
Research Article
Predicting the Progress of Tuberculosis by Inflammatory
Response-Related Genes Based on Multiple Machine Learning
Comprehensive Analysis

Shuai Ma ,1,2 Peifei Peng,3 Zhihao Duan,1,2 Yifeng Fan,1,2 and Xinzhi Li 1,2

1Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443000, China
2College of Basic Medical Science, China Three Gorges University, Yichang 443000, China
3Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, Hubei 430074, China

Correspondence should be addressed to Xinzhi Li; lixpj@163.com

Received 24 January 2023; Revised 4 March 2023; Accepted 20 April 2023; Published 16 May 2023

Academic Editor: Wenping Gong

Copyright © 2023 Shuai Ma et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, affects approximately one-quarter of the
global population and is considered one of the most lethal infectious diseases worldwide. The prevention of latent tuberculosis
infection (LTBI) from progressing into active tuberculosis (ATB) is crucial for controlling and eradicating TB. Unfortunately,
currently available biomarkers have limited effectiveness in identifying subpopulations that are at risk of developing ATB. Hence,
it is imperative to develop advanced molecular tools for TB risk stratification.Methods. The TB datasets were downloaded from the
GEO database. Three machine learning models, namely LASSO, RF, and SVM-RFE, were used to identify the key characteristic
genes related to inflammation during the progression of LTBI to ATB. The expression and diagnostic accuracy of these character-
istic genes were subsequently verified. These genes were then used to develop diagnostic nomograms. In addition, single-cell
expression clustering analysis, immune cell expression clustering analysis, GSVA analysis, immune cell correlation, and immune
checkpoint correlation of characteristic genes were conducted. Furthermore, the upstream shared miRNA was predicted, and a
miRNA–genes network was constructed. Candidate drugs were also analyzed and predicted. Results. In comparison to LTBI, a total
of 96 upregulated and 26 downregulated genes related to the inflammatory response were identified in ATB. These characteristic
genes have demonstrated excellent diagnostic performance and significant correlation with many immune cells and immune sites.
The results of the miRNA–genes network analysis suggested a potential role of hsa-miR-3163 in the molecular mechanism of LTBI
progressing into ATB. Moreover, retinoic acid may offer a potential avenue for the prevention of LTBI progression to ATB and for
the treatment of ATB. Conclusion. Our research has identified key inflammatory response-related genes that are characteristic of
LTBI progression to ATB and hsa-miR-3163 as a significant node in the molecular mechanism of this progression. Our analyses
have demonstrated the excellent diagnostic performance of these characteristic genes and their significant correlation with many
immune cells and immune checkpoints. The CD274 immune checkpoint presents a promising target for the prevention and
treatment of ATB. Furthermore, our findings suggest that retinoic acid may have a role in preventing LTBI from progressing to
ATB and in treatingATB. This study provides a new perspective for differential diagnosis of LTBI and ATB andmay uncover potential
inflammatory immune mechanisms, biomarkers, therapeutic targets, and effective drugs in the progression of LTBI into ATB.

1. Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis,
is a highly prevalent disease that affects approximately one-
quarter of the global population, resulting inmillions of deaths
each year [1, 2]. While a majority of these cases are latent

tuberculosis infections (LTBI), 5%–10% of infected individuals
may develop active tuberculosis (ATB) [3], imposing signifi-
cant economic and societal burdens. Projected estimates indi-
cate that by 2030 and 2050, the LTBI population will generate
16.3 and 8.3 ATB cases per 100,000 individuals, respectively
[4]. Early identification of ATB patients and implementation
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of preventive measures to halt LTBI progression into ATB
represent critical measures for controlling and eliminating
TB [5]. However, the absence of specific biomarkers to identify
LTBI subpopulations at risk of ATB progression remains
a major challenge in TB prevention [6]. Thus, there is an
urgent need to develop advanced molecular tools for TB risk
stratification.

Inflammation is a fundamental response of the human
immune system to signals resulting from tissue damage or
pathogenic infection [7]. This process is crucial for promot-
ing the restoration of body balance after trauma or infection
by repairing damaged tissues and protecting the host from
exogenous pathogens [8]. Inflammatory disorders are asso-
ciated with numerous diseases, such as cancer, sepsis, and
autoimmune diseases [9]. Similarly, LTBI’s progression to
ATB is typically accompanied by an inflammatory reaction
that can reflect the development of TB [10, 11]. Following
Mycobacterium tuberculosis infection, a “tug-of-war” between
proinflammatory and anti-inflammatory signals ensues in
the lung, which can promote or limit bacterial transmission
[12, 13]. A shift toward a proinflammatory state can cause
remodeling in granulomas, cheese liquefaction, and destruc-
tion of the surrounding lung parenchyma, all of which are
related to ATB onset and the successful transmission ofMyco-
bacterium tuberculosis [14, 15]. Furthermore, the regression
of granuloma and pulmonary inflammation indicates a better
prognosis [16]. Biomarkers related to inflammation can assist
in differentiating between LTBI and ATB and predicting TB’s
progress. Therefore, their use can be helpful for differential
diagnosis and risk stratification of TB.

Machine learning has become a powerful tool in disease
research for various purposes including cancer classification
and treatment, drug discovery, gene/protein interaction
network analysis, and protein secondary structure prediction
[17, 18]. In recent years, machine learning has been increas-
ingly employed to identify genes with diagnostic potential,
resulting in significant improvements in the accuracy of iden-
tifying differentially expressed genes on microarrays. For
instance, Lee et al. [19] employed the least absolute contrac-
tion and selection operator (LASSO) algorithm to identify
genes with high predictive value for treatment response after
the first real flare. Similarly, Zhao and Si [20] utilized the Lasso
and support vector machine recursive feature elimination
(SVM-RFE) algorithms to identify key diagnostic genes for
dermatomyositis. Thus, machine learning holds promise in
identifying inflammatory response-related genes with signifi-
cant implications in the progression of LTBI to ATB.

In this study, we employed three machine learning algo-
rithms, namely Lasso, random forest (RF), and SVM-RFE,
to identify characteristic genes associated with TB progres-
sion and inflammatory response. This allowed us to effec-
tively distinguish between LTBI and ATB, as well as predict
the progress of TB. We further investigated the role of these
characteristic genes in the development of LTBI to ATB and
constructed a miRNA–gene regulatory network to elucidate
the underlying mechanisms. Moreover, we predict the effec-
tive drugs for characteristic genes and verify them via molec-
ular docking.

2. Materials and Methods

The workflow of the analysis, including the gene extraction
curation pipeline, is presented in Figure 1. Our work com-
prises four main parts: data preparation, data processing
using different machine learning models to identify charac-
teristic genes, validation of these characteristic genes, and
analysis of differences in the key characteristic genes. We
elaborate on each step in the following subsections.

2.1. Acquisition of Microarray Data. The gene expression
datasets GSE37250 [21] and GSE19439 [22] pertaining to
TB were obtained from the NCBI GEO (https://www.ncbi.
nlm.nih.gov/geo/). GSE37250 comprises data from 97 patients
with LTBI and 83 patients with ATB, while GSE19439 com-
prises data from 17 LTBI patients and 13 ATB patients.
GSE37250 was utilized as the training dataset, and GSE19439
was utilized as an external validation dataset.

2.2. Analysis of Inflammatory Response-Related Genes in the
Progression of TB. Two hundred inflammatory response-related
genes were obtained through the online website GSEA (https://
www.gsea-msigdb.org/gsea/index.jsp) [23]. The training dataset
underwent log2 transformation and normalization. Differentially
expressed inflammatory response-related genes were screened
with 97 LTBI and 83ATB in accordance with the criterion that
a p-value<0:05 was considered significantly different, using
the limma package [24].

2.3. Functional-Enrichment Analysis. Enrichment analysis
was conducted on the differentially expressed inflammatory-
related genes in both LTBI and ATB groups. This analysis
included Gene Ontology (GO), the Kyoto Encyclopedia of
Genes and Genomes (KEGG), and Disease Ontology (DO).
GO enrichment analysis comprised biological processes (BP),
molecular functions (MF), and cellular components (CC).

2.4. Selection of Characteristic Genes. The LASSO, RF, and
SVM-RFE were utilized to identify characteristic genes [25].
As a dimension reduction technique, the LASSO regression
demonstrates superior performance in evaluating high-
dimensional data as compared with regression analysis. It
employs regularization to enhance prediction accuracy [26].
R package “glmnet” were applied for LASSO, which was
performed by 10-fold cross-validation to adjust the optimal
penalty parameter λ [27]. The response type was set as
binomial, and the α was set as 1. RF is a supervised machine
learning algorithm built with a decision tree algorithm and is
used to solve regression and classification problems. The
“randomForest” package was used to build the RF model.
The RF model was established to find the number of random
forest trees with the minimum error (option trees = 148). The
feature importance was determined by the mean decrease Gini
index calculated by RF, and genes with relative importance >2
were determined as characteristic genes. SVM-RFE is a novel
method for pattern recognition that adopts the principle
of structural risk minimization, accounts for training error
and generalizability, and demonstrates distinctive advantages
in solving small samples, high-dimensional nonlinearity,
local minima, and other pattern recognition problems [28].
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R packages “e1071” and “caret” for the SVM-RFE algorithm
were used to calculate the point with the smallest cross-
validation error, so as to screen characteristic genes. The
characteristic genes screened by the three different machine
learning algorithms were then applied for feature selection by
using the online tool Venny 2.1 (https://bioinfogp.cnb.csic.es/
tools/venny/index.html).

2.5. ExpressionVerification andDiagnostic Effect of Characteristic
Genes. Differential expression of characteristic genes in LTBI
andATBwas confirmed by using the training dataset GSE37250
and the external validation dataset GSE19439. Receiver oper-
ating characteristic (ROC) curves and the area under the
curve (AUC) were used for estimating the diagnostic efficacy.

2.6. Construction and Verification of Diagnostic Nomogram.
A nomogram was constructed using the characteristic genes
to predict and diagnose ATB in patients with TB. The

effectiveness of the nomogram was assessed by evaluating
the predictive accuracy using calibration curve analysis.
Moreover, decision curve analysis and clinical impact curves
were utilized to evaluate the clinical usefulness of the model.

2.7. Expression-Cluster Analysis. Expression clusters of char-
acteristic genes in single cell types and immune cells were
analyzed using The Human Protein Atlas online web plat-
form (https://www.proteinatlas.org).

2.8. Gene-Set-Variation Analysis (GSVA).The dataset GSE37250
was stratified into two groups based on the expression levels
of characteristic genes, namely high and low, followed by
pathway enrichment analysis to identify the enriched path-
ways associated with TB progression [29].

2.9. Analysis of Immunity. The ssGSEA method was utilized
to calculate immune cell scores, followed by a differential
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FIGURE 1: Flowchart of the design and evaluation of this study. GEO, Gene Expression Omnibus; ROC, receiver operating characteristic curve;
miRNA, microRNA.
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analysis of immune cells and an analysis of the correlation
between characteristic genes and immune cells. Furthermore,
the correlation between the characteristic genes and the
upregulated immune checkpoint in ATB was analyzed.

2.10. Construction of miRNA-Characteristic Gene Regulatory
Network. Bioinformatics tools, including databases and pre-
diction algorithms such as TargetScan (https://www.targe
tscan.org/vert_80/), were used to predict the miRNAs that
regulate the characteristic genes [30]. The predicted miRNAs
were cross-referenced using the online network tool jvenn
(https://jvenn.toulouse.inra.fr/app/example.html) [31] and
an interaction network between the characteristic genes and
the predicted miRNAs was constructed using Cytospace.

2.11. Screening of Interacting Drugs. The online tool Enrichr
(https://maayanlab.cloud/Enrichr/) was used to predict the
five characteristic genes, and the effective drugs that played an
important role in these characteristic genes were screened [32].

2.12. Molecular Docking. The 2D structure of retinoic acid
was obtained from the PubChem database (https://pubchem.
ncbi.nlm.nih.gov/). The 2D structure was converted to a
3D conformational space with minimum free energy using

Chembio3D 14.0.0.117 software and the resulting file format
was converted. After inputting the characteristic gene into
the UniProt database (https://www.uniprot.org/), the corre-
sponding human protein UniProt ID was selected and then
used to retrieve the protein 3D structure from the RCSB PDB
database (https://www.rcsb.org) [33, 34]. The protein files
obtained were dehydrated, hydrogenated, and small molecular
ligands were removed.Molecular docking was performed using
AutoDock Vina 1.1.2 software to obtain the minimum molec-
ular docking binding energy of the characteristic genes and the
selected drugs. The hydrophobicity of the docking strength,
hydrogen bond, π–π conjugated bond, and amino acid residue
were analyzed using PyMOL 2.1.1 software. Finally, the best
binding degree was selected and the results were presented.

2.13. Consensus-Clustering Analysis. K-means clustering was
used on the basis of expression profiling of TB and inflam-
matory response-related genes (50 iterations and resampling
rate of 80%) [25]. Cumulative distribution function (CDF)
plots were used to find the optimal number of clusters and
the relative alterations in area under the CDF curve were
evaluated. Principal component analysis (PCA) was utilized
to reduce dimensions and verify the reliability of consensus
clusters.
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3. Results

3.1. Identification of Inflammation-Related Genes Involved in
the Progress of TB. In the training dataset GSE37250, we
studied the function of inflammation-related genes in the
progression of TB by analyzing blood expression profiles
of 97 patients with LTBI and 83 patients with ATB. Out of
200 inflammation-related genes, 122 inflammatory response-
related genes showed differential expression in ATB com-
pared with LTBI (Figure 2(a)). Among these, 96 genes were
upregulated while 26 genes were downregulated (Figure 2(b)).

3.2. EnrichmentAnalysis ofDifferentially Expressed Inflammation-
Related Genes. The enrichment analysis was implemented on
these differentially expressed inflammatory response-related
genes. As is shown in the results (Figure 2(c)), in terms of BP,
genes are mainly enriched in the positive regulation of cyto-
kine production, cytokine-mediated signaling pathway, and
response to molecules of bacterial origin. In terms of CC,
genes are mainly enriched in external side of the plasma
membrane, endocytic vesicle membrane, and endocytic vesi-
cle. In terms of MF, genes are mainly enriched in cytokine
receptor activity, immune receptor activity, and cytokine
activity. KEGG analysis results showed that the gene was
mainly enriched in cytokine–cytokine receptor interaction,

TNF signaling pathway, Toll-like receptor signaling pathway,
and NOD-like receptor signaling pathway (Figure 2(d)). DO
results (Figure 2(e)) showed that these genes were mostly
enriched in lung diseases and bacterial infection diseases,
which further indicated that these differential inflammatory
response-related genes may be involved in lung diseases
caused by bacteria.

3.3. Screening of Characteristic Genes. For the LASSO algorithm
(Figure 3(a)), the optimal λ was 0.017 following 10-fold
cross-validation and 24 characteristic genes were identified,
containing BTG2, C3AR1, CCL2, CD14, CXCL10, CYBB,
DCBLD2, EBI3, EMP3, F3, ICAM1, IL15, IL18RAP, ITGB3,
KCNJ2, KLF6, OSM, SCARF1, SGMS2, SLC4A4, SPHK1,
TLR2, TNFRSF1B, and TNFRSF9. For the RF algorithm
(Figures 3(b) and 3(c)), the minimum error of the RF model
was achieved when the number of random forest trees was
148 (Figure 3(b)). Figure 3(c) shows the relative importance
ranking of genes, among which 10 genes, including CYBB,
KCNJ2, LCK, IL15, SLAMF1, OSM, TNFSF10, RTP4, TLR2,
and IFITM1, were determined as characteristic genes based on
their relative conditional importance score >2. The SVM-RFE
algorithm (Figure 3(d)) achieved the minimum error in
classification when N = 28. The algorithm determined 28
characteristic genes, including CYBB, KCNJ2, IL15, LCK,
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TLR2, TNFSF10, OSM, IL7R, RTP4, IFITM1, SLAMF1,
MARCO, TNFAIP6, ITGB3, IL18RAP, SPHK1, DCBLD2,
STAB1, EMP3, SCARF1, CXCL10, CCRL2, KIF1B, ICAM1,
KLF6, GABBR1, FZD5, and GP1BA, as the most important
features for classification. Following the intersection
(Figure 3(e)), five characteristic genes shared by LASSO,
random forest, and SVM-RFE algorithms were finally
identified (CYBB, IL15, KCNJ2, OSM, and TLR2; Figure 3(f)).
The feature genes selected by using three machine-learning
methods can also be found in Table S1.

3.4. ExpressionVerification andDiagnostic Effect of Characteristic
Genes. In the training dataset GSE37250 and the external test
dataset GSE19439, five characteristic genes (CYBB, IL15,
KCNJ2, OSM, and TLR2) presented higher expression in
ATB than that in LTBI (Figures 4(a) and 4(b)), indicating
their potential role in the development of TB. We also
estimated the diagnostic performance of each characteristic
gene for ATB in GSE37250 and GSE19439, respectively
(Figures 4(c) and 4(d)). The AUC values of ROC curves
were greater than 0.7, demonstrating that these characteristic
genes enabled to distinguish ATB from LTBI. Therefore, the
characteristic genes have excellent diagnostic performance in
predicting the progress of TB.

3.5. Establishment of Nomogram Based on Characteristic Genes
to Predict the Progress of TB. As illustrated in Figure 5(a),
there were significant interactions between the characteristic
genes. By incorporating these characteristic genes, a nomo-
gram was constructed as a diagnostic tool for ATB, and its
predictive abilities were evaluated via calibration curves. In
the nomogram (Figure 5(b)), each characteristic gene corre-
sponded to a score, and the total score was calculated by
adding the scores for all the characteristic genes. The total
points corresponded to different risks of TB. The calibration
curve demonstrated that the difference between the actual
and predicted risks of ATB was very small, indicating that
the nomogram enabled an accurate estimation of the progres-
sion of TB (Figure 5(c)). As depicted in the decision curve
analysis (Figure 5(d)), the nomogram model was found to be
highly accurate. The clinical influence curve (Figure 5(e))
showed that the predicted ATB by the nomogram was con-
sistent with the actual situation.

3.6. Expression-Cluster Analysis of Characteristic Genes. The
expression of characteristic genes was evaluated via expres-
sion cluster analysis. As shown in the single-cell expression
cluster analysis (Figure 6(a)), CYBB, IL15, KCNJ2, and TLR2
were predominantly expressed in macrophages, while OSM
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was primarily expressed in T cells. CYBB and IL15 were
mainly expressed in monocytes, KCNJ2 was mainly expressed
in neutrophils, and OSM was mainly expressed in basophils
(Figure 6(b)). The identification of these cell types and their
gene expression patterns is of significant value in understanding
the roles of macrophages, T cells, neutrophils, and basophils
during the progression of TB.

3.7. Gene-Set-Variation Analysis. To gain a better under-
standing of the role of characteristic genes in TB, we con-
ducted a GSVA to classify TB into two subgroups based on
the median expression of characteristic genes (Figure 6(c)).
Primary immunodeficiency and olfactory transduction path-
ways were significantly enriched in the high CYBB subgroup,
while histidine metabolism, systemic lupus erythematosus,
and basal transcription factor were significantly enriched
in the low CYBB subgroup. Olfactory transduction was signifi-
cantly enriched in the high IL15 subgroup, while systemic
lupus erythematosus, protein output, and basal transcription
factor were significantly enriched in the low IL15 subgroup.
Propanoate metabolism, butanoate metabolism, DNA replica-
tion, and primary immunodeficiency were significantly
enriched in the high KCNJ2 subgroup, while the comple-
ment and cohesive cascades, phenylalanine metabolism, and

biosynthesis of lactose and neolactone series of glycosphingoli-
pids were significantly enriched in the low KCNJ2 subgroup.
The high OSM subgroup was highly enriched in DNA replica-
tion, nucleotidectomy repair, and primary immunodeficiency,
while the low OSM subgroup was significantly enriched in sup-
plement and solidification cascade, biosynthesis of lactose and
neolactone series of glycosphingolipids, and metabolism of
nicotinate and nicotinamide. Primary immunodeficiency, lino-
leic acid metabolism, and DNA replication were significantly
enriched in the high TLR2 subgroup, while pantothenate and
CoA biosynthesis, biosynthesis of lactose and neolactone series
of glycosphingolipids, and the complement and cohesive cas-
cade were significantly enriched in the low TLR2 subgroup.
Among these enriched pathways, primary immunodeficiency
was associated with the highest expression of characteristic
genes, indicating a prominent role in the progression of TB.

3.8. Changes in Immunological Characteristics from the LTBI
and ATB using ssGSEA Analysis. ssGSEA was used to analyze
the changes in immunological characteristics from LTBI to
ATB and investigate the relationship between immune infil-
tration and ATB/LTBI. The analysis was conducted using a
training dataset and an external test dataset. Figures 7(a) and
7(b) depict immune cell heatmaps in the training dataset
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analysis, and (e) DO analysis of differentially expressed inflammatory response-related genes in LTBI and ATB.  ∗P<0:05,  ∗∗P<0:01,
 

∗∗∗P<0:001.

8 Journal of Immunology Research



44

1.6

1.4

1.2

1.0

Bi
no

m
ia

l d
ev

ia
nc

e

0.8

0.6

–8 –6
Log(λ)

–4 –2

43 42 41 41 38 34 33 27 24 25 12 9 3

N = 24
Optimal λ = 0.017

ðaÞ

0.25

0.20

0.15

Er
ro

r

0.10

1000 200
Trees

300 400 500

Random forest

Option trees = 148

ðbÞ

KCNJ2
LCK
IL 15
SLAMF 1
OSM
TNFSF 10
RTP4
TLR2

CYBB

IFITM1
ILR7
MARCO
CCRL2
ADM
DCBLD2
ITGB3
CXCL10
STAB1
IL18R1
ICOSLG
TNFAIP6
SPHK1
SCARF1
GCH1
IL 18RAP
CCR7
C3AR1
KIF 1B
GP 1BA
NOD2

20 4
Mean decrease Gini

6 8

ðcÞ

0.40

0.38

0.36

0.34

0.32

0.30

0.28

RM
SE

 (c
ro

ss
-v

al
id

at
io

n)

20

N = 28

0 6040
Variables

80 100 120

ðdÞ

LASSO SVM-RFE

10
(26.3%)

9
(23.7%)

5
(13.2%)

5
(13.2%)

0
(0%)

0
(0%)

9
(23.7%)

ðeÞ

Number

1

2

3

4

5

Gene

CYBB

IL15

KCNJ2

OSM

TLR2

ðfÞ
FIGURE 3: Machine learning is used to screen disease-characteristic genes. (a) Lasso algorithm for characteristic gene selection. (b) Determi-
nation of the number of decision trees in random forest algorithm. (c) Genetic importance score in random forest algorithm. (d) SVM-RFE
algorithm for characteristic gene selection. (e) Venn diagram of shared characteristic genes selected by three different algorithms. (f ) Shared
characteristic genes in three different algorithms.

Journal of Immunology Research 9



GSE37250 and the test dataset GSE19439, respectively.
Figures 7(c) and 7(d) showed the violin diagram of immune
cell expression in the training dataset GSE37250 and the test
dataset GSE19439 respectively. The results (Table S2) dem-
onstrate that in the training dataset, 23 immune cells exhib-
ited differential expression, with 12 immune cells upregulated
and 11 immune cells downregulated. In the external test data-
set, 18 immune cells showed differential expression, with 10
immune cells upregulated and 8 immune cells downregulated.

The trend of immune cell differential expression was consis-
tent in both the GSE37250 and GSE19439 datasets, with 10
immune cells upregulated. Furthermore, we analyzed the rela-
tionship between characteristic genes and immune cells, as
shown in Figures 7(e) and 7(f) for the training and test vali-
dation datasets, respectively. It was observed that upregulated
immune cells and characteristic genes were mostly positively
correlated, whereas downregulated immune cells and char-
acteristic genes were mostly negatively correlated. These
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findings suggest that the characteristic genes may play a role
in regulating the immune process during the development of
LTBI into ATB.

3.9. Immune-Checkpoint Analysis. To further investigate
the immunological characteristics of ATB and LTBI, we
analyzed changes in immune checkpoints. A total of five
immune checkpoints were upregulated in both the training
dataset GSE37250 (Figure 8(a)) and the external test dataset
GSE19439 (Figure 8(b)). We analyzed the coexpression rela-
tionship between the five characteristic genes and these upre-
gulated immune checkpoints (Figure 8(c)). The CYBB gene
was positively linked to CD86, TNFRSF14, and CD274. The
IL15 gene was positively linked to CD86, TNFRSF14, CD274,
and LGALS9. The KCNJ2 gene was positively linked to
CD274 and LGALS9 and negatively linked to HAVCR2.
The OSM gene was positively linked to CD274 and LGALS9.
The TLR2 gene was positively linked to CD274. The results
indicate that the characteristic genes were mostly positively

linked to the upregulated immune checkpoints in the pro-
gression of TB, and CD274 was positively linked to all five
characteristic genes. Therefore, characteristic genes may be
involved in the regulation of immune checkpoints in the
process of TB progression, and CD274 immune checkpoint
may be an effective target for inhibiting the progression of
LTBI into ATB and treating ATB.

3.10. Construction of miRNA-Characteristic Gene Regulatory
Network. To further study the regulatory network of charac-
teristic genes, we predicted the miRNA upstream of charac-
teristic genes (Figure 9(a)) and constructed the network via
these characteristic genes and miRNA (Figure 9(b)). The
results showed that 737 miRNAs were predicted upstream
of CYBB gene, 375 miRNAs were predicted upstream of IL15
gene, 962 miRNAs were predicted upstream of KCNJ2 gene,
414 miRNAs were predicted upstream of OSM gene, and 254
miRNAs were predicted upstream of TLR2 gene. In these
miRNAs, hsa-miR-3163 was predicted by all characteristic
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genes, indicating that hsa-miR-3163 has a regulatory effect
on all characteristic genes, which may be one of the impor-
tant regulatory nodes in the development of LTBI into ATB.

3.11. Analysis of Effective Drugs. On the basis of characteris-
tic genes, we predicted the potentially effective drugs that can
prevent LTBI from developing into ATB. The results showed
that a total of 253 drugs (Figure S1) were predicted, of which
retinoic acid could interact with the most characteristic

genes. Retinoic acid was then linked to the proteins of the
five characteristic genes. The five characteristic genes were
converted into the corresponding protein (Figure 10(a)), and
then the binding form (Figure 10(b)) with the lowest binding
energy was obtained by docking retinoic acid with the cor-
responding protein. The binding site of retinoic acid and
the protein was amplified. The results showed that retinoic
acid enabled to dock with five proteins, and the gene bind-
ing energy of CYBB, IL15, KCNJ2, OSM, and TLR2 genes
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FIGURE 6: Expression cluster and GSVA analysis of characteristic genes. (a) single cell expression cluster analysis, (b) immune cell expression
cluster analysis, and (c) GSVA analysis of characteristic genes.
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was−5.4,−7.8,−5.7, and−5.8 kcal/mol, respectively. The above
results effectively demonstrated the reliability of predicting
drugs and showed that small-molecule retinoic acid may play
a potential role in preventing LTBI from developing into ATB.

3.12. Construction of Two Inflammatory Subtypes of TB
Based on Inflammatory Response-Related Genes. TB was
clustered via the consensus clustering method based on the
progression of TB and the expression profile of genes related
to inflammatory response. The optimal number of subtypes
was found to be 2, as determined by a consensus matrix plot
(Figure 11(a)), a CDF plot (Figure 11(b)), relative alterations
in the area under the CDF curve (Figure 11(c)), and a track-
ing plot (Figure 11(d)). We named the two immune subtypes
A and B. PCA analysis demonstrated a remarkable difference
between the subtypes (Figure 11(e)). Notably, significant
heterogeneity existed in subtypes of TB and the expression
of genes related to inflammatory response (Figure 11(f)).
Furthermore, we observed that all characteristic genes pre-
sented higher expression in subtype B than A, and most
genes related to inflammatory response exhibited higher
expression in subtype B than A (Figure 11(g)). Therefore,
we identified subtype B as an immune subtype and subtype
A as a nonimmune subtype.

4. Discussion

According to experimental and clinical evidence, TB is a
significant infectious disease globally, leading to severe social
and economic burdens [35–37]. Early identification of LTBI
and ATB has become the key to control and eliminate TB.
Early detection of LTBI and ATB is crucial for effective con-
trol and elimination of TB. Unfortunately, no highly effective
biomarker is available to identify LTBI and ATB or to predict
the progression of TB. Therefore, it is crucial to develop
innovative diagnostic tools for risk stratification of TB.

In the expression profile of individuals with LTBI and
ATB from the GSE37250 dataset, we have identified 122
inflammatory response-related genes that exhibit differential
expression in individuals with ATB compared with those
with LTBI. Enrichment analysis was performed on these
genes, which showed that they were primarily involved in
the positive regulation of cytokine production, the external
side of the plasma membrane, and cytokine receptor activity,
as revealed by GO analysis. KEGG pathway analysis indi-
cated that these inflammatory response-related genes were
primarily associated with cytokine–cytokine receptor inter-
action, TNF signaling pathway, Toll-like receptor signaling
pathway, and NOD-like receptor signaling pathway. DO
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analysis indicated that these inflammatory response-related
genes were mainly enriched in lung diseases and bacterial
infections, further highlighting their involvement in TB-
induced lung diseases. These findings underscore the crucial
role of inflammatory response-related genes in the develop-
ment and progression of TB and may pave the way for the
development of novel diagnostic tools for TB.

Three algorithms were employed to identify characteris-
tic genes from inflammatory response-related genes involved
in the progression of TB. The research findings demonstrate
that these characteristic genes play a crucial role in TB pro-
gression. The CYBB gene encodes the gp91-phox component
of the phagocytic oxidase complex, which is responsible for
producing superoxide and other downstream reactive oxy-
gen species (ROS) critical for microbial killing [38, 39]. For a
long time, ROS has been considered to be the primary cause
of tissue damage resulting from acute or chronic inflamma-
tory diseases in pathological conditions [40, 41]. Therefore,
the upregulation of CYBB indicates an excess of ROS, which
may contribute to tissue injury and clinical symptoms arising
from LTBI progression ATB. IL-15 is an inflammatory cyto-
kine that plays a significant role in the development and
functional maturation of T lymphocytes and natural killer

cells [42–44]. IL-15 has been shown to be involved in various
autoimmune inflammatory diseases [45–47]. It can promote
chronic inflammation and sustain the inflammatory process.
Moreover, viral infections can upregulate IL-15 expression
[48]. The protein encoded by the KCNJ2 gene is a complete
membrane protein and inward rectifier potassium channel
that conducts strong inward rectifier K current in various
tissues and cell types, including neurons, skeletal muscle,
cardiomyocytes, immune system, and cancer cells [49].
Voltage-dependent potassium channels are one of the critical
regulatory factors in the maturation, activation, and differ-
entiation of macrophages, playing a key role in macrophage
proliferation and activation by affecting the resting potential
balance of macrophages [50, 51]. Therefore, the upregulation
of KCNJ2 may indicate an increase in macrophages. OSM is
a member of the interleukin-6 cytokine family. Inflammatory
cells can infiltrate specific microenvironments and secrete
OSM, which binds to the extracellular matrix and helps to
create an inflammatory microenvironment [52, 53]. TLR are
recognition molecules for a variety of pathogens, including
bacteria, viruses, fungi, and parasites [54]. In TB, TLR2 con-
tributes to the pathological scope and spatial localization of
infected lung tissue [55].
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In order to elucidate the role of characteristic genes in TB
progression, we conducted a series of analyses of character-
istic genes. Our findings indicate that these genes are primar-
ily expressed in macrophages, T cells, neutrophils, and
basophils. The subgroup of characteristic genes associated
with primary immunodeficiency showed the highest levels
of expression and played a prominent role in the disease
progression. Additionally, we confirmed the key role of these
characteristic genes in TB through expression verification
and diagnostic validity analyses of external datasets. Our
immune analysis further revealed that most of the

upregulated immune cells in the transition from LTBI to
ATB were positively correlated with the characteristic genes,
while the downregulated immune cells showed negative cor-
relation. This suggests that the characteristic genes may reg-
ulate the immune process during the development of LTBI
into ATB. We also observed a positive correlation between
most of the characteristic genes and the upregulated immune
checkpoint during TB progression. Furthermore, CD274
showed a positive correlation with five characteristic genes
simultaneously, implying that the characteristic genes may
be involved in the regulation of immune checkpoints during
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FIGURE 7: Analysis of immune infiltration. The heatmaps of immune cells in (a) training dataset GSE37250 and (b) external test dataset
GSE19439. The violin diagram of immune cells in (c) training dataset GSE37250 and (d) external test dataset GSE19439. The correlation
between characteristic genes and immune cells in (e) training dataset GSE37250 and (f ) external test dataset GSE19439.
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TB progression. Our results suggest that CD274 immune
checkpoint may be an effective target to inhibit the progres-
sion of LTBI into ATB and to treat ATB.

The upstream miRNA and effective drugs were predicted
by characteristic genes to find out the key action points and

drugs that can effectively prevent the progress of LTBI from
developing into ATB. Hsa-miR-3163 is a miRNA that can
regulate all five characteristic genes, which may be an impor-
tant network node in the molecular mechanism of LTBI
developing into ATB. Retinoic acid interacts with the most
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FIGURE 11: Construction of two inflammation subtypes of TB based on the TB progress and inflammatory response-related genes. (a)
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characteristic genes. The results of molecular docking
showed that the binding energy of retinoic acid to the pro-
teins corresponding to the characteristic genes was less than
−5.0 kcal/mol, which indicated that retinoic acid might pre-
vent LTBI from developing into ATB, and was helpful in the
treatment of ATB. Finally, we constructed two subtypes on
the basis of the expression profile of inflammatory response-
related genes related to TB progress. Further analysis dem-
onstrated that the B immune subtypes showed higher expres-
sion of inflammatory response-related genes than the A
noninflammatory subtypes. Therefore, our classification
enables us to reflect the inflammatory landscape of TB,
which may contribute to the early diagnosis and interven-
tion of TB treatment.

5. Conclusion

Collectively, our work has found the key characteristic genes
in the development of LTBI into ATB, and these character-
istic genes have been used to establish diagnostic lines. Sub-
sequently, a series of analyses of these characteristic genes
were carried out, which may help us to broaden our under-
standing of the molecular mechanism and bring more poten-
tial therapeutic targets for the clinic. Retinoic acid may play a
role in preventing LTBI from progressing to ATB and treat-
ing ATB. Our study may provide a potential basis and feature
direction for the differential diagnosis of LTBI and ATB and
the progress mechanism and prevention of TB.
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