentation through regulated IRE1-dependent decay
[90, 91]. Chaudhary et al. [92] showed that the IRE1α-
XBP1 branch of the UPR inhibits IFN-α production by
TLR7- or TLR9-activated plasmacytoid DCs. In addition,
XBP1 promotes triglyceride biosynthesis in DCs, leading to
abnormal lipid accumulation and impaired antigen presen-
tation [93]. Under ERS conditions, TLR agonists increase the
expression of IL-23 in DCs by enhancing the binding of
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CHOP to the IL-23 promoter, whereas downregulation of
CHOP decreases the expression of IL-23 [94].

Renal dendritic cells mainly function as powerful APCs
and regulate the inflammation [95]. DCs infiltrate into the
kidneys where they form tertiary lymphoid structures to
amplify inflammation [96]. Studies have shown that hyper-
active B cells and plasmacytoid DCs produce IFN-α in LN
[97, 98]. During SLE pathogenesis, an “automatic” regulatory
feedback mechanism between pDCs and regulatory B (Breg)
cells is characteristic. pDCs release IFN-α and CD40 to pro-
mote the B-cell differentiation and IL-10 production, and
Breg cells, in turn, inhibit the pDC production of IFN-α by
releasing IL-10 [99, 100]. These results suggest that ERS is
related to DC function, possibly through antigen presenta-
tion and cytokine secretion.

4. ERS in Renal Resident Cells in LN

ERS not only participates in immune disorders in SLE but is
also involved in damage of renal resident cells. The critical

role of ERS in acute kidney injury and chronic kidney dis-
eases were well-reviewed in a recent study [101]. However, at
present, a large gap exists in our knowledge of the role of ERS
in renal resident cells in LN. Below, we summarize what is
known on this topic (Figure 2).

4.1. ERS in Podocytes. Podocytes are highly differentiated epi-
thelial cells that constitute an important component of the
glomerular filtration barrier. The fusion and disappearance of
foot processes, apoptosis, and shedding of podocytes may lead
to proteinuria [102–104]. A recent study has shown that acti-
vation of IRE1α has a cytoprotective effect against podocyte
injury in an adriamycin-induced nephropathy model [105].
These results suggested that the IRE1–XBP1 pathway plays a
cytoprotective role in maintaining podocyte integrity [105]. In
contrast, activation of the PERK–ATF4CHOP [106] and PER-
KEIF2α [107] signaling pathway induces podocyte apoptosis
[101]. Specific knockdown of Xbp1 and Sec63 can induce acti-
vation of the JNK pathway, leading to podocyte apoptosis, the
disappearance of foot processes, reduction of podocyte
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number, and induction progressive albuminuria [108, 109].
Additionally, podocyte cyclooxygenase-2 (COX-2) participates
in the ATF4 pathway during ERS in LN, while downregulation
of ATF4 inhibits the LN-induced COX-2 overexpression.
These results suggest that inhibition of the ATF4 pathway
during ERS may be a potential therapeutic target for LN treat-
ment [110].

4.2. ERS in Mesangial Cells. Mesangial cells make up approx-
imately 30%–40% of the total cells in the glomeruli. Mesangial
cells along with the mesangial matrix form the glomerular
basement membrane (GBM), whose primary function is fil-
tration [111]. ERS plays a key role in the inflammatory
response of human mesangial cells that is induced by anti-
dsDNA antibodies and participates in the inflammatory
response and fibrosis process involved in LN [112–114],
although few studies have been conducted on this topic.
Anti-dsDNA antibodies can significantly upregulate the
expression of the ERS proteins GRP78, P-PERK, P-EIF2α,
andATF4 inmesangial cells, resulting in enhanced expression
of the pro-inflammatory mediators IL-1β, TNF-α, and mono-
cyte chemotactic protein-1 via activation NF-κB, TLR4, and
JAK signaling pathways. Treatment of mesangial cells with
ERS inhibitors can downregulate the expression of inflamma-
tory factors and alleviate the progression of SLE [12, 114].

4.3. ERS in Glomerular Endothelial Cells. Glomerular endo-
thelial cells (ECs) are innate cells of the glomeruli that regu-
late the glomerular filtration. Studies have demonstrated that
EC activation and dysfunction play important roles in the
development of LN [115]. In experimental LN models, ECs
are activated and releases inflammatory mediators [116].
These inflammatory mediators can promote the upregula-
tion of adhesion molecules, such as intercellular adhesion
molecule-1 and vascular cell adhesion molecule-1, and
promote leukocyte adhesion and migration in glomeruli,
leading to glomerular inflammation and glomerulosclerosis
[117, 118]. Few studies have examined the relationship
between ERS and endothelial dysfunction in the LN [119].
Russell et al. [120] and Oates et al. [121] found that human
glomerular endothelial cells in SLE-induced neutrophil che-
motaxis and adhesion and further aggravated glomerular
lesions through ERS and oxidative stress pathways.

4.4. ERS in Renal Tubular Epithelial Cells (RTECs). Renal
tubular epithelial cells (RTECs) are resident cells in the tubu-
lointerstitium of the kidneys that have plastic morphology and
function [122]. In response to anti-dsDNA antibodies, RTECs
can transform into mesenchymal cells and produce pro-
inflammatory cytokines and chemokines to regulate renal
tubulointerstitial immune cell responses [123]. Currently, few
studies have investigated the role of ERS and RTECs in SLE
pathogenesis [124, 125]. It has been reported that ERS is
involved in proteinuria-induced apoptosis in RTECs. Protein-
uria upregulates the expression of GRP78 and CHOP in the
PTEC. In addition, persistent ERS induced by albumin over-
load can lead to the transformation of RTECs into mesenchy-
mal cells via activation of the PERK–CHOP signaling pathway,
which contributes to the renal fibrosis [126]. Wu et al. [127]

found that albumin significantly upregulated the expression of
GRP78 in mouse RTECs and induced apoptosis in these cells
by calpain-mediated caspase-12 activation.

4.5. ERS in Fibroblasts. Studies have highlighted the func-
tional heterogeneity and plasticity of renal resident fibro-
blasts, as well as their important role in the progression of
kidney diseases [128, 129]. However, no recent study has
reported the role of ERS in renal resident fibroblasts in
LN. In response to stress, renal resident fibroblasts transdif-
ferentiate into myofibroblasts, express α-smooth muscle actin
(α-SMA), and produce a large amount of extracellular matrix,
which can lead to renal fibrosis. Renal resident fibroblasts also
can produce pro-inflammatory cytokines and chemokines
and promote inflammatory response through activation of
the NF-κB pathway [130–132]. Chen et al. [133] recently
identified the ER-resident protein, thioredoxin domain 5
(TXNDC5), a protein that is transcriptionally controlled by
the ATF6-dependent ERS pathway and that enhances trans-
forming growth factor-β (TGF-β) signaling activity through
upregulation of the type I TGF-β receptor in renal fibroblasts
and mediates its profibrotic effect.

5. Targeting ERS in the Treatment of
SLE and LN

As mentioned above, ERS acts as a key part in the pathogene-
sis of SLE and LN. Therefore, targeting ERSmay bring about a
breakthrough to combat SLE and LN. The strategy targeting
ERS includes improvement of protein folding with chemical
chaperones, increasing degradation of misfolded proteins,
and inhibiting IRE1, PERK, and ATF6 pathways [101].

5.1. Chemical Chaperones. 4-PBA is a low-molecular weight
chemical chaperone that can increase the protein folding
capacity of the ER and prevent the accumulation of mis-
folded proteins, thereby alleviating ERS [38, 134]. 4-PBA
improved splenomegaly and reduced serum anti-dsDNA
antibody and inflammatory cytokine levels in lupus-proven
mice. In particular, the levels of albuminuria and blood urea
nitrogen, renal inflammatory cell infiltration, and immune
complex deposition were significantly reduced in the mice
with LN that were treated with 4-PBA [73, 135]. In addition,
studies have also shown that 4-PBA can inhibit the release of
the pro-inflammatory factors IL-1β, TNF-α, and IL-6 by
inhibiting activation of the NF-κB pathway, which alleviates
the progression of SLE [136, 137].

Sodium taurodeoxycholate (TUDCA), a taurine-conjugated
product of ursodeoxycholate, is a binding bile acid found natu-
rally in bear bile, which has hepatoprotective, gallbladder-
promoting, and litholytic effects, and is clinically used in the
treatment of hepatobiliary diseases. In recent years, TUDCA
was shown to have potentialmedicinal value in nonhepatobiliary
diseases by inhibiting ERS [114, 138]. In diabetic nephropathy
(DN), TUDCA, and 4-PBA inhibit podocyte apoptosis in vivo
and in vitro by inhibiting caspase-3 and caspase-12 activation,
thereby alleviating the DN progression [139, 140]. Other studies
have shown that TGF-β1 is a key driver of renal fibrosis and is
closely related to the activation of the ERS-related renal fibrosis
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pathway. TUDCA significantly downregulated the levels of
GRP78, CHOP, α-SMA, and fibronectin in renal mesangial cells
when subjected to TGF-β1. These results suggested that TUDCA
inhibits ERS and alleviates the profibrotic effect of renal mesan-
gial cells [114, 141]. However, no studies to date have reported
inhibition of ERS by TUDCA for the treatment of SLE; this
needs to be proven in future.

5.2. Inhibitors Targeting IRE1, PERK, and ATF6. Some selec-
tive regulators have been developed to target IRE1, and
PERK and ATF6 pathways to alleviate ERS [32]. BI09 inhi-
bits the ability of IRE1α to splice XBP1 mRNA for produc-
tion of the activated transcription factor XBP1. Transient
BI09 treatment prevented B cell differentiation into plasma
cells, autoantibody production, autoantibody-mediated renal
lesions, and proteinuria [142]. Administration of IRE1α
inhibitor 4µ8C suppressed mitochondrial ROS generated
in peripheral neutrophils, resulting in a reduction of plasma
cell expansion and autoantibody production in a lupus-
proven mouse model [33]. Similarly, targeting IRE1α by
STF083010 protects protected against the progression of
SLE and LN by preventing the B cell hyperactivity [143].
Guanabenz promoted the phosphorylation of eIF2α by inhi-
biting eIF2α phosphatases to enhance the PERK signaling
pathway. Interestingly, guanabenz protected mice from
CpG oligonucleotide-dependent cytokine shock and allevi-
ated autoimmune symptom severity in a mouse model of
pristane-induced lupus [34]. Ceapin-A7, as an ATF6α inhib-
itor, alleviates alleviated collagen-induced arthritis and bone
erosion in a mouse model by suppressing the inflammatory
cytokine production [144]. However, the potential applica-
tions of ATF6α inhibitors in SLE and LN have yet to be
revealed.

5.3. Degradation of Accumulated Misfolded Proteins. In addi-
tion, ER proteins can be selectively degraded by autophagy
and proteasomes to remove proteins and molecular chaper-
ones that accumulate in the lumen of the ER to maintain ER
homeostasis [15]. ER expansion and ERS-related proteins
were upregulated when the Atg7 autophagy gene was knocked
down in T lymphocytes [145] or the Atg5 autophagy gene was
knocked down in B lymphocytes [146], which suggested that
autophagy plays a crucial role in ER homeostasis. Other stud-
ies have shown that ERS mediated by various noncoding
RNAs plays an important role in maintaining ER homeostasis
[147–149]. The antioxidant melatonin is known to scavenge
free radicals and increase the activity of antioxidant enzymes
in vivo, suggesting melatonin is involved in the ER homeosta-
sis and has a potential protective effect against ERS [150]. The
research advances in these areas may hold promise for the
treatment of LN by inhibiting ERS.

Finally, a small number of modulators of ER stress
have been used in preclinical studies, including sevoflurane
(NCT03561831), TUDCA (NCT02218619, NCT00771901,
and NCT01877551), and 4-PBA (NCT00771901). However,
none of them have been applied in rescuing SLE and LN, or
any other autoimmune disease.

6. Conclusion and Perspective

In summary, ERS is a significant factor in the pathogenesis of
SLE and LN, whereas the detailed mechanisms involved
require further elucidation. Many basic research studies of
ERS have been performed in animal models or in vitro in cell
culture, but whether these findings can translate to humans
needs further investigation. Second, distinct UPR pathways
may play different roles in immune cells and renal resident
cells in LN. Third, the application of other strategies for
restoration of ER homeostasis, such as ERAD and the
autophagy–lysosome pathway, in SLE and LN have not
been investigated to date. Nevertheless, pharmacological
agents targeting ERS may represent a therapeutic approach
for SLE and LN, and these approaches could be used to test
their effects in the clinical trials.
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