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Pyroptosis is widely involved inmany diseases, including periodontitis. Nonetheless, the functions of pyroptosis-related genes (PRGs) in
periodontitis are still not fully elucidated. Therefore, we aimed to investigate the role of PRGs in periodontitis. Three datasets (GSE10334,
GSE16134, and GSE173078) from the Gene Expression Omnibus (GEO) were selected to analyze the differences in expression values of
the PRGs between nonperiodontitis and periodontitis tissue samples using difference analysis. Following this, five hub PRGs (charged
multivesicular body protein 2B, granzyme B, Z-DNA-binding protein 1, interleukin-1β, and interferon regulatory factor 1) predicting
periodontitis susceptibility were screened by establishing a random forest model, and a predictive nomogrammodel was constructed on
the basis of these genes. Decision curve analysis suggested that the PRG-based predictive nomogram model could provide clinical
benefits to patients. Three distinct PRG patterns (cluster A, cluster B, and cluster C) in the periodontitis samples were revealed according
to the 48 significant PRGs, and the difference in the immune cell infiltration among the three patterns was explored.
We observed that all infiltrating immune cells, except type 2 T helper cells, differ significantly among the three patterns. To quantify
the PRG patterns, the PRG score was calculated by principal component analysis. According to the results, cluster B had the highest PRG
score, followed by cluster A and cluster C. In conclusion, PRGs significantly contribute to the development of periodontitis. Our study of
PRG patterns might open up a new avenue to guide individualized treatment plans for patients with periodontitis.

1. Introduction

Periodontitis is a chronic multifactorial inflammatory dis-
ease linked to the dental plaque accumulation, host immune
response, and environmental and systemic factors. The dis-
ease occurs in periodontal supporting tissue and causes irrevers-
ible damage, including gingival recession, clinical attachment
loss, and alveolar bone resorption, ultimately resulting in the
loss of teeth [1]. Periodontal infection is one of the most preva-
lent oral diseases, with approximately 11% of the global popula-
tion suffering from severe periodontitis, not only posing a
considerable threat to oral and general human health, but also
placing massive burdens on the healthcare system and social
economy [2]. The complex dynamic interaction between host
immune defensemechanisms and themicrobes in dental plaque
biofilms contributes to periodontal inflammation. Although
bacteria are crucial in periodontal inflammation initiation, the

host’s immune response determines the disease progression and
severity [3–5]. Therefore, figuring out the regulating mechan-
isms of immunological and inflammatory responses is critical
for revealing the pathological mechanisms of periodontitis.

Pyroptosis is predominantly mediated by the Gasdermin
family. It is mainly manifested by the formation of pores in the
cell membrane, the rapid expansion of each cell, and eventually
cell lysis. When cells rupture, large amounts of intracellular
contents are released, including danger-associated molecular
patterns and cytokines, and an intense inflammatory response
is induced. Based on the different signaling pathways, pyrop-
tosis can be divided into the canonical pyroptotic death that
depends on caspase-1 and the noncanonical pyroptotic death
that depends on human caspase-4, 5 and murine orthologs
caspase-11 [6–8]. Pyroptosis is critical to the development
and progression of infectious diseases, neurological diseases,
atherosclerotic diseases, and tumors [7, 9–12]. Reportedly,
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an association exists between pyroptosis and periodontitis
[13–15]. Jun et al. [16] reported that Td92, Treponema denti-
cola’s surface protein, triggers caspase-4 activation and pyrop-
tosis in human gingival fibroblasts. Moreover, NLRP6 induced
pyroptosis of human gingival fibroblasts by activating caspase-1
and promoted the production of IL-1β, the level of which may
reflect the severity of periodontitis [17]. In-depth research on
pyroptosis will help provide novel targets and ideas for clinical
prevention and treatment of periodontitis.

Recently, with the advances in sequencing technology and
microarray, bioinformatics has been widely used to identify
the promising biomarkers for disease diagnosis and progno-
sis, and to explore the pathogenesis at the genetic level, thus
providing new targets for intervention and new treatments for
diseases [18, 19]. This study systematically analyzed the

functions of pyroptosis-related genes (PRGs) in the diagnosis
and subtype classification of periodontitis. We developed a
PRG-based predictive model for predicting the probability of
periodontitis on the basis of five hub PRGs (charged multi-
vesicular body protein 2B (CHMP2B), granzyme B (GZMB),
Z-DNA-binding protein 1 (ZBP1), interleukin (IL)-1β, and
interferon regulatory factor 1 (IRF1)) and found that patients
could benefit from the model. Our study is the first to con-
struct a PRG-based predictive nomogram model to predict
the risk of periodontitis. Furthermore, we identified three
distinct PRG patterns that are crucial in regulating periodon-
titis immune microenvironments, indicating that PRG pat-
terns might help classify periodontitis from a molecular
perspective and guide personalized therapeutic methods.
The concise workflow of this study is illustrated in Figure 1.

Data sources: GEO database

Discovery datasets: GSE10334, GSE16134

Validation dataset: GSE173078

Identifcation of pyroptosis-related genes (PRGs)

Refering to MsigDB Team and previous literature

Construction of a RF model to select five hub PRGs

Construction of a PRG-based predictive

nomogram model based on the five hub PRGs

Identifcation of PRG patterns

according to the distinct PRGs

Exploration of the diference in immune

cell infiltration among three PRG patterns
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FIGURE 1: The workflow of analysis process. GEO, Gene Expression Omnibus; PRG, pyroptosis-related gene; RF, random forest; DEG,
differentially expressed gene.
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2. Materials and Methods

2.1. Data Acquisition and Process. The keywords “periodontitis”,
“periodontal tissues”, “gene expression”, and “Homo sapiens”
were used to search the Gene Expression Omnibus (GEO)
database for gene expression profiles of the patients. The fol-
lowing criteria were used to screen the obtained datasets. First,
both health and disease groups should be included in the
profile information. Second, all samplesmust be from gingival
tissues. Third, these datasets are supposed to provide raw data
that can be further studied. Eventually, three datasets
(GSE10334, GSE16134, and GSE173078) were selected for
the next research. GSE10334 contains expression data of
183 periodontitis and 64 healthy samples, GSE16134 includes
241 periodontitis and 69 healthy samples, and GSE173078 is
comprised of 12 periodontitis and 12 healthy samples
[20–22]. The researchers deployed the GSE10334 and
GSE16134 datasets as the discovery datasets for the entire
study and used the GSE173078 dataset as the external verifi-
cation dataset to validate the selected hub PRGs.

2.2. Landscape of the PRGs.We referred to the MsigDB Team
(GOBP-PYROPTOSIS, REACTOME-PYROPTOSIS) and
previous literature, and retrieved 55 PRGs, of which 53 coin-
cided with the genes from GSE10334 to GSE16134 [23].
These genes are listed in Table S1 (see Supplementary 2).
The differences in PRGs expression values between the
healthy and periodontitis samples were analyzed utilizing
the “limma” package in R. The expression relationships
among 53 PRGs were investigated using linear regression
analysis in all and periodontitis samples.

2.3. Construction of a Model for Selecting Hub PRGs. We
developed two training models to predict the onset of
periodontitis, utilizing random forest (RF) and support vector
machines (SVM). The models were evaluated using the
“Reverse Cumulative Distribution of Residual,” “Residual
Boxplots,” and receiver operating characteristic (ROC) curve.
The optimal prediction model was selected based on a lower
residual value and a higher area under the ROC curve (AUC).
RF is an ensemble method based on multiple decision trees.
The “RandomForest” package was performed to create an RF
model to screen hub PRGs among the 53 PRGs to estimate the
probability of periodontitis. In our study, the optimal number
of trees was 150, and the number of variables randomly
sampled as candidates at each split was set at three. Then,
we evaluated and ranked the importance of the 48 significant
PRGs and considered the top five PRGs as the hub PRGs.
SVM is mainly used for binary classification. Every data in
our research were represented by a dot in the n-dimensional
space (n is 53 in our research). A perfect hyperplane in the
space was then discovered that could effectively separate the
two classes (healthy and periodontitis) [24]. Furthermore,
the prediction ability of the selected hub PRGs was validated
by GSE173078 dataset.

2.4. Construction of a PRG-Based Predictive Model. We
constructed a predictive nomogram model with the selected
five hub PRGs using the “rms” package in R. Each variable

was assigned a corresponding score in the nomogram scor-
ing system, and the total score for each sample was deter-
mined by summing the scores of all variables. Then, the
prevalence of periodontitis was estimated according to the
total score. The calibration curve was conducted to assess
the agreement between our predicted values and actual values.
To determine whether decisions made using the model could
benefit the patient, we conducted a decision curve analysis
(DCA) and generated a clinical impact curve [24].

2.5. Identification of PRGPatterns.According to the significant
PRGs, we utilized the “ConsensusClusterPlus” package in
R software to perform consensus clustering analysis in order
to categorize periodontitis samples into distinct molecular
patterns [25]. The optimal clustering number was mainly
decided on the basis of a smooth and progressive increase
in the cumulative distribution function (CDF) curve and
the absence of any groups with too small sample size.

2.6. Estimation of Immune Cell Infiltration. We used single-
sample gene-set enrichment analysis (ssGSEA) to determine
the levels of specific infiltrating immune cells [26]. The gene
sets for infiltrating immune cells were obtained from pub-
lished literature [27]. The enrichment scores representing
immune cell abundance were compared among PRGpatterns.
We performed a Spearman correlation analysis to assess the
correlation between PRGs and immune cell fractions.

2.7. Identification of PRG Pattern-Related Differentially
Expressed Genes (DEGs) and Functional Annotation. We uti-
lized the “limma” package in R to identify DEGs between dif-
ferent PRG patterns, with a criteria of log|fold change|> 0.2 and
adjusted p-value< 0.0001. To explore the potential mechanisms
of these significant DEGs, we conducted Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses using the “clusterProfiler” package in R.
Enrichment results with an adjusted p-value< 0.05 were con-
sidered significant [28].

2.8. Estimation of PRG Signature. To quantify the PRG
patterns, we evaluated the PRG score for each sample via prin-
cipal component analysis (PCA). We first performed PCA to
differentiate the PRG patterns and then determined the PRG
score using the following equation: PRG score =PC1i, where
PC1 represents principal component 1, and i represents DEG
expression [27].

3. Results

3.1. The Landscape of the PRGs between the Healthy and
Periodontitis Samples. Gene expression profiles from the
whole periodontal tissue samples in 436 periodontitis and
145 healthy controls were obtained from the GSE10334,
GSE16134, and GSE173078 datasets. Fifty-three PRGs were
involved in our study, of which 48 demonstrated significantly
differential expression between the healthy and periodontitis
samples. The distinct PRGs were displayed by a volcano
map, a heat map, and a histogram. Compared with the
healthy samples, we discovered 30 upregulated PRGs and
18 downregulated PRGs in the periodontitis samples
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(Figure 2(a)–2(c)). Visualization of chromosomal positions in
PRGs was achieved using the “RCircos” package (Figure 2(d)).

3.2. Correlation Analysis between PRGs in All Samples and
Periodontitis Samples. The “corrplot” package was used to
implement the correlation analysis among the PRGs in all
samples and periodontitis samples. Results revealed a signifi-
cant correlation between most PRGs in all samples and peri-
odontitis samples, suggesting that there may be potential
synergistic effects between PRGs and that pyroptosis is crucial
in periodontitis process (Figure 3(a)). The CHMP4B and BAX

had the highest significant correlation in both two cohorts
indicating that they might function together (Figures 3(b)
and 3(c)).

3.3. Construction of the Model for Selecting Hub PRGs. RF
and SVM models were constructed to screen hub PRGs from
the 48 distinct PRGs. In comparison with the SVMmodel, the
RF model has smaller residuals and is better at predicting
periodontitis susceptibility, as presented by the reverse cumu-
lative distribution of residual curve (Figure 4(a)) and the
residual boxplots (Figure 4(b)). We depicted the ROC curve
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to further evaluate both models and the higher AUC value of
the RF model proved its superiority (Figure 4(c)). Thus, the
optimal model for predicting the occurrence of periodontitis
was the RF model. We showed the top 30 genes after ranking
the significant 48 PRGs genes on the grounds of their impor-
tance (Figure 4(d)). The top five genes (CHMP2B, GZMB,
ZBP1, IL1β, and IRF1) in the importance ranking were
deemed as the hub genes. Furthermore, the external valida-
tion conducted on independent dataset GSE173078 also
showed that the selected five hub genes have good prediction
ability (Supplementary 1).

3.4. Construction of the PRG-Based Predictive Model. Based
on the five hub PRGs, a predictive nomogram model was cre-
ated to predict the probability of periodontitis (Figure 5(a)).
The calibration curve demonstrated the accurate predictive
ability of the PRG-based predictive model (Figure 5(b)). The
DCA curve suggested that decisions on the basis of the PRG-
based predictive model could be advantageous to patients with
periodontitis (Figure 5(c)). In addition, the clinical impact
curve demonstrated that the nomogrammodel had prominent
predictive power (Figure 5(d)).

3.5. Three Distinct PRG Patterns Identified by PRGs. Unsuper-
vised clustering analysis for periodontitis samples was conducted
according to the expression of 48 distinct PRGs to investigate
PRG patterns in periodontitis. We identified three different PRG
patterns (cluster A, cluster B, and cluster C) (Figure 6(a)–6(c)).
ClusterA contained 175 samples, cluster B involved 125 samples,

and cluster C included 124 samples. The histogram and heat
map were generated to present the significant differences in
expression values of the 48 distinct PRGs among the three
clusters (Figures 6(d) and 6(e)), and PCA was performed to
further verify the role of significant PRGs in differentiating
distinct PRG patterns. With the exception of PLCG1, all
48 significant PRGs were significantly differentially expressed
among the three PRG patterns (Figure 6(d)), confirming the
diversity of PRG patterns in periodontitis. PCA for the tran-
scriptome profiles of three PRG patterns revealed that the
48 significant PRGs could well distinguish the three different
PRG patterns (Figure 6(f)).

3.6. Estimation of Immune Cell Infiltration. The infiltrating
immune cell abundance in periodontitis was evaluated using
ssGSEA, and the relevance of infiltrating immune cells to
48 different PRGs were assessed. Our study identified that
PRGs are closely related to different infiltrating immune cells
and IL-1β positively correlates with a variety of immune cells
(Figure 7(a)). We examined the differences in immune cell
infiltration between patients with high and low IL-1β levels.
The results indicated that patients with high IL-1β levels had
greater immune cell infiltration compared with those with
low IL-1β levels (Figure 7(b)). Lastly, the difference in
immune cell infiltration among the three PRG patterns
was explored. We found that all immune cells, except type
2 T helper cells, differ significantly among the three patterns.
Compared with cluster B and cluster C, cluster A exhibited
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relatively low immune cell infiltration. Cluster B was enriched
in CD56dim natural killer cells, natural killer T cells, and
type-17 T helper cells, while cluster C had higher levels of
infiltrated activated B cells, activated CD4 T cells, activated

dendritic cells, eosinophils, gamma delta T cells, immature B
cells, MDSCs, macrophages, mast cells, monocytes, natural
killer cells, neutrophils, plasmacytoid dendritic cells, regula-
tory T cells, T follicular helper cells, and type-1 T helper cells
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(Figure 7(c)). These findings suggested cluster A mediates a
modest immune reaction in periodontitis while cluster B and
cluster C generate an active immune reaction, and the immune
reaction caused by cluster B and cluster C is different. The
above findings once again proved that PRGs are essential for
regulating the immune microenvironments in periodontitis.

3.7. Identification of Gene Patterns Based on PRG Pattern-
Related DEGs. A total of 278 PRG pattern-related DEGs were
singled out between the three PRG patterns, which underwent
both GO and KEGG enrichment analyses to explore the poten-
tial biological behavior of each PRG pattern (Figure 8(a)–8(c)).
The results demonstrated that the DEGs were mostly enriched
in biological processes including GO:0070661, GO:0046651,
GO:0032943, GO:1903131, G0:0002460, and GO:0030098, all
of which are closely associated with immune cell differentiation,

activation, and proliferation (Figure 8(b)). The KEGG analy-
sis showed enrichment of immune pathways, including viral
protein interaction with cytokines and cytokine receptors,
primary immunodeficiency, etc. (Figure 8(c)). To further
verify the PRG patterns, periodontitis samples were divided
into three gene patterns (gene clusters A, B, and C) on the
basis of the 278 PRG pattern-related DEGs using consensus
clustering algorithm, which was in line with the PRG patterns
(Figure 8(d)–8(f)). The expression levels of the 48 significant
PRGs in different gene patterns are shown in Figures 8(g)
and 8(h). All 48 significant PRGs, except PLCG1, were sig-
nificantly differentially expressed in the three gene patterns,
which was consistent with the result of differential expression
analysis of 48 significant PRGs in the three PRG patterns.
However, the abundance difference in immune cell infiltra-
tion among gene patterns differs subtly from those among
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PRG patterns (Figure 8(i)). We applied PCA to evaluate the
PRG score for each sample to quantify PRG patterns and then
compared the PRG score between the different PRG patterns
or gene patterns (Figures 9(a)) and 9(b)). The findings indi-
cated cluster A or gene cluster A got a higher PRG score than
cluster C or gene cluster C, but cluster B got the highest score
in PRG patterns while gene cluster B got the lowest score in
gene patterns. The Sankey diagram showed the distribution
of periodontitis samples in PRG patterns, gene patterns, and

PRG scores and indicated directly the relationship between
PRG patterns, gene patterns, and PRG scores (Figure 9(c)).

4. Discussion

Periodontitis is an immune inflammatory disease initiated by
microorganisms in the dental plaque and causes the irrevers-
ible destruction of bone and connective tissue. As the disease
progresses, the teeth loosen, become dysfunctional, and
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eventually fall out [1]. Increasing evidence has shown that
pyroptosis contributes to various diseases, including infec-
tious disease, nervous system-related diseases, atheroscle-
rotic diseases, and tumors [9–12]. However, the functions
of PRGs in periodontitis are still not fully elucidated. Our
study aimed to investigate the possible mechanisms of PRGs
in periodontitis.

Using the difference analysis, we found that 48 distinct
PRGs among 53 PRGs differed significantly in expression
between healthy and periodontitis samples, indicating that
PRGs are involved in the pathogenesis of periodontitis. The
machine-learning method, RF, was performed to create an
ideal model to predict the occurrence of periodontitis and
selected five hub PRGs (CHMP2B, GZMB, ZBP1, IL1B, and
IRF1). This finding differs from that of Chen et al. [29], who

conducted least absolute shrinkage and selection operator
(LASSO) regression and logistic regression analysis to iden-
tify the four hub PRGs (cytochrome c, somatic (CYCS), cas-
pase 3 (CASP3), nucleotide-binding oligomerization domain
2 (NOD2), and charged multivesicular body protein 4b
(CHMP4B)). Differences in the discovery datasets and
research methods may be responsible for the discrepancy
between the results. Based on the five hub PRGs, we then
developed a PRG-based predictive model to estimate the
probability of periodontitis and decisions on the basis of
the predictive model may be advantageous to patients with
periodontitis, as presented by the DCA curve. Our study is
the first to establish a PRG-based predictive nomogram
model to predict the risk of periodontitis from a molecular
perspective. CHMP2B, a nuclear member of the endosomal
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sorting required for transport complex III, is integral to endo-
lysosomal trafficking, vesicle fusion, and autophagic degrada-
tion [30]. It resides in chromosome 3p11-12 region near
VGLL3 gene, which shows amplification in diverse sarcomas
[31]. GZMB, a serine protease found in the cytoplasmic gran-
ules of natural killer cells and cytotoxic T lymphocytes, is a
key regulator of skin damage, inflammation, and repair. The
level of GZMB is low in healthy skin but is significantly
increased in inflammatory and chronic skin diseases, such
as cutaneous leishmaniasis, diabetic ulcers, hypertrophic scar-
ring, and autoimmune skin disorders. GZMB is essential for

many physiological activities in cells, including proapoptotic
activity, cleavage of extracellular matrix proteins, disruption
of epithelial barrier, fibrosis, vascular permeability, anoikis,
inflammation, and autoimmunity [32, 33]. ZBP1 is an essen-
tial innate immune sensor of endogenous nucleic acid ligands
and viral RNA products. ZBP1 sensing of virus infection can
induce pyroptosis, apoptosis, and necroptosis (PANoptosis).
It is reported that adenosine deaminase acting on RNA1
(ADAR1) suppresses ZBP1-mediated PANoptosis, promot-
ing tumorigenesis [34, 35]. IL-1β, a proinflammatory cyto-
kine, is produced primarily by blood monocytes, tissue
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macrophages, skin dendritic cells, and brain microglia [36].
IL-1β in primary tumors is reportedly a promising biomarker
for predicting the increased risk of bone metastasis in breast
cancer patients [37]. Besides, there exists clinical evidence on
the correlation of IL-1β with periodontitis. Increased IL-1β

triggers inflammation and promotes bone resorption in peri-
odontitis [38]. IRF1, the first identified IRF, has been demon-
strated to be implicated in varieties of physical and pathological
processes, including viral infection, tumor immunosurveil-
lance, proinflammatory injury, and immune diseases [39, 40].

∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗∗∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗∗∗∗∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗ ns

5.0

10.0

7.5

G
en

e 
ex

p
re

ss
io

n

A
IM

2
A

P
IP

B
A

K
1

C
A

SP
1

C
A

SP
3

C
A

SP
4

C
A

SP
5

C
A

SP
6

C
A

SP
8

C
A

SP
9

C
H

M
P

2
A

C
H

M
P

2
B

C
H

M
P

4
B

C
H

M
P

4
C

C
H

M
P

6
C

H
M

P
7

C
Y

C
S

D
H

X
9

E
L

A
N

E
G

P
X

4
G

SD
M

B
G

SD
M

C
G

SD
M

D
G

Z
M

B
H

M
G

B
1

IL
1

8

IL
1

B
IL

6
IR

F
1

IR
F

2
N

L
R

C
4

N
L

R
P

1
N

L
R

P
3

N
L

R
P

6
N

L
R

P
7

N
L

R
P

9

N
O

D
1

N
O

D
2

P
L

C
G

1
P

R
K

A
C

A

SC
A

F
1

1
T

P
6

3
T

IR
A

P

G
Z

M
A

Z
B

P
1

P
Y

C
A

R
D

IL
1

A

B
A

X

Gene cluster

A

B

C

ðhÞ
∗∗∗ ∗∗∗ ∗∗∗∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗∗∗∗∗∗∗∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗∗∗∗ ∗∗∗ ∗∗∗∗∗∗∗∗∗ ∗∗∗nsns1.00

0.75

0.50

F
ra

ct
io

n
 s

co
re

0.25

A
ct

iv
at

ed
 B

 c
el

l

A
ct

iv
at

ed
 C

D
4

 T
 c

el
l

A
ct

iv
at

ed
 C

D
8

 T
 c

el
l

A
ct

iv
at

ed
 d

en
d

ri
ti

c 
ce

ll

Im
m

at
u

re
 d

en
d

ri
ti

c 
ce

ll

N
at

u
ra

l 
k

il
le

r 
ce

ll

N
at

u
ra

l 
k

il
le

r 
T

 c
el

l

N
eu

tr
o

p
h

il

R
eg

u
la

to
ry

 T
 c

el
l

T
 f

o
ll

ic
u

la
r 

h
el

p
er

 c
el

l

T
yp

e 
1

7
 T

 h
el

p
er

 c
el

l

T
yp

e 
1

 T
 h

el
p

er
 c

el
l

T
yp

e 
2

 T
 h

el
p

er
 c

el
l

P
la

sm
ac

yt
o

id
 d

en
d

ri
ti

c 
ce

ll

M
D

SC

M
ac

ro
p

h
ag

e

M
o

n
o

cy
te

M
as

t 
ce

ll

C
D

5
6

b
ri

gh
t 

n
at

u
ra

l 
k

il
le

r 
ce

ll

C
D

5
6

d
im

 n
at

u
ra

l 
k

il
le

r 
ce

ll

γ 
δ 

T
 c

el
l

Im
m

at
u

re
 B

 c
el

l

E
o

si
n

o
p

h
il

Gene cluster

A

B

C

ðiÞ
FIGURE 8: Consensus clustering of the 278 PRG pattern-related DEGs in periodontitis. (a) The 278 PRG pattern-related DEGs shown in Venn
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IRF1 loss combined with other genetic alterations promi-
nently increases tumor incidence of many organs in mice
[41]. Emerging evidence has shown that the five hub PRGs
extensively participate in the development and progression of
tumors, including proliferation, invasion, radiotherapy resis-
tance, and prognosis [31, 35, 37, 42]. However, the roles of the
five hub PRGs in the pathogenesis of periodontitis are rarely
reported and our study may provide new directions for future
researches on these genes.

In our research, three PRG subtypes (clusters A, B, and C)
were discovered according to the 48 significant PRGs using
the unsupervised clustering analysis, and each subtype has its
specific immune properties. Cluster A has relatively low

immune cell infiltration compared with cluster B and cluster C,
suggesting that cluster A generates a mild immune reaction in
periodontitis, and cluster B and cluster C mediate more active
immune reactions, while the immune reaction mediated by
cluster B and cluster C is different. GO andKEGG enrichment
analyses on the 278 PRG pattern-related DEGs showed that
the genes weremaximally and significantly enriched inmono-
nuclear cell differentiation and cytokine–cytokine receptor
interaction, indicating that mononuclear cell differentiation
and cytokine–cytokine receptor interaction are essential for
pyroptosis regulation in periodontitis. The periodontitis sam-
ples were successfully distinguished into three gene patterns
on the basis of the 278 PRG pattern-related DEGs, and we
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found that the differential expression levels of the 48 unique
PRGs in the gene patterns were comparable to those in the
PRG patterns, providing additional evidence for the accuracy
of the PRG subtyping results. Lastly, we utilized PCA to mea-
sure the PRG score for each sample and quantify the PRG
patterns. Our analysis revealed that the PRG score in cluster A
or gene cluster A was higher than that in cluster C or gene
cluster C. However, the PRG score in cluster B was highest in
the PRG patterns while the PRG score in gene cluster B was
lowest in the gene patterns, which might be attributed to the
inconsistent distribution of periodontitis samples in the PRG
patterns and gene patterns. The specific immune properties of
each pattern validated the accuracy of our classification of a
molecular perspective. This classification method is widely
implemented in the field of oncology and contributed signifi-
cantly to tumor classification and the accurate prediction of
immunotherapy outcome. Song et al. [43] performed this
method to identify two distinct molecular subtypes and develop
a prognosis model in colorectal cancer, discovering the vital
roles of PRGs in tumor immune microenvironment, clinico-
pathological features, and prognosis. As for the field of peri-
odontitis, Chen et al. [29] also applied this classification strategy
to classify periodontitis samples into three distinct patterns with
different immune characteristics based on the significant PRGs,
which is similar to our results. This subtyping strategy can help
us elucidate the possible mechanisms of PRGs implicated in
regulating the immune microenvirionment so that precise
and personalized treatments can be applied.

However, there are still some limitations to this study.
First, the database lacked some important variables such as
the clinical characteristics of the samples, microbial informa-
tion and serum detection. Therefore, in our investigation,
analyzing the functions of the PRGs in periodontitis from
multiple perspectives is incredibly tough and the results
may be biased. Second, the results were obtained by bioin-
formatics analysis and still demand experimental verification
in vivo and in vitro. In addition, the clinical features of the
three distinct PRG subtypes of periodontitis should be elab-
orated. Unfortunately, owing to the limitations of clinical
data in the database, we are currently unable to explore their
clinical characteristics. Finally, further experiments are nec-
essary to understand the specific mechanisms of the PRGs in
the pathogenesis of periodontitis.

5. Conclusion

This study uncovered the close relationship between PRGs and
periodontitis and further identified the association between
PRGs and immune response. The diversity of PRG patterns
is crucial in regulating the complex immune microenviron-
ment of periodontitis. These findings shed some light on
understanding the pathogenesis of periodontitis and open up
a new avenue to guide individualized immunotherapy strate-
gies for patients with periodontitis.

Data Availability

The datasets analyzed in this study are available in GEO
database (https://www.ncbi.nlm.nih.gov/geo/).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Xiaofan Cheng and Shoushan Bu designed the study. Xiaofan
Cheng and Yifang Hu wrote the manuscript. Guan Gui and
Xiaoya Hu collected and analyzed the data, Jie Zhu and
Bowei Shi plotted the figures. All authors read and approved
the final manuscript.

Acknowledgments

We thank Ryan T. Demmer, Panos N. Papapanou, Hyunjin
Kim, et al., who provided the GEO public datasets.

Supplementary Materials

Supplementary 1. The prediction ability of the five hub PRGs
validated by GSE173078 dataset. ROC curves indicate the good
prediction ability of the five hubPRGs. PRG, pyroptosis-related
gene; ROC, receiver operating characteristic.

Supplementary 2. Table S1: PRGs fromdatabase and published
literature. Table S2: Expression diversity of PRGs. Table S3:
Correlations between PRGs in all samples. Table S4: Correlations
between PRGs in periodontitis samples. Table S5: The three
distinct PRG patterns based on 48 significant PRGs. Table S6:
PRG pattern-related DEGs. Table S7: GO enrichment results
based on 278 PRG pattern-related DEGs. Table S8: KEGG
enrichment results based on 278 PRG pattern-related DEGs.
Table S9: The three distinct gene patterns based on 278 PRG
pattern-related DEGs.

References

[1] J. Slots, “Periodontitis: facts, fallacies and the future,”
Periodontology 2000, vol. 75, no. 1, pp. 7–23, 2017.

[2] T. H. Kwon, I. B. Lamster, and L. Levin, “Current concepts
in the management of periodontitis,” International Dental
Journal, vol. 71, no. 6, pp. 462–476, 2021.

[3] G.Hajishengallis, “Periodontitis: frommicrobial immune subversion
to systemic inflammation,” Nature Reviews Immunology, vol. 15,
pp. 30–44, 2015.

[4] J. Meyle and I. Chapple, “Molecular aspects of the
pathogenesis of periodontitis,” Periodontology 2000, vol. 69,
no. 1, pp. 7–17, 2015.

[5] A. Cekici, A. Kantarci, H. Hasturk, and T. E. Van Dyke,
“Inflammatory and immune pathways in the pathogenesis of
periodontal disease,” Periodontology 2000, vol. 64, no. 1,
pp. 57–80, 2014.

[6] X. Liu, Z. Zhang, J. Ruan et al., “Inflammasome-activated
gasdermin D causes pyroptosis by forming membrane pores,”
Nature, vol. 535, pp. 153–158, 2016.

[7] S. M. Man, R. Karki, and T.-D. Kanneganti, “Molecular
mechanisms and functions of pyroptosis, inflflammatory caspases
and inflflammasomes in infectious diseases,” Immunological
Reviews, vol. 277, no. 1, pp. 61–75, 2017.

[8] R. A. Aglietti and E. C. Dueber, “Recent insights into the
molecular mechanisms underlying pyroptosis and gasdermin
family functions,” Trends in Immunology, vol. 38, no. 4,
pp. 261–271, 2017.

16 Journal of Immunology Research

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://downloads.hindawi.com/journals/jir/2023/8757233.f1.pdf
https://downloads.hindawi.com/journals/jir/2023/8757233.f2.pdf


[9] L. Song, L. Pei, S. Yao, Y. Wu, and Y. Shang, “NLRP3
inflammasome in neurological diseases, from functions to
therapies,” Frontiers in Cellular Neuroscience, vol. 11,
Article ID 63, 2017.

[10] M. Jiang, X. Sun, S. Liu et al., “Caspase-11-gasderminD-mediated
pyroptosis is involved in the pathogenesis of atherosclerosis,”
Frontiers in Pharmacology, vol. 12, Article ID 657486, 2021.

[11] B. R. Sharma and T.-D. Kanneganti, “NLRP3 inflammasome
in cancer and metabolic diseases,” Nature Immunology,
vol. 22, pp. 550–559, 2021.

[12] J. Wu, L. Lu, C. Wang, and F. Jiang, “Machine learning-based
integration develops a pyroptosis-related lncRNA model to
enhance the predicted value of low-grade glioma patients,”
Journal of Oncology, vol. 2022, Article ID 8164756, 14 pages,
2022.

[13] Y. Yamaguchi, T. Kurita-Ochiai, R. Kobayashi, T. Suzuki, and
T. Ando, “Regulation of the NLRP3 inflammasome in
Porphyromonas gingivalis-accelerated periodontal disease,”
Inflammation Research, vol. 66, pp. 59–65, 2017.

[14] Q. Chen, X. Liu, D. Wang et al., “Periodontal inflammation-
triggered by periodontal ligament stem cell pyroptosis
exacerbates periodontitis,” Frontiers in Cell and Developmental
Biology, vol. 9, Article ID 663037, 2021.

[15] X. Zhang, S. He, W. Lu, L. Lin, and H. Xiao, “Glycogen
synthase kinase-3β (GSK-3β) deficiency inactivates the NLRP3
inflammasome-mediated cell pyroptosis in LPS-treated
periodontal ligament cells (PDLCs),” In Vitro Cellular &
Developmental Biology–Animal, vol. 57, pp. 404–414, 2021.

[16] H.-K. Jun, Y.-J. Jung, S. Ji, S.-J. An, and B.-K. Choi, “Caspase-4
activation by a bacterial surface protein is mediated by
cathepsin G in human gingival fibroblasts,” Cell Death &
Differentiation, vol. 25, pp. 380–391, 2018.

[17] W. Liu, J. Liu, W. Wang, Y. Wang, and X. Ouyang, “NLRP6
induces pyroptosis by activation of caspase-1 in gingival
fibroblasts,” Journal of Dental Research, vol. 97, no. 12,
pp. 1391–1398, 2018.

[18] Y. Hu, N. Zeng, Y. Ge et al., “Identification of the shared gene
signatures and biological mechanism in type 2 diabetes and
pancreatic cancer,” Frontiers in Endocrinology, vol. 13,
Article ID 847760, 2022.

[19] T. Zhang, N. Liu, W. Wei, Z. Zhang, and H. Li, “Integrated
analysis of weighted gene coexpression network analysis
identifying six genes as novel biomarkers for Alzheimer’s
disease,” Oxidative Medicine and Cellular Longevity, vol. 2021,
Article ID 9918498, 16 pages, 2021.

[20] R. T. Demmer, J. H. Behle, D. L. Wolf et al., “Transcriptomes
in healthy and diseased gingival tissues,” Journal of
Periodontology, vol. 79, no. 11, pp. 2112–2124, 2008.

[21] M. Kebschull, R. T. Demmer, B. Grün, P. Guarnieri,
P. Pavlidis, and P. N. Papapanou, “Gingival tissue transcrip-
tomes identify distinct periodontitis phenotypes,” Journal of
Dental Research, vol. 93, no. 5, pp. 459–468, 2014.

[22] H. Kim, F. Momen-Heravi, S. Chen, P. Hoffmann,
M. Kebschull, and P. N. Papapanou, “Differential DNA
methylation and mRNA transcription in gingival tissues in
periodontal health and disease,” Journal of Clinical Periodon-
tology, vol. 48, no. 9, pp. 1152–1164, 2021.

[23] Y. Ye, Q. Dai, and H. Qi, “A novel defined pyroptosis-related
gene signature for predicting the prognosis of ovarian cancer,”
Cell Death Discovery, vol. 7, Article ID 71, 2021.

[24] B. Dai, F. Sun, X. Cai, C. Li, H. Liu, and Y. Shang, “Significance
of RNA N6-methyladenosine regulators in the diagnosis and
subtype classification of childhood asthma using the gene

expression omnibus database,” Frontiers in Genetics, vol. 12,
Article ID 634162, 2021.

[25] M. D. Wilkerson and D. N. Hayes, “ConsensusClusterPlus: a
class discovery tool with confidence assessments and item
tracking,” Bioinformatics, vol. 26, no. 12, pp. 1572-1573,
2010.

[26] S. Shen, G. Wang, R. Zhang et al., “Development and
validation of an immune gene-set based prognostic signature
in ovarian cancer,” EBioMedicine, vol. 40, pp. 318–326, 2019.

[27] B. Zhang, Q. Wu, B. Li, D. Wang, L. Wang, and Y. L. Zhou,
“m6A regulator-mediated methylation modification patterns
and tumor microenvironment infiltration characterization in
gastric cancer,”Molecular Cancer, vol. 19, Article ID 53, 2020.

[28] L. Chen, Y.-H. Zhang, G. Lu, T. Huang, and Y.-D. Cai,
“Analysis of cancer-related lncRNAs using gene ontology and
KEGG pathways,” Artificial Intelligence in Medicine, vol. 76,
pp. 27–36, 2017.

[29] H. Chen, Z. Wang, Y. He, L. Peng, J. Zhu, and X. Zhang,
“Pyroptosis may play a crucial role in modifications of the
immune microenvironment in periodontitis,” Journal of
Periodontal Research, vol. 57, no. 5, pp. 977–990, 2022.

[30] X. Deng, X. Sun, W. Yue et al., “CHMP2B regulates TDP-43
phosphorylation and cytotoxicity independent of autophagy
via CK1,” Journal of Cell Biology, vol. 221, no. 1,
Article ID e202103033, 2022.

[31] T. Wang, M. A. Goodman, R. L. McGough, K. R. Weiss, and
U. N. M. Rao, “Immunohistochemical analysis of expressions
of RB1, CDK4, HSP90, cPLA2G4A, and CHMP2B is helpful in
distinction between myxofibrosarcoma and myxoid liposar-
coma,” International Journal of Surgical Pathology, vol. 22,
no. 7, pp. 589–599, 2014.

[32] C. T. Turner, D. Lim, and D. J. Granville, “Granzyme B in skin
inflammation and disease,” Matrix Biology, vol. 75-76,
pp. 126–140, 2019.

[33] K.-H. Jeong, S. K. Kim, J.-K. Seo, M. K. Shin, and M.-H. Lee,
“Association of GZMB polymorphisms and susceptibility to
non-segmental vitiligo in a Korean population,” Scientific
Reports, vol. 11, Article ID 397, 2021.

[34] M. Zheng and T.-D. Kanneganti, “The regulation of the ZBP1-
NLRP3 inflammasome and its implications in pyroptosis,
apoptosis, and necroptosis (PANoptosis),” Immunological
Reviews, vol. 297, no. 1, pp. 26–38, 2020.

[35] R. Karki, B. Sundaram, B. R. Sharma et al., “ADAR1 restricts
ZBP1-mediated immune response and PANoptosis to promote
tumorigenesis,” Cell Reports, vol. 37, no. 3, Article ID 109858,
2021.

[36] C. Garlanda, C. A. Dinarello, and A. Mantovani, “The
interleukin-1 family: back to the future,” Immunity, vol. 39,
no. 6, pp. 1003–1018, 2013.

[37] C. Tulotta and P. Ottewell, “The role of IL-1B in breast cancer
bone metastasis,” Endocrine-Related Cancer, vol. 25, no. 7,
pp. R421–R434, 2018.

[38] R. Cheng, Z. Wu, M. Li, M. Shao, and T. Hu, “Interleukin-1β is
a potential therapeutic target for periodontitis: a narrative
review,” International Journal of Oral Science, vol. 12,
Article ID 2, 2020.

[39] K. Alsamman and O. S. El-Masry, “Interferon regulatory
factor 1 inactivation in human cancer,” Bioscience Reports,
vol. 38, no. 3, Article ID BSR20171672, 2018.

[40] L. C. Carrascosa, M. Klein, Y. Kitagawa et al., “Reciprocal
regulation of the Il9 locus by counteracting activities of
transcription factors IRF1 and IRF4,” Nature Communications,
vol. 8, Article ID 15366, 2017.

Journal of Immunology Research 17



[41] H. Nozawa, E. Oda, K. Nakao et al., “Loss of transcription
factor IRF-1 affects tumor susceptibility inmice carrying theHa-
ras transgene or nullizygosity for p53,” Genes & Development,
vol. 13, no. 10, pp. 1240–1245, 1999.

[42] X. Xu, Y. Wu, K. Yi, Y. Hu, W. Ding, and C. Xing, “IRF1
regulates the progression of colorectal cancer via interferon-
induced proteins,” International Journal ofMolecularMedicine,
vol. 47, no. 6, Article ID 104, 2021.

[43] W. Song, J. Ren, R. Xiang, C. Kong, and T. Fu, “Identification
of pyroptosis-related subtypes, the development of a prognosis
model, and characterization of tumor microenvironment
infiltration in colorectal cancer,” OncoImmunology, vol. 10,
no. 1, Article ID 1987636, 2021.

18 Journal of Immunology Research




