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Background. Anoikis, a form of programed cell death, plays a pivotal role in the invasion and metastasis of various tumors,
including lung squamous cell carcinoma (LUSC). This study aims to construct a prognostic model for LUSC, leveraging anoikis-
related genes (ARGs). Methods. A total of 357 ARGs were extracted from the GeneCards database and Harmonizome portals.
Subsequently, ARGs influencing LUSC patients’ prognosis were identified using univariate Cox regression analysis. Unsupervised
clustering analysis was carried out utilizing the “consensusplus” R package, and LASSO regression was deployed to craft a risk
regression model. The ‘IBOR’ R package quantified the immune cell infiltration abundance. Moreover, the “maftools” R package,
paired with the GISTIC online tool, facilitated the assessment of gene copy number variations. Experimental validation was
conducted through RT-PCR, evaluating the differential expression of eight pivotal genes, and cellular functional assays discerned
the influences of the CHEK2 and SDCBP genes on LUSC cells’ migratory and invasive capabilities. Results. Fifteen survival-
associated ARGs delineated three molecular subtypes within the TCGA-LUSC cohort. An eight ARG-based risk prognostic model
was constructed, delineating significant survival disparities between high and low-risk groups. Notably, the low-risk group
manifested a diminished propensity for immune therapy evasion and gene mutations. A comprehensive nomogram, incorporating
risk scores and clinical attributes, was fashioned, exemplifying remarkable predictive acumen. Cellular functional assays substan-
tiated that the modulation of CHEK2 and SDCBP expressions conspicuously influenced the migratory and invasive propensities of
LUSC cells. Conclusions. This rigorous study unveils novel anoikis-related biomarkers integral to LUSC prognostication. The
meticulously constructed risk prognostic model, underscored by these biomarkers, augurs a potent predictive tool for enhancing
the LUSC patient prognosis and therapeutic strategies.

1. Introduction

Lung cancer stands as the most prevalent malignancy globally,
with staggering statistics revealing 230,000 lung cancer patients
and 15,300 associated fatalities in 2020 [1]. It’s crucial to note
that LUSC constitutes 20%–30% of non-small cell lung cancers
(NSCLCs), positioning itself as the second most common
NSCLC subsequent to lung adenocarcinoma (LUAD). Contrary
to LUAD, diagnosing LUSC in its early stages proves to be a
formidable challenge, coupled with a scarcity of comprehensive
treatment options. There has been noteworthy progress in the

realm of LUSC diagnosis and treatment in the recent years.
Despite these advancements, the prognosis remains dishearten-
ing, with a mere 5-year survival rate of 17.1% [2]. In light of
these realities, an exigent call is made for the unveiling of inno-
vative biomarkers pertinent to LUSC. Such a discovery could be
monumental in facilitating early diagnosis, honing the precision
of prognosis determinations, and tailoring suitable treatment
strategies, thereby enhancing the survival outlook for LUSC
patients [3].

Anoikis, a term first coined in 1994, is used to describe a
unique form of apoptosis triggered by the detachment of
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normal epithelial cells from the extracellular matrix (ECM)
[4]. This physiological process plays a pivotal role in organism
development, tissue homeostasis, disease onset, and tumor
metastasis [5]. Remarkably, the vital steps of cancer progression
and metastasis, such as anchorage-independent growth and
epithelial–mesenchymal transition (EMT), have been identified
as hallmarks of anoikis-resistance [6]. Anoikis operates as a
formidable barrier against tumor metastasis by obstructing
themigration of tumor cells from their native ECM to the other
organs. It has been substantiated through research that a tumor
cell’s resistance to anoikis is instrumental in its survival post-
detachment from the ECM, a fundamental requisite for malig-
nant tumors to achieve invasive and metastatic colonization
[7, 8]. Consequently, anoikis emerges as a prospective thera-
peutic target for mitigating tumor aggressiveness [5]. Tumor
cells deploy a myriad of strategies to the counteract anoikis.
These include leveraging autocrine growth factors or paracrine
signaling by adjacent cells to trigger the activation of prosurvi-
val pathways, modulating integrin expression patterns, and
employing reactive oxygen species- (ROS-)mediated activation
of growth factor receptors to eschew apoptosis, and instigating
EMT [9, 10]. An array of pathways orchestrating the regulation
of anoikis resistance in lung cancer has been unveiled in various
studies. For instance, PLAG1 is known to activate the CamK-
K2–AMPK signaling pathway, which in turn fosters anoikis
resistance in LKB1-deficient lung cancer through the regulation
of the GDH1 expression [11]. Additionally, the intricate inter-
play of the TGFβ1-SH2B3 axis with the JAK2/STAT3 and
SHP2/grb2s signaling pathways has been implicated in modu-
lating lung cancer’s anoikis resistance [12].

Recent revelations underscore the significance of fibro-
nectin (FN) as a crucial component underpinning resistance
to anoikis following cell detachment in lung cancer, marking
it as a potential therapeutic target [13, 14]. In alignment with
this, a spectrum of targeted pharmacological agents, such as
the third-generation EGFR inhibitorWZ4002 and theTMPRSS4
serine protease inhibitor KRT1853, have been heralded for
their capacity to induce anoikis and curb lung cancer metasta-
sis by modulating various signaling pathways [15]. Despite
these strides, a discernible gap persists in the literature,
particularly concerning the intricate regulatory mechanisms
of anoikis-resistance in LUSC and the exploration of anoi-
kisdiagnostic and evaluative potential in the context of LUSC.
This study pioneers a comprehensive evaluation, shedding
light on the impactful role of anoikis in influencing the progno-
sis and immunotherapeutic approaches in LUSC patient care.

In this study, we conducted a comprehensive bioinfor-
matics analysis on LUSC samples from the TCGA and GEO
databases, based on anoikis-related genes (ARGs). We iden-
tified eight potential biomarkers and established a risk prog-
nosis model and related nomogram with superior predictive
performance, comparisons were made regarding the survival
prognosis, immune infiltration abundance, and somatic
mutation frequency of high and low-risk patients. Lastly,
we validated the differential expression of eight hub genes
through qPCR experiments, and verified the impact of two
biomarkers, CHEK2 and SDCBP, on the migration and inva-
sion abilities of LUSC cells through cellular functional

experiments. This study offers new insights for the subsequent
research related to the occurrence and development of LUSC
concerning ARGs.

2. Materials and Methods

2.1. Data Source. RNA-seq transcriptome data, along with
associated clinical data, were extracted for analysis in this
study. The data comprised 470 LUSC samples (each with a
survival time exceeding 30 days) and 49 normal samples, all
obtained from the TCGA database (The Cancer Genome
Atlas Program (TCGA) - NCI). Additionally, two microarray
datasets (GSE73403 and GSE30219), complete with corre-
sponding clinical data, were retrieved from the Gene Expres-
sion Omnibus database (Home - GEO - NCBI (nih.gov)).
These datasets encompass 69 and 61 LUSC samples, respec-
tively. For the purpose of creating a structured methodology,
the TCGA-LUSC cohort was designated as the training
cohort. Meanwhile, the GSE73403 and GSE30219 datasets
were amalgamated, serving as a validation cohort subsequent
to the elimination of batch effects. All extracted data under-
went a transformation process; the transcript sequencing
data from TCGA, along with the series matrix data from
GSE73403 and GSE30219, were converted using log2 (data
+ 1). A collection of 357 ARGs was meticulously curated
from two databases: the GeneCards database (GeneCards
—Human Genes | Gene Database | Gene Search) and the
Harmonizome database (Harmonizome (maayanlab.cloud)),
as documented in Table S1.

2.2. Screening Prognositic ARGs. We utilized the “limma” R
package, applying stringent criteria (|log2FC> 1| and a false
discovery rate (FDR)< 0.05), to discern differentially expressed
ARGs between tumor and normal tissues in the TCGA-LUSC
cohort. Pursuing precision, a Cox regression analysis honed in
on ARGs with a significant association with the survival prog-
nosis of LUSC patients. Enhancing our analytical rigor, the
“maftool” R package was employed, facilitating a nuanced
exploration and visualization of the mutational landscapes
characterizing prognostic ARGs. Culminating our analysis,
we meticulously examined the expression correlations among
the prognostic ARGs, achieving a comprehensive visualiza-
tion utilizing the “Circlize” R package.

2.3. Unsupervised Clustering Analysis. Building upon the
identification of prognostic ARGs, an unsupervised cluster-
ing analysis was meticulously executed using the “Consensu-
sClusterPlus” R package. Utilizing the “hc” arithmetic and
Pearson distances, this analysis involved 1,000 iterations of
repeated sampling, each encompassing specimens (≥80%)
derived from the TCGA-LUSC cohort. The strategy involved
evaluating up to a maximum of eight clusters (k), with the
optimal cluster number (k) being ascertained based on the
relative alteration in the area under the cumulative distribu-
tion function (CDF) curve. To corroborate the clustering
analysis results, principal component analysis (PCA) was
employed as a verification measure. Subsequently, a Kaplan–
Meier (K–M) analysis was conducted to scrutinize the dispa-
rities in survival curves across diverse clusters. The culmination
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of this rigorous analytical process was marked by the visualiza-
tion of a heat map depicting gene expression, paired with a
comparative overview of the clinical information pertinent to
various molecular subtypes, facilitated through the adept use of
the R package “ComplexHeatmap”.

2.4. Construction and Validation of an Anoikis-Related Risk
Model. In the initial phase of our analytical procedure, the
application of LASSO analysis was indispensable, utilized via
the R package “glmnet” to meticulously exclude overfitting
ARGs. Through an exhaustive process involving 1,000 iterations
of tenfold cross-validation, the penalty regularization parameter
λ was decisively determined. Following this, we embarked on
the construction of a risk model, denoted as the ARG score,
employing prognostic ARGs, and corresponding coefficients
ascertained from the optimal λ value.

The calculation of the ARG score for each patient was
meticulously performed using the equation as follows:

Risk Score¼ ∑
n

k¼0
βi × Expi; ð1Þ

where βi and Expi symbolize the risk coefficient and the
expression of each ARG, respectively. In a subsequent stage
of analysis, samples within the TCGA-LUSC cohort were
stratified into high- and low-risk categories based on median
risk scores. Employing the –M survival analysis in conjunc-
tion with the log-rank test, facilitated through the R package
“survminer”, allowed for the precise determination of pre-
dictive accuracy concerning overall survival (OS). Addition-
ally, the tool time ROC played a crucial role in computing the
area under the receiver operating characteristic (AUC) curve,
thereby enabling the prediction of survival rates at 1-, 3-, and
5-year intervals. Through rigorous univariate and multivari-
ate Cox regression analyses, the ARG score emerged as an
independent prognostic risk factor. In the concluding phase
of our study, a validation process was conducted by harmo-
nizing the GSE73403 and GSE30219 datasets (integrated and
labeled as the GSE73403&30219 dataset), subsequent to the
elimination of batch effects. This step was crucial in reaffirm-
ing the prognostic potency of our meticulously crafted risk
model.

2.5. ImmuneMicroenvironment Landscape and Drug Response.
We utilized seven algorithms from R packages “IBOR” and
“CIBERSORT” R script to evaluate the abundance of immune
cell infiltration in the tumor microenvironment (TME) of
high- and low-risk patients. And visualized the immune cells
with significant differences in the infiltration grades. Subse-
quently, we further conducted a correlation analysis between
the infiltration abundance of 22 types of immune cells in the
“CIBERSORT” algorithm, risk scores, and eight hub genes.
Lastly, based on the ESTIMATE algorithm, we calculated
and compared the ESTIMATE, IMMUNE, Stromal scores,
and tumor purity of high and low-risk patients, and evaluated
the possibility of immune escape in high and low-risk patients
using the “TIDE” online tool (http://tide.dfci.harvard.edu/
login/). The drug responsivity of the LUSC samples in the

high- and low-risk groups was predicted using the R package
OncoPredict [16].

2.6. Functional Enrichment Analysis. We employed the R
package “limma” to discern differentially expressed genes
(DEGs) among various molecular subtypes and risk groups,
adopting the criteria of |logFC> 1| and a p-value< 0.05.
Transitioning into gene set enrichment analysis (GSEA),
gene set annotation files, name, “c2.cp.kegg.v7.4.symbols.
gmt” and “c5.go.bp.v7.4.symbols.gmt,” were retrieved from
the MSigDB database. This facilitated a comprehensive inves-
tigation into the intrinsic functions of the DEGs. Utilizing the
R package “clusterProfiler,” our analysis was meticulously
based on the gene ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways, ensuring a
nuanced exploration of the underlying biological processes
and pathways associated with the identified DEGs.

2.7. Construction of a Predictive Nomogram.We commenced
our analysis with univariate and multivariate Cox regression
analyses, emphasizing the TCGA-LUSC cohort. This initial
phase involved a meticulous examination of clinical variables
—pathological staging, age, gender, and risk scores—to
gauge their impact on the prognostic outcomes. The identi-
fication of independent prognostic risk factors allowed for
the construction of pertinent nomograms, thereby enhanc-
ing the visualization of prognostic data. Moving forward, to
assess the predictive accuracy of the formulated nomograms,
we utilized calibration and ROC curves. These tools facili-
tated an accurate evaluation of the 1-, 3-, and 5-year predic-
tive outcomes of the nomograms, bolstering the credibility of
our predictive models in forecasting clinical paths. Conclud-
ing our analysis, we applied decision curve analysis (DCA), a
crucial step to appraise the clinical utility of our developed
nomograms. This final stage emphasized the practical signif-
icance of our models, showcasing their potential to influence
and guide clinical decision-making processes [17].

2.8. Quantitative Real-Time PCR. The human normal lung
epithelial cell line BEAS-2B, and the LUSC cell lines SK-
MES-1 and NCL-H226, were obtained from Fuheng Biotech-
nology (Shanghai, China). Each cell line was cultivated under
the optimized conditions: BEAS-2B and NCL-H226 in 90%
RPMI-1640 medium with 10% FBS, and SK-MES-1 in 90%
DMEM, enriched with 10% FBS and 1% P/S (PB180120). For
molecular analysis, total RNA was extracted using a Trizol
Kit (Gibco, USA), ensuring RNA integrity and purity. The
RNA was then carefully reverse transcribed into complemen-
tary DNA (cDNA) sequences using a specific cDNA reverse
transcription kit (GeneCopoeia, USA). Subsequently, the
expression levels of eight essential hub genes were analyzed
in the mentioned cell lines. The Bio-Rad IQ5 Real-Time PCR
System (Life Medicine, California, USA), used with the All-
in-One™ qPCR mix (GeneCopoeia, USA) and specific pri-
mers, allowed for precise gene expression detection. The
exact forward and reverse primer sequences for each gene
are provided in Table 1 for reference.

2.9. Transient Transfection. The SK-MES-1 and NCI-H226
cells were first cultivated in 6-well plates, allowing them to
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reach a cell density ranging from 40% to 60%. Aligning
with the Lipofectamine 2000 transfection reagent guidelines,
transfections were meticulously executed. After an interval of
48–72 hr succeeding the transfection, the cells were carefully
harvested, paving the way for ensuing experiments.

2.10. Transwell Experiment.Matrigel was first dissolved over-
night at 4°C and subsequently diluted in a 1 : 8 ratio with
prechilled, serum-free culture medium. A 100-μL aliquot of
this mixture was carefully added to a prechilled transwell
chamber, then incubated at 37°C for an hour to allow the
Matrigel to solidify. Excess fluid was diligently removed, and
the chambers were prepared by adding 100 μL of serum-free
medium to the upper chamber and 600 μL of 5% serum
culture medium to the lower chamber, followed by an over-
night incubation at 37°C for equilibration. 1× 106 cells were
meticulously counted, resuspended in 100 μL of serum-free
DMEM, and positioned in the upper chamber, while 600 μL
of complete medium was introduced to the lower chamber.
Following a 24-hr incubation period at 37°C in a 5% CO2

environment, the cells from the upper chamber were expertly
removed. The remaining cells were subjected to a process of
fixation, washing, and staining. Finally, the migrated cells
were thoroughly examined, counted, and photographed for
the detailed analysis.

2.11. Cell Scratch Experiment. Uniform horizontal lines were
meticulously drawn on the back of a 12-well plate using a
marker pen and ruler, preparing it for the experiment. Cells,
during their logarithmic growth phase, were carefully adjusted
to a concentration of 2× 106/mL, inoculated into the plate,
and then incubated at 37°C in a 5% CO2 environment. For
the scratching process, a sterile 200-µL micropipette tip was
precisely used, ensuring alignment with the predrawn lines,
promoting consistency. Postscratching, the plate was gently
washed with PBS two–three times, facilitating the removal of
dislodged cells, before adding the complete culture medium
for further incubation. Throughout the incubation, regular
observations were made at specified intervals. Photographs
were captured to diligently monitor the scratch healing pro-
cess under an inverted microscope. Quantitative analysis was
performed using ImageJ software, where scratch widths were
meticulously measured and analyzed to ascertain the migra-
tory capabilities of each cell group. A specialized formula,
percentage= (0 hr−other time points)/0 hr, was utilized for

precise calculations, followed by a thorough statistical analysis
to validate and consolidate the experimental observations.

2.12. Statistical Analysis. Statistical analyses were diligently
conducted using R software v4.2.0. Various tests were employed
to ensure a thorough and nuanced analysis of the data. Pearson’s
test was utilized to effectively assess the correlations between
two continuous variables, ensuring a comprehensive evaluation
of their relationship. For the comparison of continuous variables
between two independent groups, the Student’s t-test wasmetic-
ulously applied, facilitating a robust assessment of differences.
To discern disparities in survival times between two indepen-
dent groups, the log-rank test was judiciously used. A p-value of
less than 0.05 was established as the threshold for statistical
significance, ensuring the reliability and validity of the results.

3. Results

3.1. Screening and Investigating Prognostic ARGs Related to
LUSC. In our study involving 357 ARGs, 138 were identified
as differentially expressed in LUSC tissues—with 60 showing
high expression and 78 exhibiting low expression (Figure 1(a)).
Following a univariate Cox regression analysis of these
ARGs, 15 were singled out as significantly impacting the
survival prognosis of LUSC patients (Figure 1(b)). Five of
these 15 pivotal ARGs—FADD, CHEK2, NTRK2, TUBB3,
and SPINK1—manifested high-expression levels, while the
remaining 10were characterized by lowexpression (Figure 1(c)).
An analysis focusing on copy number variations revealed that
SPINK1 possessed the most frequent deletion mutations, in
contrast, ITGA3 had the highest amplification mutation fre-
quency (Figure 1(d)).Regarding the overall somatic mutation
frequency, HGF emerged as the most mutated among the
prognostic-related ARGs (Figure 1(e)). The specific chromo-
somal mutation locations of these 15 ARGs are depicted in
Figure 1(f). A closer look at the expression correlation among
the selected ARGs unveiled a notable negative correlation
between CHEK2 and NTRK2 and other genes, enhancing our
understanding of their relational dynamics (Figure 1(g)).

3.2. Identification of Molecular Subtypes. In the TCGA-LUSC
cohort, samples were clustered utilizing 15 prognostic ARGs
as a basis. We observed that when k equals 3, the cumulative
distribution function (CDF) value diminished more gradu-
ally (Figure 2(a)), and the relative alteration of the area

TABLE 1: Primer sequences of the 8 hub genes and internal reference in RT-PCR analysis.

Gene Sequence (forward) Sequence (reverse)

FADD TGGCTCGTCAGCTCAAAGTC ATTCTCAGTGACTCCCGCAC
SERPINA1 ATGCTGCCCAGAAGACAGATA CTGAAGGCGAACTCAGCCA
SDCBP GATTACCATGACCATTCGTGACA AGATGTTATGTTCCGTGAGAAGAC
CHEK2 ACYCCAHCCAHYCCYCYCA GTTCTTGGTCCTCAGGTTCTTG
EDA2R TCTACCAAAGACACGCATTG GAAGGCACATTGAACCTCAGA
SPINK1 GGCTTCTGAAGAGACGTGGT CATGGCTGAAGTTCTGCGTC
PDK4 AGGTGGAGCATTTCTCGCGCTA GAATGTTGGCGAGTCTCACAGG
ITGA3 ATACACTCCAGACCTCGCTTAG GATTGGTACATCCTCCACAGT
β-Actin TGACGTGGACATCCGCAAAG CTGGAAGGTGGACAGCGAGG
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beneath the CDF curve was minimized (Figure 2(b)), which
facilitated maximal consensus within clusters. Consequently,
the samples were categorized into three distinct molecular
subtypes: A, B, and C. PPCA revealed significant variations
among patients across the three molecular subtypes, illustrat-
ing a clear distinction (Figure 2(c)). The K–M analysis fur-
ther corroborated these findings, demonstrating notable
differences in OS across the subtypes, with a p-value of
0.017 (Figure 2(d)). Notably, Subtype A exhibited the most
favorable survival prognosis, while Subtype B had the least
favorable outcome. Utilizing a heat map, we illustrated the
expression of prognostic ARGs alongside the clinicopatholog-
ical features of samples across the three subtypes (Figure 2(e)).
This visual representation suggested that NTRK2 might act
as an indicator of positive prognosis. Further exploration
through GSEA enabled us to scrutinize the differential
enrichment across various pathways, including Hallmark,
KEGG, and GO biological processes (BP), particularly
between Subtypes A and B (Figure 2(f )–2(h)). The GSEA
unveiled that gene sets pertinent to pathways such as allograft
rejection, complement, interferon response, and immune cells
were predominantly expressed in Subtype B. Conversely,
pathways linked to cytochrome metabolism and keratiniza-
tion were predominantly prevalent in Subtype A, indicating a
discernible variation in gene expression patterns between the
subtypes.

3.3. Immune Landscape in Different Subtypes. The ssGSEA
algorithm was employed to meticulously analyze the infiltra-
tion patterns of 28 immune cell types in Subtypes A and B

samples, as depicted in Figure 3(a). Notably, Subtype B
manifested a higher infiltration of most immune cells, with
natural killer CD56 cells being the sole exception, when
compared to the other two subtypes. Subsequent to this, a
comprehensive evaluation involving 45 immune checkpoint
genes was undertaken (Figure 3(b)). The results elucidated
that, out of these genes, 24 exhibited significant differences in
expression across the three subtypes, with nine being pre-
dominantly expressed in subtype A. Leveraging the capabili-
ties of the R package ESTIMATE, a calculated analysis was
conducted to ascertain the Stromal, Immune, ESTIMATE
Scores, and tumor purity across the various sample subtypes.
A careful examination of the findings revealed that subtype
B conspicuously possessed the highest scores in Stromal,
Immune, and ESTIMATE categories. Contrastingly, subtype
A emerged with the highest score in tumor purity, as
illustrated in Figure 3(c)–3(f ).

3.4. Establishment and Validation of the ARG Score. A Lasso-
penalized Cox regression analysis was performed in the TCGA-
LUSC cohort, selecting eight ARGs based on the optimum λ
value (Figures 4(a) and 4(b)) to construct a risk model termed
the ARG score. The ARG score formula was delineated as fol-
lows: Riskscore= 0.006738897∗ ExpressionPDK4+ 0.117685875∗

ExpressionSDCBP+0.034158724∗ ExpressionEDA2R+0.007896589∗

ExpressionSERPINA1-0.195125554∗ ExpressionCHEK2+0.095678261∗

ExpressionFADD+0.054168418 ∗ ExpressionITGA3+0.009860555 ∗

ExpressionSPINK1 (Figure 4(c)). Based on the median ARG score,
samples in the TCGA cohort were categorized into high- and
low-risk groups. The K–M analysis revealed a significant
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FIGURE 2: Consensus clustering of prognostic ARGs. (a) Illustrates the cumulative distribution function (CDF) curves. (b) Depicts the delta
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difference inOS between these groups (Figure 4(d)). A scatter-dot
plot further underscored the close association between the ARG
scores and the patients’ survival statuses (Figure 4(e)). For valida-
tion, the GSE73403 and GSE30219 datasets were merged post
removal of the batch effects. The predictive accuracy of the ARG
score for patient prognosis was assessed within these validation
cohorts, revealing consistent findings with the TCGA cohort in
both the K-M analysis and scatter-dot plots (Figures 4(g) and
4(h)). The ROC curve affirmed the risk model’s commendable
predictive efficacy across both the TCGA and validation cohorts
(Figures 4(f) and 4(i)).Visual representations, such as alluvial
diagrams and heat maps, were utilized to elucidate differences
in molecular subtypes, risk groups, and survival statuses
(Figures 5(a) and 5(b)), where notably, CHEK2 exhibited a
heightened expression in the low-risk group. In summation,
the ARG score demonstrated robust predictive accuracy for
determining the prognosis of LUSC patients.

3.5. Functional Enrichment Analysis. DEGs between high-
and low-risk groups were filtered using stringent criteria:
|log2FC> 1| and FDR< 0.05. Subsequent enrichment analy-
ses, involving GO and KEGG pathways, were conducted to
uncover the underlying biological functions of the DEGs.
The analysis revealed a significant enrichment in specific
pathways. For instance, in the GO pathways, the DEGs
prominently featured in ECM organization, and collagen-
containing ECM (Figure 5(c) and 5(d)). KEGG pathway anal-
ysis further indicated that the DEGs were notably associated
with ECM organization and neuroactive ligand–receptor
interaction. Moreover, GSEA illustrated that in the high-
risk group, DEGs were predominantly enriched in pathways
related to EMT, allograft rejection, and the inflammatory
response (Figure 5(e)). Conversely, in the low-risk group,
there was a significant enrichment in pathways such as E2F
targets, MYC targets, and G2M checkpoint (Figure 5(f)).
These findings align with the established research [18, 19],
corroborating the crucial roles of EMT and ECM in fostering
resistance to anoikis in cellular structures, thus underscoring
their significance in the underlying molecular mechanisms.

3.6. Immune Infiltration in Different Risk Groups. Prior research
has illuminated the complex interplay between tumors and the
immune TME, a pivotal arena influencing tumor invasion and
the efficacy of immunotherapies [20]. In our study, utilizing the
“IOBR” package for immune cell infiltration abundance calcu-
lations, a conspicuous increase was observed in high-risk
patients compared to their low-risk counterparts (Figure 6(a)).
To elaborate, the relative proportions of 22 immune cells infil-
trating the high- and low-risk groups were meticulously evalu-
ated using the “CIBERSORT” R script (Figure 6(b)). Among
these, M0 macrophages prominently surfaced as the most
abundant (Figure 6(c)). A notable divergence in the infiltra-
tion of CD8+ T cells, follicular helper T cells, resting memory
CD4+ T cells, regulatory T cells (Tregs), gamma-delta T cells,
and neutrophils was observed between the two risk groups,
underscoring the potential pivotal role of T cells in dictating
the prognosis of LUSC patients [21]. Advancing our explora-
tion, we scrutinized the correlation landscapes, revealing
intriguing associations between risk scores and immune cell

infiltrations (Figure 6(d)). A discernible positive correlation
emerged with the infiltration abundance of resting memory
CD4+ T cells and risk scores, while an inverse correlation was
apparent with follicular helper T cells (Figure 6(e)). In a com-
parative analysis of ESTIMATE scores between risk factions,
high-risk patients manifested elevated Stromal, Immune, and
ESTIMATE scores, diverging significantly from the low-risk
counterparts (Figure 6(f)). This was inversely mirrored in
tumor purity, which was markedly higher in the low-risk group
(Figure 6(g)). Employing the Tumor Immune Dysfunction
and Exclusion (TIDE) algorithm, known for its precision in
evaluating tumor immune escape trajectories [22], we discerned
lower TIDE scores in the low-risk group, exhibiting a robust
positive correlation with ARG scores (Figure 6(h)). This
ensemble of findings collectively paints a picture where low-
risk patients exhibit a heightened propensity to derive benefits
from the immunotherapy interventions.

3.7. Mutation and Variation Landscape in Different Risk Groups.
We explored the gene mutation landscapes in the two risk
groups. As shown in Figures 7(a) and 7(c), a higher mutation
rate of the 14 genes whose mutations were closely related to
the survival of patients with LUSC [23] was observed in the
low-risk group than in the high-risk group (96.49 vs. 89.24%),
and the mutation rate of TP53 differed significantly between
the two groups. However, there were no significant differences
in TMB between the high- and low-risk groups (Figure 7(b)),
and there was also no significant correlation between the risk
score and the TMB (Figure 7(d)). Subsequent to exploring the
variations in copy number loci and frequency differences
between high and low-risk patient groups, we discovered sig-
nificant amplificationmutations at loci 3q26.33 and 3q26.32 in
both groups, whereas at locus 9p21.3, there were notable
deletion mutations, with no significant differences in muta-
tion frequency and the number of mutated genes observed
(Figures 7(e) and 7(g)). However, in the high-risk group,
there were loci, 8p11.23 and 11q13.3, with a higher frequency
of copy number variations (Figures 7(a) and 7(h)), possibly
indirectly affecting the survival prognosis of the high-risk
patients.

3.8. Establishment of a Prognostic Nomogram. In assessing
the impact of clinicopathological features and risk score on
LUSC prognosis, we integrated the risk score with clinical
data, conducting univariate and multivariate Cox regression
analyses (Figures 8(a) and 8(b)) using TCGA cohort data.
This revealed N stage and risk score as independent prognos-
tic risk factors. Subsequently, a nomogram was constructed
utilizing the ARG score model and N stage, aiming to forecast
the 1-, 3-, and 5-year survival probabilities (Figure 8(c)). The
calibration curve affirmed the prediction accuracy for OS
(Figure 8(d)). The time-dependent ROC curve exhibited the
nomogram’s robust predictive efficacy (Figure 8(e)), and the
DCA curve underscored its substantial clinical utility for
1-, 3-, and 5-year OS projections (Figure 8(f)). These findings
suggest that the nomogram, built upon the ARG score and N
stage, holds promise for precise prognostic prediction in
LUSC, demonstrating potential clinical applicability.
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3.9. Quantitative Real-Time PCR. Through quantitative real-
time PCR assays, we evaluated the expression of eight hub
ARGs in the human normal lung epithelial cell line BEAS-
2B, and the LUSC cell lines SK-MES-1 and NCL-H226. We
observed that, except for CHEK2, FADD, and SPINK1, these
ARGs were more prominently expressed in the BEAS-2B cell
line compared to the LUSC cell lines SK-MES-1 and NCL-
H226 (Figure 9).

3.10. Functional Roles of SDCBP and CHEK2 in LUSC Cell
Lines. We selected two ARGs with the largest impact coeffi-
cients, SDCBP and CHEK2, to further study their effects on
the migration and invasion abilities of LUSC cell lines. Since
SDCBP is lowly expressed in LUSC tissues, and the CHEK2
gene is highly expressed, First, we transfected CHEK2 siRNA
into LUSC cell lines NCI-H226 and SK-MES-1, and transfected
SDCBP plasmids into the same cell lines, western blot
results showed that, compared with the blank control group,
the expression of CHEK2 was significantly downregulated
(Figures 10(a) and 10(b)), while the expression of SDCBP
was significantly upregulated (Figures 10(h) and 10(i)). Next,
we conducted cell scratch assays and transwell experiments.
The results showed that in both LUSC cell lines, compared
with the control group, the scratches continued to heal over
time. Knocking down CHEK2 promoted the cells’ ability to
migrate into the scratch area (Figures 10(c), 10(e) and 10(f)),
and the overexpression of SDCBP also enhanced this ability
(Figures 10(j), 10(l), and 10(m)). At the same time, transwell
analysis revealed that knocking downCHEK2 or overexpressing
SDCBP significantly increased the number of NCI-H226 and
SK-MES-1 cells penetrating to the lower chamber (Figures 10(d),
10(g), 10(k), and 10(n)).

3.11. Drug Sensitivity Analysis. Chemotherapy is a critical
strategy for the treatment of LUSC. Recent research efforts
have focused on the development of more sensitive chemo-
therapy drugs [24]. OncoPredict is an R package used predict
drug response in cancer patients [16]. We calculated drug
sensitivity to 198 potential antineoplastic drugs in the low-
and high-risk groups. Patients in the high-risk group had a

higher sensitivity to AZD5991_1720, Acetalax_1804, Carmus-
tine_1807, Ibrutinib_1799, and MIRA.1_1931 than patients in
the low-risk group, whereas the sensitivity to Selumetinib_1736,
PRIMA.1MET_1131, SB216763_1025, and Nutlin.3a_1047
was higher in the low-risk group (Figure 11). These results
indicated potential sensitivity to drugs for the treatment of
patients in different risk groups, andmay provide guidance on
the choice of chemotherapy drugs for the treatment of
patients with LUSC in the high- and low-risk groups.

4. Discussion

LUSC is an extraordinarily aggressive malignancy for which
targeted therapies are currently nonexistent [25]. Despite
recent advancements in the treatment strategies of LUSC,
the prognosis predominantly remains unfavorable [26, 27].
A considerable challenge is the typical late-stage diagnosis,
which leads to a median OS of merely 17.1 months for
patients undergoing immunotherapy and chemotherapy
[28]. Thus, there is a pressing need to unveil innovative
diagnostic and therapeutic strategies that promise an
enhanced prognosis for LUSC patients [29]. Contemporary
research suggests that early intervention in LUSC could be
facilitated through predictive models built upon prognostic
genes [30]. Various models, incorporating elements like
aging-related, immune-related, and pyroptosis-related gene
signatures, have been presented. However, the current bio-
markers and prognostic models lack comprehensive suffi-
ciency and robustness [31–33].

Anoikis significantly influences oncological outcomes by
maintaining tissue integrity, curbing abnormal cellular pro-
liferation, and restricting undesirable adherence within an
anomalous ECM [34]. Numerous recent studies have metic-
ulously delineated the resistance mechanisms to anoikis in
LUSC among other tumors [12, 35]. A specialized gene sig-
nature pertinent to anoikis has been elucidated, finding rele-
vance in various tumors including head and neck squamous
cell carcinoma, clear cell renal cell carcinoma (ccRCC), and
glioblastoma multiforme (GBM) [36–38]. These investigative
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FIGURE 9: Continued.

Journal of Immunology Research 21



∗∗∗∗

∗∗∗∗

BEAS-2B SK-MES-1
PDK4

NCI-H226
0.0

0.5

1.0

1.5

Re
lat

iv
e e

xp
re

ss
io

n
Re

lat
iv

e e
xp

re
ss

io
n

ðgÞ

∗∗∗∗

∗∗∗∗

Re
lat

iv
e e

xp
re

ss
io

n

0.0

0.5

1.0

1.5

2.0

2.5

BEAS-2B SK-MES-1
CHEK2

NCI-H226

ðhÞ
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efforts underscore the pivotal prognostic implications of ARGs
in oncology, illuminating pathways for the advent of precision
therapeutics in cancer management.

This study utilized the RNA-seq transcriptome profile
from the TCGA database to identify prognostic ARGs,
resulting in an eight-ARG signature and a predictive risk
model for forecasting LUSC patients’ prognosis. Addition-
ally, a comprehensive analysis was conducted to explore the
correlation between the immune landscape, mutation land-
scape, immunotherapy response, and chemotherapy response
in LUSC patients alongside risk stratification. The findings
revealed that prognostic ARGs are instrumental in classifying

LUSC patients into distinct molecular subtypes and risk stra-
tifications, showing significant variations in OS, immune
infiltration levels, mutation loads, and therapeutic sensitivity.

The potential biological mechanisms of the eight ARGs
identified in our study were diverse. Previous studies have
indicated that inhibition of glycolysis by CEMIP-mediated
downregulation of PDK4 impaired the migration and inva-
sion of prostate cancer cells resistant to anoikis by attenuat-
ing the expression of MMP2 and VEGF [39]. Furthermore,
PDK4 has been reported to potentiate cisplatin-induced cell
death [40]. Our study was the first to provide evidence sup-
porting PDK4 as a potential biomarker for LUSC.
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FIGURE 10: Impact of CHEK2 and SDCBP on the migration and invasion abilities of lung squamous cell carcinoma cells. (a, b) CHEK2
expression was significantly reduced after its knockdown, compared to the blank control group. (c, d) Following the CHEK2 knockdown,
scratch assays and transwell invasion experiments were performed. (e, f ) Comparisons were made between the scratch areas of the CHEK2
knockdown and control groups. (g) The number of traversing NCI-H226 and SK-MES-1 cells from the CHEK2 knockdown group was
compared to the control group through the transwell membrane. (h, i) Transfection with the SDCBP plasmid led to a significant increase in
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Syntenin/MDA-9 (SDCBP) is prevalently overexpressed in
various tumors, marking it a significant therapeutic target to
thwart tumormetastasis [41]. Additionally, SDCBP orchestrates
protective autophagy andmodulates anoikis resistance via BCL-
2 phosphorylation in GBM [42]. Kim et al. [43] revealed that
SDCBP fosters the migration and endothelial formation of
lung cancer cells by managing the secretion of small extracel-
lular vesicles (sEVs) [44]. Knocking down SDCBP expression
unveiled that sEVs from syntenin-1-knockdown cells negated

the migratory promotion of cancer and endothelial cells, and
inhibited endothelial tube formation.

This study corroborated SDCBP’s role in enhancing the
migration and invasion of LUSC cells through the construction
of overexpressed LUSC cell lines, using diverse approaches.
EDA2R has been reported to be a putative tumor suppressor
and a direct target of TP53 that prevents tumor progression
through regulation of apoptosis and anoikis. EDA2R is often
downregulated in the colorectal cancer tissues due to epigenetic
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alterations or through TP53 gene mutations [45]. We showed
that the expression of EDA2R was correlated with a worse
prognosis in LUSC patients and was higher in patients
without TP53 mutations.

This finding agreed with the results of previous studies
and indicated that EDA2R may be associated with the TP53
mutation and resistance to anoikis in LUSC. SERPINA1 has
been shown to play an active role in the pathogenesis of
NSCLC [46]. CHEK2, a tumor suppressor protein, has been
reported to be closely related to the progression of several
types of tumors [47] and can induce cell death to regulate
anoikis by activating PRAS40 in papillary thyroid cancer
(PTC) [48]. Furthermore, CHEK2 has been shown to be an
important component in an anoikis-related risk model of
ccRCC [37].

Although CHEK2 is highly expressed in LUSC cells, it
still plays a role as a tumor suppressor gene in LUSC. Our
research has also confirmed this through cellular functional
experiments. Additionally, our study showed that CHEK2
was significantly associated with the ESTIMATE score and
tumor purity, indicating that future research focusing on the
effects of CHEK2 on the immune microenvironment in
LUSC may be valuable. FADD plays an important role in
cancer progression [49] and has been reported to be a regu-
lator of cell life and death [50]. FADD can block anoikis
through the formation of a Fas–FADD complex [51]. ITGA3
can mediate miR-124-associated regulation of tumor cell
anoikis. IGTA3 is highly expressed IS NSCLC and has been
shown to be associated with invasion andmetastasis in LUAD
and LUSC [52]. Serine peptidase inhibitor kazal type I
(SPINK1) has been shown to promote anoikis resistance in
ovarian cancer through a distinct mechanism involving pro-
tease inhibition [53].

The immune TME, a crucial determinant in the trajec-
tory of tumor progression and metastasis, substantially influ-
ences the efficacy of immunotherapy. In our meticulous
analysis, we explored the correlations between the eight piv-
otal ARGs and the infiltration abundance of 22 immune cell
types, yielding insightful findings. Specifically, it was dis-
cerned that follicular helper T cells exhibited an inverse rela-
tionship with the eight central ARGs, with the exception of
CHEK2, FADD, and SPINK1. Conversely, memory CD4+
T cells demonstrated a positive correlation with these ARGs,
barring CHEK2, FADD, and SPINK1. Such discoveries
underscore the potential significance of concentrating on
the relationship between follicular helper T cells and mem-
ory resting CD4+ T cells, suggesting that this focus could
unveil valuable insights in the realm of immunotherapy effi-
cacy and tumor progression. This nuanced understanding
could potentially be instrumental in enhancing therapeutic
strategies and interventions in the future.

In the present study, we constructed and validated an
eight ARGs signature and a nomogram-based model for
patient outcomes. The model had excellent predictive per-
formance in patients with LUSC and may help in clinical
decision-making and the development of personalized
LUSC treatments. However, studies at the single cell level
may improve the predictive power of the model due to

significant heterogeneity between the tumor cells. Further-
more, a larger sample size is needed to calibrate the risk
model. The addition of in vitro experiments may further
strengthen the findings in our study. In summary, our study
provided a new perspective and a powerful tool for the early
diagnosis and development of precision drugs for the treat-
ment of LUSC.
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