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Background. The exosome is of vital importance throughout the entire progression of cancer. Because of the lack of effective
biomarkers in ovarian cancer (OV), we intend to investigate the connection between exosomes and tumor immune
microenvironment to verify that exosome-related genes (ERGs) can precisely forecast the prognosis of OV patients. Methods.
First, 117 ERGs in The Cancer Genome Atlas (TCGA) dataset were recognized. Afterwards, the risk signature consisting of
four ERGs with prognostic significance was built by univariate Cox, least absolute shrinkage and selection operator (LASSO),
and multivariate Cox regression analysis. We also validated the risk signature by Kaplan-Meier analysis, receiver operating
characteristic curve analysis and principal component analysis. Furthermore, gene set enrichment analysis was performed to
compare the enrichment patterns between the two risk subgroups. The connections between the exosome-related gene risk
score (ERGRS) and clinical features, immune infiltration, immune checkpoint-related genes, copy number variation, and drug
sensitivity were explored. We also assessed the function of the ERGRS to forecast immunotherapeutic efficacy by
immunophenoscore (IPS). Results. The high-risk group had a worse prognosis than the group with low risk. We verified that
the established model possessed a relatively good prognostic value. Pathway enrichment analysis indicated that the genome-
wide group with low risk was enriched in immune-related pathways. We discovered that resting dendritic cells and stromal
scores were upregulated in patients with high risk in the TCGA and Gene Expression Omnibus (GEO) cohorts. Moreover, the
expression of six common immune checkpoint inhibitor targets was assessed, which revealed that the expression levels of
CD274 (PD-L1), PDCD1 (PD-1), and IDO1 in patients with high risk were lower than those in patients with low risk.
Afterwards, the low-risk group had higher IPS across the four immunotherapies, implying that it had better effects of
immunotherapies. Conclusion. Our study demonstrates that the exosome-related gene risk model is closely associated with
immune infiltration. It can well forecast the prognosis of OV patients and guide the selection of immunotherapeutic strategies.

1. Introduction

Ovarian cancer (OV) is a common gynecological tumor
around the world, consisting of about 4% of all new cancer
cases in women. OV often occurs in older people, and over
half of new cases are diagnosed in women after the age of
65 [1]. Due to lacking obvious early symptoms and effective
diagnostic strategies, OV has the highest mortality among
gynecological cancers [2]. Traditionally, conventional treat-
ment for OV includes debulking surgery and platinum-
based chemotherapy [2–4]. Nevertheless, due to relapse

and chemoresistance, the current five-year survival rate for
OV is approximately 47% [5]. Therefore, there is a need to
further investigate the underlying mechanisms of OV pro-
gression and seek more effective biomarkers.

The exosome is an intraluminal vesicle with a diameter
of 30 to 150 nm, generated by the budding of the endosomal
membrane [6–8]. When first discovered in 1983 [8], it was
recognized as a cellular waste to be disposed of [9]. In the
study of biological functions, exosomes originating from
tumors have been proved to take part in the swap of genetic
data between basal cells and tumor cells, leading to the
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growth of abundant new blood vessels, which promote the
occurrence, progression, invasion, and metastasis of tumors
[6, 10–12]. On the other hand, some tumor-secreted exo-
somes also carry various immunosuppressive molecules
[13], which can inhibit the proliferation of CD4+ and
CD8+ T lymphocytes, or stimulate the differentiation of
immunosuppressive cells, including regulatory T lympho-
cytes or myeloid cells [14–16]. Therefore, the exosome can
mediate the immunosuppression of tumor-host cells and is
closely connected with tumor immunotherapy.

In recent years, based on the immunomodulation
formed by the interaction between the tumor immune
microenvironment (TIME) and cancer cells [17, 18], several
immunotherapies have been shown to obtain promising out-
comes in treating tumors. As is demonstrated by numerous
studies, tumor immune-infiltrating cells (TIICs) in TIME
are critical for the therapeutic effect of immunotherapy
and cancer progression [19]. In the past 20 years, immuno-
therapy has a rapid development, which revolutionizes the
remedy for various cancers. Since OV is now generally con-
sidered an immunogenic tumor, advances in immunother-
apy have offered new opportunities for treating OV
[20–23]. Hence, finding new biomarkers to forecast the
response to different immunotherapies is needed.

In the study, we mainly established and validated the
exosome-related gene risk model (ERGRM) and utilized
the nomogram to better predict the prognosis of patients.
After that, by functional enrichment analysis, immune infil-
tration level analysis, and copy number variation analysis,
the relationship between the exosome-related gene risk score
(ERGRS) and TIME was deeply explored. Finally, the vital
role of this model in guiding the selection of therapeutic
strategies was illustrated by calculating the gene expression
of important immune checkpoint inhibitors (ICIs) and drug
sensitivity.

2. Materials and Methods

2.1. Data Acquisition. RNA-seq and clinical data of OV
patients were downloaded from The Cancer Genome Atlas
(TCGA) database (https://cancergenome.nih.gov/) and
GSE9891 in the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/) as TCGA dataset and
GEO dataset. Furthermore, normalization and removal of
batch effects between the two datasets were performed by
the “sva” R package [24]. In addition, we also downloaded
121 exosome-related genes (ERGs) from the ExoBCD data-
base (https://exobcd.liumwei.org/). The TCGA dataset was
split into the training group and the testing group with a
1 : 1 ratio, where the TCGA training group was employed
to build the ERGRM to forecast the prognosis of OV
patients. Afterwards, the prognostic power of the ERGRM
was verified through the TCGA testing set, the entire TCGA
dataset, and the GEO dataset.

2.2. Establishment of a Prognostic Risk Model. First, ERGs in
the TCGA cohort were confirmed. In the training set, the
univariate Cox regression analysis of overall survival was
carried out to identify ERGs with potential predictive value.

In addition, LASSO regression analysis was utilized to
decrease redundant genes and prevent overfitting of the
ERGRM [25]. Then, multivariate Cox analysis was then
employed to determine the risk score, which was evaluated
on the basis of the following method: risk score =∑n

i=1ðExpi
∗ CoeiÞ, where Expi meant the ERG expression, and Coei
represented the corresponding multivariate Cox regression
coefficient.

2.3. Validation of a Risk Model. All samples were grouped
into high-risk and low-risk subgroups by setting the median
score of the dataset as the critical value. In order to contrast
the differences in overall survival between patients in both
risk groups, Kaplan-Meier survival analysis was made by
the “survminer” R package. To assess the predictive power
of the risk model, receiver operating characteristic (ROC)
curves were given, and the area under the curve (AUC)
was computed with the “survivalROC” R package. Principal
component analysis was carried out by the “prcomp” func-
tion of the “stats” R package to evaluate the discriminative
ability of the model for OV patients.

2.4. Correlation of Risk Score with Various Clinical Features.
We explored the connections between the ERGRS and dif-
ferent clinic pathology features. Chi-square tests were used
to test different ratios of survival status, age, tumor stage,
tumor grade, therapy type, and breast cancer susceptibility
gene 1 (BRCA1) type in both risk groups. Differences in risk
scores for subgroups of the above clinical characteristics
were also compared by Student’s t-test. Moreover, different
clinical characteristics were stratified, and Kaplan-Meier
curves were then employed to assess the prognostic power
of risk scores across different layers.

2.5. Establishing and Verifying a Predictive Nomogram. Age
and tumor stage were also verified to be independent predic-
tors based on univariate and multivariate Cox analyses. We
evaluated the specificity and sensitivity of some predictors
by the AUC, which verified the reliability of the combination
of the ERGRS and clinical factors. Therefore, to extend the
prognostic power of the exosome-related prognostic model,
nomograms were constructed according to the risk score,
age, and tumor stage [26]. In the nomogram, assigning a
score to each parameter and calculating their total score
reduce the ERGRM to a single numerical estimate of event
probability. Finally, calibration curves were constructed to
verify the predictive ability of the nomogram.

2.6. Gene Set Enrichment Analysis. In order to investigate the
biological pathways related to the ERGRS, gene set enrich-
ment analysis (GSEA) was conducted on the whole genome
of different risk groups through GSEA software (https://
www.gsea-msigdb.org/gsea/) [27]. C2, one of the nine major
collections in the Molecular Signatures Database, was
employed as the compared set. In addition, gene sets with
a nominal p value <0.05 were considered significant.

2.7. Assessment of Immune Infiltration Levels. The CIBER-
SORT algorithm, single-sample gene set enrichment analysis
(ssGSEA), and ESTIMATE were utilized to investigate the
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relationship between TIME and exosome risk scores.
Immune cell infiltration was estimated and analyzed
through the CIBERSORT algorithm (http://cibersort
.stanford.edu/). The ratio of 22 immune-infiltrating cells in
both risk groups was evaluated by CIBERSORT [28]. Using
the fractions of various TIIC components in all samples
assessed by CIBERSORT, Wilcoxon’s tests were performed
to compare differences in various TIICs in different groups.
The relationships between the ERGRS and the infiltration
level of immune cells were also analyzed by Pearson’s corre-
lation analysis. Furthermore, ssGSEA analysis was per-
formed by the “GSVA”R package to assess the connections
between risk score and immune cell function. Since immune
cells and stromal cells are the two major nontumor constit-
uents of the TIME, the stromal scores obtained by the ESTI-
MATE method were utilized to explore the connections
between the proportion of stromal cells and the ERGRS [29].

2.8. Role of the Risk Score in Forecasting the Effect of
Immunotherapy. First, the expression of various immune
checkpoint genes in both risk groups was analyzed. Subse-
quently, six common targets of ICIs were identified, and
the connections between the expression of target genes and
the ERGRS were assessed through Pearson’s correlation
analysis. Immunophenoscore (IPS) was computed through
Z-scores of four classes of genes connected with immunoge-
nicity, which could quantify the immunotherapeutic
response [30]. Therefore, we selected two targets of ICIs
(CTLA4 and PD-1) that were closely related to the ERGRS
and assessed the relationship between the ERGRS and
immunotherapeutic response by IPS. The IPSs of patients
were acquired from The Cancer Immunome Atlas.

2.9. Copy Number Variation Analysis. The Genomic Identi-
fication of Significant Targets in Cancer (GISTIC) algorithm
was employed to find unusual regions [31]. We used custom
settings on the base of GISTIC2.0. Thresholds of amplifica-
tion and deletion, confidence level, and focal length cutoff
were defined as 0.10, 0.90, and 0.50, respectively. In addition,
regions with q value <0.25 were significantly abnormal
regions with recurrent copy number variation [31]. We
employed GRCh37 (hg19) as the human genome reference.

2.10. Drug Sensitivity Analysis. The NCI-60 database, con-
taining 60 cancer cell line data, was explored through the
CellMiner website (https://discover.nci.nih.gov/cellminer/).
Gene expression status and Z-score for drug sensitivity were
extracted online. Then, Pearson’s correlation analysis was
used to explore the connections between the four exosome-
related prognostic gene expressions and the sensitivity of
216 FDA-approved drugs. Afterwards, we obtained relevant
information from the Genomics of Drug Sensitivity in Can-
cer (GDSC) database (https://www.cancerrxgene.org/) and
analyzed the significance of the difference in the half-
maximal inhibitory concentration (IC50) between different
risk groups by Wilcoxon’s test.

2.11. Statistical Analysis. Statistical analyses in our study
were performed by R software (version 4.0.5). Important
predictors were assessed by univariate and multivariate

Cox regression analysis. The prognostic efficiency of the
ERGRM was evaluated through the ROC curve. Differences
in overall survival between groups were calculated through
Kaplan-Meier analysis. We examined differences between
two groups of variables through Student’s t-test and Wilcox-
on’s test. The connections between the two factors were
explored through Pearson’s correlation analysis. Related
graphics were drawn by employing R packages such as
“pheatmap,” “ggplot2,” “GGPUBR,” and “ggExtra.” p <
0:05 was defined as statistically significant.

3. Results

3.1. Establishment and Verification of an ERGRM. The figure
below shows the research process of this study (Figure 1). An
exosome-related gene set containing 121 genes involved in
immune regulatory pathways was downloaded from the
ExoBCD database, and 117 of them had expression values
in the TCGA dataset (Supplementary Figure 1). TCGA
dataset was split into the training set and testing set, and
the ERGRM was established through TCGA training set.
By univariate Cox regression analysis for preliminary
screening, 5 of 117 ERGs were demonstrated to be related
to the overall survival of patients, which included USF1,
SNRPA1, ADAM10, PIGR, and MRPL15. To avoid model
overfitting, LASSO analysis was carried out on these five
genes, and four important prognostic genes were finally
identified based on the minimum criteria (Supplementary
Figures 2A, B). Then, an ERGRM was established
according to the expression of the four genes and the
regression coefficients derived from multivariate Cox
regression analysis (Supplementary Figure 3), as follows:
risk score = ð−0:038 × expression level of USF1Þ + ð−0:057 ×
expression level of SNRPA1Þ + ð−0:019 × expression level of
PIGRÞ + ð−0:008 × expression level of MRPL15Þ.

In the training set, low-risk patients always had longer
survival times, lower risk of death, and higher expression
levels of the four prognostic genes than high-risk patients
(Figure 2(a)). This illustrated that different risk groups could
discriminate the survival status and expression of four prog-
nostic genes. Similarly, three other datasets revealed consis-
tent results with TCGA training set, meaning that patients
with high risk had worse prognosis than patients with low
risk (Figures 2(b)–2(d)). At the same time, the results of
the Kaplan-Meier analysis indicated that high-risk patients
had lower survival rates than low-risk patients in all four
cohorts (Figures 2(e)–2(h)). The ERGRM was validated to
have good predictive accuracy through AUC values
(AUC = 0:618, 0.638, 0.627, and 0.690 in the training set,
testing set, entire TCGA dataset, and GEO dataset, respec-
tively, Figures 2(i)–2(l)), and principal component analysis
indicated that patients could be wholly categorized accord-
ing to different risk groups (Figures 2(m)–2(p)). As was
shown by the above results, the ERGRM was verified with
good prognostic power.

3.2. Relationship between Risk Score and Various Clinical
Features. In the TCGA dataset, the connections between
the ERGRS and some clinic pathology characteristics (survival
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status, age, tumor stage, tumor grade, therapy type, and
BRCA1 type) were analyzed. Supplementary Figure 4A
displays that high-risk patients had higher percent weight of
death status than low-risk patients, and that patients with
death status tended to obtain higher risk scores (p = 0:0012).
Supplementary Figure 4B indicates that elderly patients
(age > 60) in the group with high risk had higher percent
weight, and that elderly patients also had higher risk scores
than nonelderly patients (p = 0:029). However, no significant
connections were discovered between risk score and tumor
stage, tumor grade, therapy type, or BRCA1 type (p > 0:05,
Supplementary Figures 4C-F).

Afterwards, different clinical characteristics were strati-
fied, and Kaplan-Meier analysis was employed to assess the
prognostic ability of the ERGRS across different layers.
According to Figures 3(a) and 3(b), risk scores achieved sat-
isfactory prognostic identification in patients with age ≤ 60
years (p = 0:023), age > 60 years (p = 0:037), grades G1 and
G2 (p = 0:038), grades G3 and G4 (p = 0:002), stages III
and IV (p = 0:001), mutant-type BRCA1 (p = 0:015), wild-
type RCA1 (p = 0:005), and chemotherapy (p = 0:001) in

TCGA cohort. In the GEO cohort, risk scores achieved satis-
factory prognostic discrimination in patients with age ≤ 60
years (p=0.002), G3 (p = 0:005) and stages III and IV
(p = 0:005), and better survival rates appeared in patients
with low-risk scores.

3.3. Establishment and Validation of a Predictive Nomogram.
By univariate analysis, we found that the ERGRS was
linked to overall survival in a significant way in the
TCGA and GEO cohorts (p < 0:001, hazard ratio ðHRÞ =
1:816 (95% confidence interval (CI), 1.369–2.410) and p
= 0:005, HR = 1:851 (95% CI, 1.208–2.835)). Subse-
quently, by multivariate Cox regression analysis, the
ERGRS was confirmed to be an independent predictor
of OV patients in the TCGA and GEO cohorts
(p < 0:001, HR = 1:750 (95% CI, 1.319–2.323) and p =
0:008, HR = 1:820 (95% CI, 1.168–2.834)). Likewise, age
and tumor stage were also found to be independent
prognostic predictors (Supplementary Table 1).

Next, we evaluated the predictive efficiency of the
ERGRS for forecasting the prognosis of OV patients by

Te data of OV patients from TCGA and GEO database

374 OV patients from TCGA database 278 OV patients from GEO database

121 exosome-related genes 19643 genes from TCGA database 

117 overlapped genes

Entire TCGA dataset/TCGA cohort
N=374

GEO dataset/GEO cohort
N=278

Training set
N=187

Testing set
N=187
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Figure 1: Flow chart of this study.
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AUC. AUC of the risk score was 0.624 in the TCGA cohort
and 0.693 in the GEO cohort, and they were confirmed to be
higher than those of some clinical features (Supplementary
Figures 5A, B). However, when clinical factors and risk
scores were combined, the AUC values of the combination
were the highest in the TCGA and GEO cohorts, at 0.697
and 0.731, respectively (Supplementary Figures 5C, D).
The above results again suggested that the ERGRS is an
important prognostic predictor for OV patients, and the
combination of other clinical features and the ERGRS is
reliable.

To expand the predictive performance of the ERGRM,
nomograms were established on the basis of risk score, age,
and tumor stage (Figures 4(a) and 4(b)). With a nomogram,
we could forecast 1-, 3-, and 5-year survival probabilities.
Calibration curves for 1, 3, and 5 years were established to
verify the predictive performance of the nomogram
(Figures 4(c) and 4(d)), revealing an ideal consistency
between the prediction and reality.

3.4. Gene Set Enrichment Analysis. According to the results
of GSEA, we discovered that the genome-wide group with
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high risk was shown to be enriched in the cancer-related
KEGG pathway (Supplementary Figure 6A). Meanwhile,
“primary immunodeficiency,” “intestinal immune network
for IGA production,” “graft versus host disease,”
“autoimmune thyroid disease,” and “allograft rejection”
were mainly enriched in patients with low-risk scores
(Supplementary Figure 6B).

3.5. Analysis of Immune Infiltration Levels. The infiltration
of immune cells was further assessed in each risk group.

We obtained the proportions of 22 TIICs by the CIBER-
SORT algorithm (Figures 5(a) and 5(b)) and presented the
expression of each immune-infiltrating cell across different
groups (Figures 5(c) and 5(d)). As was displayed in
Figures 5(e) and 5(f), memory B cells, M1 macrophages,
resting dendritic cells, and activated dendritic cells differed
significantly between the two risk groups in the TCGA
cohort, while CD4+ resting memory T cells, gamma delta T
cells, and resting dendritic cells differed significantly
between the two risk groups in the GEO cohort.
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Figure 3: The ability of ERGRS to distinguish survival probability under different clinical characteristics. (a) In the TCGA cohort, Kaplan-
Meier curves of different risk groups with different clinical characteristics, including age, tumor stage, tumor grade, BRCA1 type, and
treatment type. (b) Kaplan-Meier curves of different risk groups with different characteristics of age, tumor stage, and tumor grade in the
GEO cohort.
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Furthermore, correlations between immune-infiltrating cells
and four prognostic genes were analyzed in both cohorts
(Figures 5(g) and 5(h)). We selected significant immune cells
from the correlation results and explored the relationship

between the ERGRS and infiltration levels of immune cells.
For the TCGA cohort, the ERGRS had a positive association
with infiltration levels of resting dendritic cells (p = 0:022)
and was negatively correlated with memory B cells
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Figure 4: Construction and validation of the nomogram. (a, b) Nomograms of the TCGA and GEO cohorts were used to predict 1-, 3-, and
5-year survival probabilities in OV patients. (c, d) In the TCGA and GEO cohorts, calibration curves of nomograms showed the relationship
between predicted and actual curves.
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Figure 5: Analysis of the connection between tumor microenvironment and risk score in TCGA and GEO cohorts. (a, b) The relative
proportion of immune-infiltrating cells in different risk groups. (c, d) Expression of each immune-infiltrating cell in different risk groups.
(e, f) Comparison of immune-infiltrating cells in low-risk and high-risk groups. (g, h) Correlation between four important prognostic
genes and immune-infiltrating cells. (i, j) Comparison of ssGSEA scores for 13 immune-related functions between high-risk and low-risk
groups. Adjusted p values are shown as ns: not significant; ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001. (k, l) Comparison of stromal scores
between different risk groups.

8 Journal of Immunology Research



(p = 0:0074), M1 macrophage (p = 0:01), activated dendritic
cells (p=0.0028), and activated NK cells (p = 0:023)
(Figures 6(a)–6(e)). In the GEO cohort, however, risk scores
were positively correlated with infiltration levels of CD4+

resting memory T cells (p = 0:011) and gamma delta T cells
(p = 0:012) and had a negative association with infiltration
levels of M0 macrophages (p = 0:017) (Figures 6(f)–6(h)).

Afterwards, to study the connections between the
ERGRS and immune cell function, the activity of 13
immune-related pathways was assessed by ssGSEA analysis.
In the TCGA cohort, immune function scores such as
inflammation-promoting, MHC class I, and type I IFN
response were significantly improved in patients with low
ERGRSs. For the GEO cohort, the immune function scores
such as check-point, MHC class I, and type I IFN response
were observably increased in patients with low ERGRSs
(Figures 5(i) and 5(j)). Finally, significant differences in stro-
mal scores between different risk groups were found by the
ESTIMATE algorithm, indicating that the proportion of
stromal cells was related to the risk score (Figures 5(k) and
5(l)). Combined with the above results, we discovered that
the ERGRS was connected with immune cell infiltration,
suggesting that targeting ERGs had a regulatory effect on
TIME in OV patients.

3.6. The Function of Risk Score in Forecasting the Response of
Immunotherapy. We studied the expression of genes for
immune checkpoints in different risk patients. The results
demonstrated that regardless of the TCGA cohort or the
GEO cohort, the expression of genes for immune check-
points differed between different groups (Figures 7(a) and
7(b)). Next, we further explored the connections between
the ERGRS and the expression of six common targets of
ICIs, including CD274 (PD-L1), PDCD1 (PD-1),
PDCD1LG2, CTLA4, HAVCR2, and IDO1 (Figures 7(c)
and 7(d)). The expression of CD274 (PD-L1), PDCD1
(PD-1), and IDO1 was negatively associated with risk scores
in the TCGA dataset (p < 0:05, Figure 7(e)), while the
expression of CD274 (PD-L1), PDCD1 (PD-1), CTLA4,
HAVCR2, and IDO1 was negatively related to risk scores
in the GEO dataset (p < 0:05, Figure 7(f)). Afterwards, two
targets of ICIs (CTLA4 and PD-1) closely related to risk
scores were chosen, and four immunotherapy strategies were
evaluated in both risk groups by IPS. The IPSs of the four
immunotherapies in patients with high risk were lower than
in patients with low risk (Figures 8(a)–8(d)), which implied
that patients with low-risk scores would benefit more from
immunotherapy. The above outcomes suggested that the
ERGRS could forecast the effect of immunotherapy to guide
the selection of immunotherapy strategies.

3.7. Copy Number Variation Analysis. Because of the associ-
ation between copy number variation and disease [32], we
further explored copy number variations between different
risk groups. Figure 9(a) shows the distribution of the G
-score for all chromosomes in both risk groups. Focal ampli-
fication and deletion of different chromosomal regions were
found in both risk groups (Figures 9(b) and 9(c)). We dis-
covered that the group with high-risk scores had more

regions of amplification and deletion than the group with
low-risk scores. These results suggested that patients with
high risk had relatively lower immunogenicity than patients
with low risk.

3.8. Drug Sensitivity Analysis of Independent Prognostic
ERGs. The drug sensitivity was assessed by the Z-score, with
higher scores indicating greater sensitivity to drug treatment.
Pearson correlation analysis was performed on the expres-
sion of four exosome-associated prognostic genes and the
sensitivity of 216 FDA-approved drugs using NCI-60 cell
line data in the CellMiner database. Figure 10(a) reveals
the top 16 significant associations between the expression
of four ERGs and drug sensitivity. In addition, the connec-
tions between different risk groups and IC50 values of six
drugs were also analyzed through the GDSC database. The
results displayed that IC50 values for all six drugs differed
significantly between different subgroups (p < 0:05,
Figures 10(b)–10(g)), and the subgroup with low risk was
more sensitive to the six drugs. The above results suggested
that the ERGRM might be useful in predicting chemical
sensitivity.

4. Discussion

The exosome is an extracellular vesicle composed of specific
proteins, lipids, RNA, and DNA that deliver a payload of
proteins and nucleic acids to recipient cells, which mediates
information exchange between cells [33]. With the further
study of the role and function of exosomes, we found that
exosomes are of great importance to tumor genesis, growth,
apoptosis, immune response, and chemoresistance in cancer
[10, 16, 34, 35]. Many studies also demonstrated that exo-
somes have great potential in diagnosing and treating early
malignant tumors [36, 37]. In addition, since exosomes are
vital to the entire progression of OV [38–40], we could con-
sider exosomes as new biomarkers and targets for OV and
use ERGs to establish a model to evaluate patients’ progno-
sis. In our study, through a series of regression analyses,
we included four ERGs with predictive values into the model
and established the corresponding risk model. Afterwards,
OV patients were split into low-risk and high-risk groups,
and we discovered that low-risk patients had better progno-
sis and higher survival rates than high-risk patients. It was
verified that the ERGRM had good predictive power by the
ROC curve. Besides, a study demonstrated that BRCA1
was a tumor suppressor gene with the mutated phenotype
predisposed to breast and ovarian cancer [41]. Hence, we
regarded the BRCA1 type as a clinical feature and explored
the connections between the ERGRS and various clinical fea-
tures. Subsequently, the results of univariate, multivariate
Cox regression and ROC curves illustrated that the ERGRS,
age, and tumor stage were importantly independent predic-
tors for OV patients. Moreover, we discovered that the
genome-wide group with low risk was enriched in signaling
pathways related to immune factors through GSEA.

Exosomes in tumors are closely related to antigenic
immune responses, and exosomes can pass MHC-peptide
complexes to specific T cells to initiate adaptive immune
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Figure 6: Correlation analysis of the risk score with infiltration abundances of several immune cells in TCGA cohorts (a–e) andGEO (f–h) cohorts.
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Figure 7: The connections between risk score and expression of immune checkpoint genes. (a, b) Expression levels of immune checkpoint
genes in different risk groups in the TCGA and GEO cohorts. Adjusted p values are shown as ns: not significant; ∗p < 0:05; ∗∗p < 0:01;
∗∗∗p < 0:001. (c, d) Heat maps of the correlations between risk score and expression of six immune checkpoint inhibitor targets in the
TCGA and GEO cohorts. The “∗” represents the statistically significant p value (p < 0:05). (e, f) Correlation analysis between risk score
and expression of immune checkpoint inhibitor targets expression in the TCGA and GEO cohorts.
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responses [13]. Besides, exosomes can also mediate immu-
nosuppression of tumor host cells, including inhibiting the
hyperplasia of CD4+ and CD8+ T lymphocytes, inhibiting
the cytotoxicity of NK cells, making macrophages activated
in tumor invasion and metastasis, and facilitating the differ-
entiation of regulatory T lymphocytes [16]. The TIME and
infiltration of immune cells are related to cancer develop-
ment, prognosis, and response to therapy [42]. Studies
reported that tumor-infiltrating lymphocytes (TILs) accu-
mulated in OV predicted a higher survival rate, and that
TILs had a good prognostic value [43–46]. On the contrary,
the existence of immunosuppressive regulatory T cells was
related to the reduced OV survival rate [47–49]. In our
study, we obtained the ratios of 22 TIICs using the CIBER-
SORT algorithm and compared the differences in various
TIICs in different groups. Afterwards, we assessed the con-

nections between the ERGRS and immune cell function by
ssGSEA analysis, which showed that immune function
scores of type I IFN response and MHC class I increased sig-
nificantly in the group with low risk in both cohorts.
According to the report, miR-146a in exosomes inhibited
type I interferon responses in target cells, thus promoting
viral replication [50]. Through these methods, we found a
certain relationship between TIME and ERGRS.

Redon et al. found 1447 copy number variation regions
covering 12% of the human genome in 270 healthy individ-
uals in the HapMap project [51]. This suggested that more of
the human genome is affected by copy number variation.
Significant variations in copy number are often detrimental,
and some studies revealed that copy number variation is
associated with cancer progression and contributes to cancer
susceptibility [32, 52, 53]. Therefore, we performed an
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Figure 8: Predictive role of risk scores for different responses to immunotherapy strategies. (a) Without immunotherapy, high-risk scores
resulted in poor prognosis compared with low-risk scores (p = 0:0018). (b) If only anti-PD1 immunotherapy was conducted, the group with
higher risk scores had a poorer therapeutic effect than the group with lower risk scores (p = 0:0046). (c) If only anti-CTLA4 immunotherapy
was used, the high-risk group had a worse prognosis compared with the low-risk group (p = 0:0088). (d) When anti-PD1 and anti-CTLA4
immunotherapies were used simultaneously, there was a significantly better prognosis in the low-risk group than in the high-risk group
(p = 0:0041).
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analysis of copy number variation between different groups.
Results indicated that the group with higher risk scores had
more genomic amplifications and deletions than the group
with low risk. This manifested that the group with high risk
had lower immunogenicity.

Various types of tumors lead to immune evasion by
expressing immune checkpoints, so ICIs are crucial to
immunotherapy. PD-1, PD-L1, and CTLA-4 inhibitors dis-
play encouraging therapeutic effects among common ICIs,
some of which have been ratified to treat melanoma, non-
small-cell lung cancer, kidney cancer, and bladder cancer
[54–56]. According to the study, upregulation of HAVCR
in renal cell carcinoma may stand for a new mechanism to
stimulate tumor progression and angiogenesis, and HAVCR
is linked to patients’ prognosis [57]. However, the high
expression of PD-L1 was also considered connected with a
favorable prognosis in OV [58]. In addition, IDO1 is a sig-
nificant immune-related gene in female cancers, and the
high expression of IDO1 is connected with good prognosis
in breast and ovarian cancer [59]. Similar to PD-L1, the
study on the expression of IDO1 in OV came to different
conclusions [60]. It may be that they are strongly correlated
with immune cell populations, and activated T cells touch off
negative feedback mechanisms in TIME, which leads to
immune homeostasis [59]. Our study revealed that the

expression of CD274 (PD-L1), PDCD1 (PD-1), and IDO1
was all negatively related to the ERGRS. This showed the
good prognostic ability of exosomes. According to studies,
although ICIs have successfully treated other malignant
tumors, the clinical application of checkpoint inhibitors in
OV has been almost unsuccessful so far [20, 61]. Therefore,
the therapeutic effect of ICIs in OV needs to be further
explored. In the study, we selected two targets of ICI
(CTLA4 and PD-1) that were greatly related to risk scores
and used IPS to evaluate the connections between the
ERGRS and immunotherapy response. The results suggested
that the ERGRS was a good predictor of immunotherapeutic
efficacy.

Although ICIs are a promising approach for immuno-
therapy, clinical application of ICIs in OV has rarely
achieved satisfactory results. Therefore, the combination of
immunotherapy with other treatments is essential [20], and
the current standard of treatment for OV is still surgery
and platinum-based chemotherapy. Chemotherapy with
platinum drugs and paclitaxel is considered the first-line
therapy for OV. Still, there was also a clinical trial suggesting
that docetaxel-carboplatin represented an alternative first-
line chemotherapy for patients with newly diagnosed OV
[62]. One of the reasons for the survival rate in 5 years under
50% is that ovarian tumors often develop resistance to
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platinum-based drugs. This issue can be addressed as gem-
citabine is an effective and safe drug in platinum-sensitive
and resistant recurrent OV [63]. Additionally, an article
reported that pregnant patients with malignant ovarian
tumors could be effectively treated with cisplatin, vinblastine,
and bleomycin [64]. Patients with lower ERGRS were more
sensitive to cisplatin, docetaxel, gemcitabine, paclitaxel, veli-
parib, and vinblastine in our study, which analyzed the predic-
tive effect of the risk model for chemosensitivity.

This study also has some limitations. First of all, all ana-
lyzed samples are from public datasets, as are needed for fur-
ther verification. Moreover, the risk model mainly considers
only ERGs, and it is difficult to explain the specific associa-
tion between exosomes and TIME. Therefore, extensive
multicenter clinical trials are also needed to support our
hypothesis and thus provide new insights into immunother-
apy for OV patients.

5. Conclusions

We established and validated an ERGRM connected with
immune infiltration to forecast the prognosis of OV patients,
which can be used as an independent predictor and guide
future immunotherapy strategies.
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