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Background. Pyroptosis has a dual function in malignant tumor progression and management. The action of pyroptosis-related
genes (PRGs) in pancreatic cancer (PC), however, remains uncertain. Methods. Differential expression analyses of 57 PRGs were
conducted in the TCGA TARGET GTEx dataset. The candidate genes were determined using LASSO Cox regression and random
forest analyses. A risk model was developed with the TCGA dataset and validated with the ICGC dataset. Results. Three prognosis-
related PRGs (BAK1, GSDMC, and IL18) were chosen to create a risk model. High-risk patients from the TCGA and ICGC cohorts
had an unfavorable overall survival (all p<0:05). The risk modelʼs accuracy and independent predictability were assessed by
receiver operating characteristic curves and multivariate Cox regression analysis, respectively. High-risk patients possessed differ-
ent molecular pathways, higher KRAS and TP53 mutations, increased expression of PD-L1, C1 immune subtype, and immuno-
suppressive microenvironment characterized by parainflammation compared to low-risk patients. KRAS and TP53 mutations
participated in different inflammatory pathways and played different prognostic roles between the two risk groups. KRAS muta-
tions in high-risk patients caused a more unfavorable prognosis than wild-type KRAS (p¼ 0:016), whereas TP53 mutations in low-
risk patients exhibited a poorer outcome than wild-type TP53 (p¼ 0:009). Spearman correlation analyses revealed that the
parainflammatory response in PC might be implicated in GSDMC-mediated pyroptosis via cytosolic DNA-sensing pathways
under hypoxic conditions. Furthermore, the risk scores were significantly and positively related to the expression of HNRNPC,
RBM15, YTHDF1, and YTHDF2, as well as sensitivity to gemcitabine, cisplatin, and erlotinib. Conclusions. This study created a
novel pyroptosis-based risk model related to the parainflammatory immune microenvironment, which might help identify novel
biomarkers, evaluate the tumor immune microenvironment, and develop management strategies for PC patients.

1. Introduction

Pancreatic cancer (PC) remains one of the most lethal malig-
nancies worldwide. The disease ranks the fourth most com-
mon cancer-related death among both sexes in the United
States [1] and sixth in China [2]. There were an estimated
458,918 new cases of PC diagnosed and 432,242 deaths from
the disease globally in 2018 [3]. PC, a highly aggressive
tumor, had a dismal prognosis [1]. Most PCs (more than
90%) are pancreatic ductal adenocarcinomas (PDACs) [4].
Surgical resection is regarded as the only potentially curative

treatment for PC patients [5], but unfortunately, the majority
of patients are either diagnosed at a late stage or are fre-
quently ineligible for surgery, resulting in less than 20% of
patients undergoing an operation [6]. Besides, even after
radical resection, patients with PC are likely to experience
high local recurrence rates and often have distant metastases
[7]. Systemic chemotherapies are currently the standard reg-
imen for treating advanced or metastatic PC, offering a slight
overall survival (OS) benefit of only months [8, 9]. Immune
therapy has been a hot topic in PC studies, but single-agent
immune checkpoint inhibitors (ICIs) have generally been
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proven to be ineffective in clinical trials [10]. The immuno-
suppressive microenvironment is considered to cause PC
resistance to immune therapies [11]. At present, the prog-
nostic prediction of PC is mainly dependent on the clinico-
pathological staging system, which lacks accurate guidance
for the prognosis and treatment of PC. Therefore, identifying
novel predictive biomarkers for estimating the immune
microenvironment is critically essential to predict survival
and lay down personalized treatment regimens for PC
patients.

Programed cell death (PCD), which is modulated by spe-
cific signaling pathways, is essential in maintaining homeo-
stasis, host defense, cancer, and other pathologies [12]. PCD
has been categorized into several distinct types, including
apoptosis, autophagy, necrosis, ferroptosis, and pyroptosis
[13]. Pyroptosis, different from other types of PCD, is gen-
erally regarded as a highly pro-inflammatory form of PCD
[14]. Pyroptosis was observed for the first time in 1986 in
mouse macrophages [15]. But until 2001, the first definition
of pyroptosis introduced by Cookson and Brennan [16] dis-
tinguished it from apoptosis. In 2018, pyroptosis was
described as a regulated cell death, which is mainly depen-
dent on cytoplasmic membrane pore formation executed by
gasdermin family members and is commonly (but not
always) induced by inflammatory caspase activation [17].

Pyroptosis may be triggered by inflammasomes or without
inflammasomes. Pyroptosis pathways dependent on inflamma-
somes comprise canonical caspase-1 pathway and noncanonical
caspase-4/5/11 pathway, whereas inflammasome-independent
pathways consist of granzyme proteases-dependent pathway
and caspase-3-dependent pathway [18]. The canonical inflam-
masomes are started by pathogens or damage, which recruits
pro-caspase-1 through inflammasome adaptor protein ASC
(also called PYCARD), causing its self-cleavage and activating
caspase-1 [19, 20]. Caspase-1 activation can mature pro-IL-1
and pro-IL18 [21] and cleave gasdermin D (GSDMD) protein
to produce the GSDMD-N domain that forms the membrane
pore to facilitate the release of IL-1β and IL18 [22]. The nonca-
nonical pathway involves the activation of pro-caspase-4/5/11
[23–25] to cleave GSDMD [26] and trigger pyroptosis. Activated
caspase-11 induces NLRP3 inflammasome to start caspase-
1, which promotes the maturation of IL-1β and IL18
[27, 28]. In the inflammasome-independent pathways, acti-
vated caspase-3 by chemotherapeutic drug cleaves gasder-
min E (GSDME) into its N-terminal domain, causing cell
membrane pores to form [29, 30]. In the granzyme pro-
teases mediated pathway, the granzyme B produced by T
cells or natural killer cells (NKs) leads to the target cell
pyroptosis by direct cleavage of GSDME [31, 32].

Despite numerous recent studies exploring the functions
of pyroptosis in cancers, it remains ambiguous how pyropto-
sis affects cancer prognosis and treatment. The reason for this
may be the dual function of pyroptosis in cancer progression
and management. Pyroptosis activation and cytokine release
modify the tumor immune microenvironment (TIME) and
facilitate tumor progression via evading immunosurveillance
and inducing immune tolerance. Pyroptosis, however, can also
improve immunotherapies through recruiting and activating

immune cells to kill tumor cells [33, 34]. In some tumor types,
including hepatocellular carcinoma [35], lung adenocarcinoma
[36], and bladder cancer [37], pyroptosis-related genes (PRGs)
have been assessed for their impact on prognosis and TIME. In
PC, the functions of PRGs remain unclear and need to be
further investigated. Hence, a novel pyroptosis-based risk
model was established in the current study. We systematically
explored the association of the risk model with prognosis, sig-
naling pathways, somatic mutation, m6A-related gene expres-
sion, TIME, and drug sensitivity in PC. In addition, Increasing
evidence demonstrates that pyroptosis is involved in inflam-
mation and cancer immunity, but little is known about its
correlation with parainflammation. Therefore, this study inves-
tigated and discussed the potential mechanisms of the influence
of parainflammation on pyroptosis and TIME inPC.We found
that cytosolic DNA-sensing pathways might participate in
parainflammation-induced pyroptosis, which, to our knowl-
edge, has not been reported previously.

2. Materials and Methods

2.1. Data Collection and Preprocessing. Since the TCGA data-
set lacks sufficient data on normal pancreatic tissues, we down-
loaded the TCGA TARGET GTEx dataset (n= 19,109) with the
Toil RNA-seq recompute expected_count version (accessed on
November 19, 2021) from the UCSC Xena database [38]. Gene
expression levels were presented as log2 (expected_count+ 1).
mRNA expression data for PC were derived from the TCGA
TARGET GTEx dataset to determine differentially expressed
PRGs. Data on 182 PC patients, including clinical information,
RNA sequencing expression, and somatic mutations, were
acquired from the TCGA database (accessed on December 4,
2021) as a training set. Eighty-two PC patients’ gene expression
and clinicopathological data were available from the ICGC
database (accessed on December 1, 2021) as a validation
cohort. The transcripts per million (TPM) values for the
TCGA and ICGC cohorts were converted from the fragments
per kilobase of transcript per million mapped reads (FPKM)
values according to the algorithm reported in previous studies
[39, 40]. The TPM values were utilized for the subsequent
analysis. The flow of our work is exhibited in Figure 1.
Furthermore, 57 genes (Supplementary 1) associated with
pyroptosis were collected from both a previous study [41] and
the Molecular Signatures Database (MSigDB) [42].

2.2. Identifying Differentially Expressed PRGs. Differentially
expressed genes (DEGs) in pancreatic tumor tissues and
nontumor tissues from the TCGA TARGET GTEx cohort
were analyzed using “DESeq2,” “edgeR,” and “limma” R
packages with a threshold false discovery rate< 0.05 and
|log2FC|≥ 1. The intersection analysis of the three DEG sets
obtained by the above methods found shared upregulated and
downregulated DEGs. Subsequently, the intersection of PRGs
with shared upregulated and downregulated DEGs identified
differentially expressed PRGs for further analysis.

2.3. Constructing and Validating a Risk Model. Based on the
STRING database (version 11.5) [43], an interaction network
of the differentially expressed PRGs in the TCGA cohort was
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constructed. Using the R packages “igraph” and “reshape2,” a
correlation network was created for candidate genes. Univariate
Cox analysis using the “Survival” R package assessed the
prognostic value of differentially expressed PRGs in the TCGA
cohort. Least absolute shrinkage and selection operator (LASSO)
Cox regression analysis (“glmnet”R package) and random forest
analysis (“randomForestSRC”R package) were performed in the
TCGA cohort to screen out candidate genes. The shared genes
obtained by these two methods were selected as final signature
genes to construct a risk model. Immunohistochemical (IHC)
staining data for signature genes were obtained from theHuman
Protein Atlas (HPA) database. The expression levels of each of

the signature genes and the corresponding exponentiated
regression coefficients of the multivariate Cox regression
model were used to compute PC patient risk scores.

The median risk score divided the patients into low- and
high-risk groups. The “stats” and “Rtsne” R packages were used
for principal component analysis (PCA) and t-distribution sto-
chastic neighborhood embedding analysis (t-SNE), respectively.
A Kaplan–Meier analysis with a log-rank test compared the OS
between two risk groups. To investigate whether risk scores
independently predicted patient prognosis, the risk score and
clinicopathological features were analyzed with univariate and
multivariate Cox regression analyses. Clinicopathological

RNA-seq data of pancreatic cancer from the
TCGA TARGET GTEx dataset

(T = 179, N = 171) 

Three DEG sets between pancreatic cancer tissues 
and normal pancreatic tissues identified by

“DESeq2,” “edgeR,” and “limma” R packages 

Shared upregulated and downregulated genes of
three DEG sets

Pyroptosis-related genes
(PRGs)
(n = 57)

Differently expressed PRGs
(n = 26)

Two genes were not detected in
the

TCGA-PAAD cohort
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IHC validation
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prediction
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immunotherapy
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LASSO Cox regression analysis and random
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FIGURE 1: Flowchart of the current study. PRGs, pyroptosis-related genes; DEGs, differentially expressed genes; T, tumor; N, normal; IHC,
immunohistochemistry; HPA, Human Protein Atlas database; TMB, tumor mutation burden; MSI, microsatellite instability.
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characteristics of both risk groups were compared using the χ2

test and presented as a heat map, including gender, age, TNM
stage, T stage, N stage, M stage, and histological grade. The
predictability of clinicopathological characteristics and the risk
signature for 1-, 2-, and 3-year survival rates was estimated in the
TCGA and ICGC cohorts using receiver operating characteristic
(ROC) curves.

2.4. Function Analysis. Gene set enrichment analysis (GSEA)
is a computational method for evaluating the distributional
trend of a predefined gene set in the gene table ordered
according to phenotypic relevance, thereby determining its
impact on the phenotype [44]. The TCGA cohort was ana-
lyzed using GSEA to identify underlying pathways between
the high- and low-risk groups. MsigDB provided KEGG gene
sets (c2.cp.kegg.v7.4.symbols.gmt) and GO gene sets (c5.go.
v7.4.symbols.gmt) as the reference gene sets to perform
GSEA analysis. Determination of significance was performed
with p<0:05 as the screening threshold. The gene sets of
hypoxia (HALLMARK_HYPOXIA.v7.5.1.gmt) and the
cGAS-STING pathway (REACTOME_STING_MEDIATE-
D_INDUCTION_OF_HOST_IMMUNE_RESPONSES.
v7.5.1.gmt) were also derived fromMSigDB. The gene sets of
the NF-kappaB pathway and the tumor necrosis factor
(TNF) signaling pathway were acquired from a previous
study [45]. To obtain enrichment scores for each pathway
in each sample, single-sample GSEA (ssGSEA) scores for
these four gene sets were computed using the gene set varia-
tion analysis (GSVA) package [46].

2.5. Immune Profile. The immune infiltration in tumor tis-
sues was assessed with online tools and bioinformatics algo-
rithms. TIMER2.0 provides users with multiple immune
deconvolution methods, including XCEL, TIMER, QUANTISEQ,
MCPCOUNTER, EPIC, CIBERSORT, and CIBERSORT-ABS
algorithms [47]. The relationship of the risk score with
immune infiltrating cells was evaluated using Spearman
correlation analysis. Employing the Wilcoxon test in the R
package “ggpubr,” we compared ssGSEA scores between the
two risk groups for 14 immune-related pathways, including 13
pathways reported in a previous study [48] and the cGAS-
STING pathway engaged in the induction of host immune
responses. There may be an association between immune
checkpoint gene expression and the efficacy of ICIs. Therefore,
47 immune checkpoint genes (Supplementary 1) were extracted
from the training set and compared between the two risk groups.
Moreover, we detected the association between the risk scores
and six immune subtypes (C1–C6), namely C1 (wound healing),
C2 (interferon (IFN)-gammadominant), C3 (inflammatory), C4
(lymphocyte depleted), C5 (immunologically quiet), and C6
(TGF-beta dominant) [49].

2.6. Somatic Mutation and m6A-Related Modification
Analyses. The mutation annotation format of somatic var-
iants was available from the TCGA database, and visualiza-
tion was done via the R package “maftools.” The somatic
mutation count in the two risk groups was compared. In
addition, we explored the effect of m6A-related modification
on the risk signature by analyzing gene expression

differences of m6A RNA methylation regulators between
different risk groups.

2.7. Drug Sensitivities. The sensitivity of PC patients to tar-
geted agents chemotherapeutic agents was assessed using the
“pRRophetic” package [50], which predicts the half-maximal
inhibitory concentration (IC50) of selected agents in both
high- and low-risk groups. CellMiner database [51] was uti-
lized to evaluate the association of individual prognostic
genes with drug sensitivity. We extracted FDA-approved
drugs from this database. An analysis of Pearson correlation
was conducted with a screening threshold of p<0:05.

2.8. Tumor Mutation Burden, Microsatellite Instability, and
Immunotherapy.Data on the tumor mutation burden (TMB)
and microsatellite instability (MSI) were obtained from the
TCGA cohort through “maftools” and TCGAbiolinks” [52]
R packages, respectively. Based on the reported dataset com-
prising 47 melanoma patients who had received ICIs therapy
[53], we used the Subclass Mapping method [54, 55] to pre-
dict the response of different risk groups to ICIs treatment,
including CTLA-4 and PD-1 inhibitors.

2.9. Statistical Analysis. All statistical analyses and data visu-
alization were performed using R software (Version 4.1.0).
Chi-square tests were employed to compare the different
proportions of categorical variables. The Wilcoxon rank-
sum tests and the Kruskal–Wallis test were utilized to com-
pare two and multiple groups of nonnormally distributed
continuous variables, respectively. Spearman correlation
analysis was used to evaluate the correlations of the risk score
with immune infiltrating cells and construct a Spearman
correlation heatmap. The association of three prognosis-
related PRGs expressions with drug sensitivity was assessed
via Pearson correlation analysis. Two-tailed P values less
than 0.05 were statistically significant in all statistical results.

3. Results

3.1. Identifying Differentially Expressed PRGs. In total, 5,241
upregulated genes and 2,884 downregulated genes, 5,182 upre-
gulated genes and 2,941 downregulated genes, and 3,737 upre-
gulated genes and 4,072 downregulated genes were identified
between pancreatic tumor tissues and nontumor tissues of the
TCGA TARGET GTEx cohort using “Deseq2,” “edgeR,” and
“limma” packages, respectively (Figure 2(a)). Then, we
obtained 6,494 DEGs shared by the above three methods,
including 3,704 shared upregulated genes (Figure 2(b)) and
2,790 shared downregulated genes (Figure 2(c)). Twenty-six
differently expressed PRGs were acquired by computing the
intersection of 57 PRGs with 6,494 DEGs (Figure 2(d)).
These 26 genes differently expressed between tumor and
normal tissues were presented as a heatmap plot, with most
of them highly expressed in PC tissues (Figure 2(e)). Except for
two genes (CAPS5 and NLRP7), 24 of the 26 differentially
expressed PRGs in the TCGA cohort were extracted for
further analysis. A protein–protein interaction (PPI) analysis
was performed for these 24 genes using the STRING database,
as shown in Figure 2(f). In Figure 2(g), a correlation network
was constructed between the 24 genes.
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3.2. Constructing a Risk Signature.We used the TCGA-PAAD
cohort as the training cohort to create a prognostic risk signature.
A total of 177 PC samples with survival data were included in the
survival analysis. A preliminary screening of prognosis-related
genes was performed by univariate Cox regression analysis.
Among the 24 differentially expressed PRGs, 10 genes signifi-
cantly related to patient survival (HRs> 1 for all 10 genes) were
selected for further study (Figure 3(a)). The LASSO Cox
regression analysis identified four genes (BAK1, GSDMC,
IL18, and TP63) by the optimum λ value (Figures 3(b) and
3(c)). Besides, we performed random forest analysis and
screened out three genes (BAK1, GSDMC, and IL18) using a
minimal depth approach (Figures 3(d) and 3(e)). Finally, three
shared genes (BAK1, GSDMC, and IL18) of these two gene lists
were retained as signature genes (Figure 3(f)). Significantly
increased mRNA expression levels of these three signature
genes were found in PC tissues compared to normal
pancreatic tissues (Figure 2(e)). We further assessed the
protein expressions of three signature genes in the HPA
database and found that BAK1 and IL18 were overexpressed
in PC tissues, whereas no GSDMC protein expression was
observed in PC or normal tissues (Supplementary 2).

A three-gene prognostic signature was built according to the
results of multiple Cox regression analysis, and each patient’s
risk score was computed using the formula: the risk score=
(1.496× expression level of BAK1)+ (1.255× expression level
of GSDMC)+ (1.336× expression level of IL18). The median
risk score categorized PC patients into two groups: the high-
risk group (n=88) and the low-risk group (n=89). An obvious
correlation between the patients’ risk scores and the probability
of death was observed, as evidenced by the distribution of risk
scores and survival status (Figures 4(a) and 4(b)). PCA and
t-SNE analyses confirmed that high- and low-risk patients
were distributed in distinct directions (Figures 4(c) and 4(d)).
Kaplan–Meier survival analysis demonstrated that high-risk
patients had a significantly more dismal prognosis compared
to the low-risk patients (p¼ 0:047) (Figure 4(e)). The predictive
accuracy of the risk signature was evaluated by time-dependent
ROC curves, and the results indicated areas under the curve
(AUC) values of 0.681, 0.641, and 0.701 for 1-, 2-, and 3-year
survival, respectively (Figure 4(f)).

3.3. Validating the Risk Signature. The ICGC-PACA-AU
dataset as external verification data further confirmed the
robustness of the three gene signatures constructed in the
TCGA dataset. In the same way, the calculation of risk scores
for each patient in the ICGC-PACA-AU cohort was based on
the expression levels of three signature genes and their expo-
nentiated regression coefficients. The classification of the
cases into the high- and low-risk groups was performed using
the median risk score of the cohort. Similarly, death rates rose
with higher risk scores (Figures 5(a) and 5(b)). Also, PCA and
t-SNE analyses validated the risk score’s ability to classify
(Figures 5(c) and 5(d)). According to Kaplan–Meier survival
curves (Figure 5(e)), high-risk patients exhibited a decreased
survival rate when compared to low-risk patients (p¼ 0:045).
The AUC values for the risk signature at 1, 2, and 3 years were
0.597, 0.631, and 0.694, respectively (Figure 5(f)).

3.4. Independent Predictive Capability of the Risk Score. The
available variables for the TCGA-PAAD cohort were
assessed using univariate and multivariate Cox regression
analyses to ascertain whether the risk score could indepen-
dently predict patient prognosis. The results indicated that
the risk score was significantly related to OS in both univariate
and multivariate Cox regression analyses (hazard ratio (HR)
= 1.225, 95% confidence interval (CI): 1.117–1.343, p<0:001;
HR= 1.214, 95% CI: 1.098–1.342, p<0:001, respectively)
(Figures 6(a) and 6(b)). We also evaluated the associations of
clinicopathological characteristics with the risk score, and the
heatmap result showed a significant difference in histological
grade between the two risk groups. Moreover, the three PRGs
(BAK1, GSDMC, and IL18) were significantly overexpressed in
the high-risk group as compared to the low-risk group.
Nevertheless, no significant difference was found in the
clinicopathological factors such as age, gender, T stage, N stage,
M stage, and TNM stage between the two risk groups
(Figure 6(c)). The time-dependent ROC curve depicted the 1-
year AUC value of 0.681 for the risk score, and it exhibited
superior predictive ability over clinicopathological characteristics
(Figure 6(d)).

3.5. Function Analysis. The GSEA analysis of the TCGA
cohort identified the underlying biological processes and
enrichment pathways relevant to the risk model by analyzing
GO terms and KEGG pathways. The top 5 KEGG pathways
and GO terms were determined according to the p-value-
< 0.05. Based on the results of the GSEA analysis, the
enriched KEGG pathways and GO terms in the high-risk
group were mostly correlated with drug metabolism signal-
ing pathways (drug metabolism-other enzymes) as well as
tumor-related biological processes and signaling pathways,
including cell cycle, P53 signaling pathway, DNA replication,
pathways in cancer, mitotic nuclear division, epidermal cell
differentiation, mitotic sister chromatid segregation, and epi-
dermis development (Figures 7(a) and 7(c)), whereas the
enriched KEGG pathways and GO terms in the low-risk
group were mainly engaged in other pathways and biological
processes, such as calcium signaling pathway, neuroactive
ligand–receptor interaction, regulation of membrane poten-
tial, peptide hormone secretion, regulation of neurotransmit-
ter level, and so on (Figures 7(b) and 7(d)). These findings
suggested that PRGs associated with prognosis are probably
involved in the drug treatment, occurrence, and progression
of PC.

3.6. Immune Profile Analysis. Spearman correlation analysis
was made to investigate the association of the risk score with
immune infiltration using different algorithms, as depicted
in Figure 8(a). According to the results, most of the immune
cells, including B cells, Th2 CD4+ T cells, CD8+ T cells,
regulatory T (Treg) cells, follicular helper T cells, neutro-
phils, M0 macrophages, M1 macrophages, M2 macrophages
(from the CIBERSORT-ABS algorithm), NK cells, cancer-
associated fibroblasts (CAFs), and myeloid dendritic cells
(mDCs) (from the TIMER, CIBERSORT, and CIBERSORT-
ABS algorithms) had a positive relation with the risk score. The
ssGSEA scores of 14 immune-related pathways were calculated
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and subsequently compared between the two risk groups. High-
risk individuals scored significantly higher in antigen-presenting
cells (APCs) coinhibition, costimulation of APCs, Type I IFN
responses, parainflammation, major histocompatibility complex
(MHC) Class I and cGAS-STING pathway activation as
compared to low-risk individuals (Figure 8(b)). The expression
differences of immune checkpoints, crucial to immunotherapy,
were compared in different groups. Compared with low-risk
patients, the expression levels of TNFRSF14, TNFSF4, CD276,
CD80, LGALS9, HHLA2, CD70, TNFSF9, TNFRSF25,
TNFRSF4, CD40, TNFRSF18, TNFSF15, CD274, CD44, and
TNFRSF9 in high-risk patients were significantly increased
(p<0:05) (Figure 8(c)). Immune subtype analysis identified 56
patients with C1, 32 patients with C2, 40 patients with C3, one
patient with C4, none with C5, and 21 patients with C6. Patients
with C1, C2, C3, and C6 immune subtypes were included to be
studied due to the absence of C5 patients and the extremely small
number of C4 patients. A significant relation was discovered

between the high-risk scores and C1 (wound healing), whereas
the low-risk scores were positively linked with C3 (inflammatory)
(Figure 8(d)).

3.7. Somatic Mutation and m6A-Related Modification
Analyses. The 20 most frequently mutated genes in the two
risk categories were depicted using waterfall plots based on
somatic mutation analysis (Figures 9(a) and 9(b)). Although
somatic mutation counts were not substantially different in
the two risk groups (p¼ 0:21) (Figure 9(c)), high-risk
patients exhibited greater levels of KRAS and TP53 muta-
tions than low-risk patients (Figures 9(d) and 9(e)). As a
result, we examined the link between KRAS mutations and
TP53 mutations in both high- and low-risk groups and
observed a significant correlation (Figures 9(f) and 9(g)).
Mutations in KRAS and TP53 were positively associated with
the expressions of BAK1, GSDMC, IL18, and KRAS but not
with PD-L1 or TP53 (Figures 9(h) and 9(i)). Besides, both
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KRAS mutations and TP53 mutations were positively related
to the ssGSEA scores of hypoxia, the TNF signaling pathway,
and the cGAS-STING pathway (Figures 9(j) and 9(k)).
Patients with KRAS mutations had higher ssGSEA scores
for the NF-kappaB pathway than those with wild-type
KRAS, whereas patients with TP53 mutations had higher
ssGSEA scores for MHC Class I, Type I IFN response,

parainflammation, and pyroptosis than those with wild-type
TP53 (Figures 9(j) and 9(k)). The results suggest that KRAS
and TP53 mutations may dominate different inflammatory
pathways. We also discovered that these two mutations had
different prognostic effects between PC patients at high and
low risk. High-risk patients with KRAS mutations suffered an
inferior outcome than those with wild-type KRAS (p¼ 0:016)
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(Figures 9(l) and 9(m)), whereas low-risk patients with
mutant TP53 experienced a more adverse outcome than
those with wild-type TP53 (p¼ 0:009) (Figures 9(n) and
9(o)). In addition, the two risk groups were compared for
gene expression levels of m6A RNA methylation regulators,
and the high-risk groups exhibited significantly greater
expression of HNRNPC, RBM15, YTHDF1, and YTHDF2
(Figure 9(p)).

3.8. Drug Sensitivities. The IC50 of three commonly used anti-
cancer medications (gemcitabine, cisplatin, and erlotinib) in
PC patients was estimated using the pRRophetic algorithm.

IC50 denotes the concentration of an inhibitor needed to inhibit
a biological or biochemical process by half. The high-risk group
possessed significantly lower IC50 values than the low-risk
group (Figure 10(a)–10(c)), indicating that high-risk patients
are more sensitive to these drugs. Spearman correlation analy-
sis was employed to evaluate the connection between individ-
ual prognostic genes and drug sensitivity in NCI-60 cell
lines from the CellMiner database. Statistical significant rela-
tionships (p<0:05) were selected and ranked according to their
p-values. The top 16 results are presented in Supplementary 3.
A negative relationship was observed between the expression of
GSDMC and the drug sensitivity of cancer cells to lxazomib
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citrate, midostaurin, bortezomib, and pralatrexate. Similarly,
upregulated IL18 expression increased cancer cell resistance
to some drugs, such as pipamperone, bortezomib,
actinomycin, and so on.

3.9. TMB, MSI, and Immunotherapy. The risk signature and
TMB underwent a correlation analysis. High-TMB was defined
asmore than 20muts/Mb, intermediate-TMB as 6–19muts/Mb,
and low-TMB as fewer than 5muts/Mb [56]. Almost all patients
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had a low-TMB (median= 0.52muts/Mb, range: 0–1.45muts/
Mb), except for one patient with a high-TMB (238.38muts/Mb).
The TMB did not differ significantly between the low- and high-
risk categories (p¼ 0:13, Figure 10(d)), but the Spearman corre-
lation analysis revealed a positive relationship of the risk scores
with the TMB (R= 0.19, p¼ 0:022, Figure 10(e)). Also,MSI was
estimated for the two risk groups. There were 140 patients with
microsatellite stability (MSS), nine patients with low MSI (MSI-
L), and none with highMSI (MSI-H). In comparison to the low-
risk group, the high-risk group had a higher prevalence ofMSI-L
(Figure 10(f)). Subclass mapping analysis was then applied to
predict the response of different risk groups to ICIs therapy. The
result manifested that the high-risk group had a greater chance
of responding to anti-CTLA-4 therapy (p¼ 0:01), but Bonfer-
roni adjusted p-value was 0.08 (Figure 10(g)).

4. Discussion

The discovery of novel and effective molecular targets is cru-
cial for diagnosing and treating PC due to its dismal prognosis
and the limited traditional diagnostic and therapeutic strate-
gies. The field of PCD has gained much attention in tumor
biology research. Pyroptosis, an inflammatory form of PCD,
has been demonstrated to participate in the progression of
cancer, immunotherapies, and chemotherapies [57, 58].
However, pyroptosis in PC has not been fully elucidated in
terms of its mechanisms and functions. Thus, we developed a
pyroptosis-associated gene signature to explore its signifi-
cance in PC patient prognosis, TIME, and treatment.

We obtained 57 genes associated with pyroptosis based
on a previous study and the MSigDB. Because of the insuffi-
cient samples of the normal pancreas in the TCGA dataset,
26 PRGs with differential expression between PC and normal
tissues were found in the TCGA TARGET GTEx dataset via
three approaches. Twenty-four PRGs were enrolled in the
TCGA cohort for further analysis, except for two genes with-
out expression data. Ten PRGs were substantially associated
with the prognosis of PC patients, as determined by univari-
ate Cox regression. Our next step was to perform LASSO
Cox regression and random forest analyses, and three
PRGs (BAK1, GSDMC, and IL18) were selected as signature
genes to construct a risk model. These three genes were more
highly expressed at the mRNA level in PC tissues compared
to normal pancreatic tissues, and their expressions were sig-
nificantly associated with poor outcomes. IHC analysis from
the HPA database confirmed that PC tissues overexpressed
BAK1 and IL18 proteins compared to normal tissues,
whereas neither PC tissues nor normal tissues had any
detectable GSDMC protein. PC patients were divided into
two categories, high- and low-risk, based on their median
risk scores. Patients at higher risk had a worse outcome than
those at lower risk. Both the univariate and multivariate Cox
regression analysis revealed a significant relationship
between the risk model and OS. The risk signature’s accuracy
in predicting prognosis was confirmed by time-dependent
ROC curves, which also showed that it was a more reliable
prognostic predictor than clinicopathological characteristics
in PC patients. More importantly, the risk model was verified

to be robust and exhibited well-predictive capability in the
ICGC cohort.

The BAK1 gene encodes the BAK protein. BAK, belong-
ing to the BCL2 protein family, is a proapoptotic effector
protein. Upon activation, BAK or BAX permeabilizes the
outer membrane of mitochondria, allowing apoptogenic sub-
stances into the cytosol (such as cytochrome c) and activat-
ing caspase [59–61]. Activation of BAX and BAK by
chemotherapeutic agents can initiate the sequential activa-
tion of caspase-9 and caspase-3. The latter facilitates GSDME
cleavage to produce N-termini, resulting in pyroptosis
[57, 62]. Based on immunohistochemistry tests performed
by Evans et al. [63] in PDAC and ampullary cancer, BAK
expression was higher in malignant epithelia compared to
acini and major ducts but lower in malignant epithelia com-
pared to minor ducts. However, Graber [64] noted that
although BAK mRNA expression in pancreatic tumor sam-
ples was 2.5-fold higher than that in the normal samples,
elevated BAK expression in PC occurred in peritumoral tis-
sue with chronic inflammation rather than in the tumor cells
themselves.

GSDMC, a pore-forming protein’s precursor, is cleaved to
liberate its N-terminal moiety, which induces membrane per-
meabilization and results in cell pyroptosis. Previous research
has demonstrated that GSDMC acts as an oncogene to facili-
tate the proliferation and metastasis of tumor cells [65, 66]. In
this study, GSDMC protein level was not detected in PC
tissues or normal pancreatic tissues according to the results
of the HPA database, which might be due to the low sensitiv-
ity of the selected IHC antibody. Xia et al. [67] verified by IHC
staining analysis that elevated GSDMC expression is linked
with a shorter OS in PDAC. Hou et al. [68] found that p-Stat3
increased PD-L1 nuclear translocation in hypoxic conditions,
and these two factors combined boosted GSDMC transcrip-
tion. Following TNF-alpha treatment, GSDMC is cleaved by
activated caspase-8, causing tumor necrosis and pyroptosis.
Notably, chronic tumor necrosis facilitates tumor growth and
metastasis [69] and restrains antitumor immunity [68]. In
addition, a poor prognosis was also discovered to be associ-
ated with increased GSDMC expression in breast cancer [68],
lung adenocarcinoma [70], and kidney clear cell cancer [71].

IL18, as a pro-inflammatory cytokine, is constitutively
expressed in monocytes, DCs, macrophages, and epithelial
cells [72, 73]. The cytokine regulates innate and adaptive
immune responses by influencing monocytes, DCs, NK cells,
T cells, and B cells [74]. IL18 exhibits dual functions in regu-
lating tumor cells and tumor microenvironment (TME). On
the one hand, IL18 shows anticancer effects by facilitating the
proliferation of NK cells and T lymphocytes [74]. On the
other hand, IL18 participates in tumorigenesis and progres-
sion. It leads to tumormetastasis by proangiogenic action [75]
and promotes the invasiveness of carcinoma cells by causing
matrix metalloproteinase-9 (MMP-9) production [76]. Zhao
et al. [77] discovered that IL18 derived from PDAC cells
activates the PD-1/PD-L1 pathway by binding to its receptor
on the surface of regulatory B cells, contributing to immune
tolerance. In addition, IL18 enhances PC-cell proliferation
and invasion via the NF-kappaB pathway [78]. The elevated
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level of IL18 induces Th1 immune responses characterized by
hypersecretion of IFN-gamma and TNF-alpha, which are
engaged in chronic inflammation [79]. A positive connection
has been demonstrated between PC onset and chronic inflam-
mation [80]. Chronic inflammation can generate conditions
that promotemalignant transformation by the gradual amass-
ment of gene mutations and contribute to tumor cell prolif-
eration and neovascularization [80]. IL18-binding protein
(IL18BP), an antagonist to IL18 activity, possesses a high
affinity for mature IL18 and blocks the interaction of IL18
with receptors on the cell surface [81]. Carbone et al. [79]
found that the levels of free serum IL18 and IL18BP in
PDAC patients were substantially higher than in healthy con-
trols and that elevated serum levels of free IL18 were linked
with an inferior outcome. This may be due to the imbalanced
relationship between IL18 and IL18BP that influences the
pathogenesis and progression of PC. However, one study by
Guo et al. [78] observed that greater IL18 levels in PC tissues
were linked with a shorter OS, whereas higher plasma IL18
levels were linked with a longer OS. In summary, IL18 over-
expression might affect the development and progression
of PC.

In this study, patients at high risk possessed relatively
higher immune cell infiltration (including B cells, Th2 cells,
CD 8+ T cells, Treg cells, Tfh cells, neutrophils, M0 macro-
phages, NK cells, M1 macrophages, mDCs, M2 macro-
phages, and CAFs) and more active immune functions or
pathways (including APC costimulation, MHC Class I, para-
inflammation, APC coinhibition, Type I IFN response, and
the cGAS-STING pathway) compared to patients at low risk.
The immunosuppressive characteristics of the high-risk
group verify the immune modulation ability of pyroptosis
and affect PC patients’ prognosis. Underlying mechanisms
are unclear, but parainflammation, a low inflammatory
response between homeostasis and chronic inflammation
[82], may participate in tumor initiation, invasion, metasta-
sis, pyroptosis, and the formation of an immunosuppressive
microenvironment in PC.

Parainflammation is characterized by Type I IFN
response and TP53 mutation and is correlated with a worse
prognosis [45]. Similarly, this study revealed that the patients
at high risk exhibited a higher level of parainflammation, a
stronger Type I IFN response, and higher TP53 mutations
compared to patients at low risk. Parainflammation is caused
by internal cell insults and is tightly associated with cellular
senescence [83]. However, when TP53mutations cause loss of
p53 protein function, parainflammation shifts from cancer
suppression to cancer promotion [83]. Thus, parainflamma-
tory tumors tend to exhibit a high rate of TP53 mutations.
Rapidly proliferating tumor cells are often afflicted with hyp-
oxia, nutritional deficiencies, and energy shortages due to
inadequate vasculature and blood supply [84]. Apoptosis
will occur in cancer cells that cannot adapt to hypoxia [85].
As proapoptotic effector proteins, BAX and BAK modulate
the permeability of the external mitochondrial membrane,
which causes the translocation of cytochrome c and mito-
chondrial DNA (mtDNA) into the cytoplasm [86]. Multiple
sensors of cytosolic DNA, namely absent in melanoma 2

(AIM2), Z-DNA binding protein 1(ZBP1), and cyclic GMP-
AMP synthase (cGAS), exist for triggering innate immune
responses in the cell [87]. mtDNA can effectively ignite the
cGAS-STING-TBK1 signaling pathway, inducing the genera-
tion of Type I IFNs through activation of IFN-regulatory
factor 3 (IRF3) and the production of other pro-inflammatory
cytokines, which include IL-18 and IL-1β, via activating NF-
kappaB pathway [88]. Type I IFNs attach to the IFN-alpha/
beta receptor (IFNAR) complex and start the JAK/STAT
downstream pathway, which triggers the transcription of
IFN-stimulated genes [88] such as AIM2 [89] and ZBP1
[90]. Upon recognition of cytosolic DNA, ZBP1 initiated
NLRP3 inflammasome activation through the RIPK1-
RIPK3-caspase-8 axis [91]. Cytosolic DNA can also activate
the AIM2 inflammasome. NLRP3 and AIM2 inflammasomes
both initiate caspase 1, stimulating pro-IL-1 and pro-IL18
maturation. Under hypoxia, the PD-L1/p-Stat3 complex
enhances GSDMC expression, which is subsequently cleaved
with activated caspase-8, resulting in pyroptosis and the lib-
eration of IL-1β and IL18 [68]. It is suggested that GSDMC
expression is relevant to PD-L1 expression and hypoxic TME.
Type I IFNs can increase PD-L1 expression [92]. Parainflam-
mation characterized by Type I IFN response was observed to
have a positive relationship with PD-L1 expression in PC
(Figure 11). Hypoxia enhances tumor invasiveness, metasta-
sis, and angiogenesis [93]. Of note, the risk score was posi-
tively related to NF-kappaB-mediated inflammatory response
in the study. However, the ssGSEA score of pyroptosis did not
correlate with the ssGSEA score of the NF-kappaB pathway;
instead, it correlated significantly with the ssGSEA scores of
Type I IFN response. In summary, the parainflammatory
response in PC may be involved in GSDMC-induced pyrop-
tosis through cytosolic DNA-sensing pathways under hypoxic
conditions. The Spearman correlation heatmap (Figure 11)
shows the relationship discussed above.

According to the somatic mutation analysis, patients at
high risk presented a greater frequency of KRAS and TP53
mutations than patients at low risk. KRAS and TP53 muta-
tions were positively correlated with the expressions of
BAK1, GSDMC, IL18, and KRAS. Intriguingly, although
KRAS mutations were significantly associated with TP53
mutations in two risk groups, these two gene mutations
were involved in different inflammatory pathways and
played different prognostic roles in distinct risk categories.
Patients with KRAS mutations in the high-risk category pos-
sessed higher ssGSEA scores of the NF-kappaB pathway and
a less favorable outcome than those with wild-type KRAS,
while patients with TP53 mutations in the low-risk category
possessed higher ssGSEA scores of parainflammation, Type I
IFN response and pyroptosis and an unfavorable prognosis
than those with wild-type TP53. The results also demon-
strated that TP53 mutations rather than KRAS mutations
played a significant part in parainflammatory response and
pyroptosis in PC.

PC is characterized by desmoplasia and an inflammatory
environment [94]. Cytokines participate in the interaction
between immune cells and tumor cells [95]. IFNs encompass
a broad family of cytokines that act as pivotal promoters of
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inflammation in the TME [96]. Type I IFNs are crucial for
the TME of PC because they operate on immune and tumor
cells, respectively, to prevent tumor development directly
and indirectly [97]. They boost antitumor immunity by stim-
ulating CD4+ helper T cells, CD8+ cytotoxic T cells, NK
cells, DCs, and M1 macrophages while inhibiting Treg cells,
myeloid-derived suppressor cells (MDSCs), and M2 macro-
phages [88]. Moreover, Type I IFNs activate DCs and
enhance CD8+ T cell cross-priming. DCs, especially mye-
loid/conventional DC1 (cDC1), have a strong potential for
processing antigens derived from tumor cells and cross-
presenting these antigens through MHC class I to activate
CD8+ T cells [98, 99]. However, chronic activation of the
Type I IFN pathway or prolonged Type I IFN signaling may

evoke immune suppressive mechanisms in cancer [100] and
cause resistance to different cancer treatments [95], includ-
ing ICIs resistance [101]. In the advanced phase of cancer
progression, persistent Type I IFNs can upregulate indolea-
mine 2,3-dioxygenase and PD-L1 expressions on DCs and
other myeloid cells, suppressing antitumor immunity
[102]. This study also revealed a significantly positive con-
nection between ssGSEA scores of Type I IFN response
and PD-L1 expression (Figure 11). Therefore, parainflam-
mation related to Type I IFN response may facilitate an
immunosuppressive microenvironment in PC. NSAIDs
have the potential to be of particular benefit to these PC
patients with parainflammatory features, since NSAIDs
attenuate human parainflammation.
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MDSCs are a subset of bone marrow cells that express
CD11b and Gr1 and are involved in immunosuppression
[103]. The cells are typically categorized into two major cell
subpopulations: monocytic (M)-MDSCs and granulocytic or
polymorphonuclear (G/PMN)-MDSCs [104, 105]. Neutrophils
resemble (G/PMN)-MDSCs in both phenotype and morpho-
logyare. Neutrophils were a critical cell type in the TME of
patients at high risk. It might be because PC cells attract neu-
trophils to the TME, inhibiting the immune response and pro-
moting tumor progression. Neutrophils induce angiogenesis
via MMP-9 [106] and promote epithelial-to-mesenchymal
transition via elastase [107] in PDAC. Clinically, a high ratio
of neutrophils to lymphocytes correlates positively with a poor
prognosis in PDAC [108, 109]. Treg cells, known as antitumor
immunosuppressants, can downregulate the activities of NK
cells and T cells (CD4+ and CD8+). Transforming growth
factor-beta and IL-10 produced by Treg cells have been dem-
onstrated to suppress immune responses [110]. An elevated
abundance of tumor-infiltrating Treg cells impairs the antitu-
mor activity of CD8+T cells and portends a worse prognosis in
PDAC [111]. High-risk individuals also owned a greater abun-
dance of T2 cells compared to low-risk individuals in this study.
Increased Th2/Th1 ratio within the tumor-infiltrating cells
indicated an inferior prognosis for PC patients with stage
IIB/III [112]. The two main categories of tumor-related
macrophages are “M1” and “M2” macrophages. M1 macro-
phages release pro-inflammatory cytokines that inhibit tumor
growth, while M2 macrophages release anti-inflammatory
cytokines that may promote tumor development [113]. Hu
et al. [114] verified that M2 macrophage infiltration was neg-
atively related to PC patients’ prognosis. Moreover, CAFs
were crucial to the TIME of high-risk patients. CAFs are the
principal cell type of the desmoplastic stroma in PC [115] and
interact with tumor cells via various cellular pathways [116].
Once activated, myofibrotic CAFs or inflammatory CAFs
undermine the anticancer immune response and accelerate
the progression of PC [117].

Sixteen immune checkpoint molecules, which positively
and negatively regulate immune responses, were overex-
pressed in high-risk individuals compared to high-risk indi-
viduals. It was demonstrated that high TNFSF9 expression
was significantly linked with immune infiltration and poor
OS in PC [118]. The research by Zhao et al. [119] revealed
higher expression of B7-H3 (also called CD276) in PC
patients than in normal controls, and its overexpression
facilitates tumor progression. Also, increased expression of
B7-H3 promotes cancer progression in primary hepatocellu-
lar carcinoma [120] and predicts a shorter OS in colorectal
carcinoma [121]. PD-L1 (CD274) belongs to the B7 family
[122] and is expressed on the cancerous cell membranes of
various solid malignancies [123], including PC [124]. The
interaction of PD-L1 with PD-1 protects cancerous cells
from T-cell attack and contributes to their exhaustion
[125]. Several studies have reached the same conclusion
that increased PD-L1 expression in tumor tissues is impli-
cated in the adverse prognosis of PC [124, 126, 127]. The
function of other immune checkpoint molecules in PC has
rarely been reported and requires further investigation.

An analysis of the relationship between risk scores and
immune subtypes found that high-risk scores were strongly
linked with C1 (wound healing), whereas low-risk scores
were significantly linked with C3 (inflammatory). Thorsson
et al. [49] identified 6 immuno-subtypes across carcinoma
types and described their different features. C1 (wound heal-
ing) exhibited upregulation of angiogenic gene expressions,
high KRAS and TP53 mutations, elevated proliferation rate,
and high infiltration of Th2 cells [49]. Similarly, this study
demonstrated that high-risk individuals had high frequencies
of KRAS and TP53 mutations and increased Th2 cell infil-
tration in cancerous tissues. Oncogenic KRAS mutations
have been confirmed to participate in fibro-inflammatory
microenvironment development, tumorigenesis, and growth
in PC [94, 128]. Wormann et al. [129] discovered that TP53
mutation or absence of p53 function in pancreatic tumors of
mice activates the JAK2-STAT3 signaling pathway, which
reduces fibrosis and the abundance of stellate cells in the
stroma of pancreatic tumors and alters the types of immu-
nocyte infiltration, promoting tumor growth, and stroma
modification. C3 (inflammatory) had the most prominent
Th17 signature, low to moderate neoplastic cell multiplica-
tion, increased Th1 genes, and decreased overall somatic
copy number [49]. In addition, C3 had a better prognosis
than other subtypes (including C1), which might be because
C3 had a balanced immune response [49].

The m6A modification affects many malignancies by
either increasing the expression of oncogenes or decreasing
the expression of carcinoma suppressor genes [130, 131].
HNRNPC, RBM15, YTHDF1, and YTHDF2 expression
levels were significantly higher in the current study’s high-
risk individuals than in the low-risk individuals. Huang et al.
[132] concluded that elevated expression of HNRNPC pro-
motes tumor spread, rendering PDAC patients with a dismal
prognosis. In hepatocellular carcinoma [133] and laryngeal
squamous cell carcinoma [134], overexpression of RBM15
was reported to accelerate tumor growth and indicate a poor
prognosis. YTHDF1 was discovered to boost antigen decom-
position in the phagosome and prevent DCs from cross-
presenting neoantigens, hence suppressing antitumor immu-
nity [135, 136]. High YTHDF1 expression is related to an
adverse prognosis in ovarian cancer [137] and breast cancer
[138]. One research by Guo et al. [139] revealed that
YTHDF2 is implicated in PC progression by cooperating
with ALKBH5, an RNA demethylase.

The results of our estimation of the connection between
these three gene expressions and medication sensitivity
showed that GSDMC and IL18 expressions were adversely
associated with the sensitivity of the medications presented
in this study. Antitumor drugs such as gemcitabine, cisplatin,
and erlotinib are generally recommended for PC treatment.
As a result, we investigated the sensitivity of PC to these
medications and discovered that high-risk tumors were
more responsive to the medicines compared to low-risk
tumors, implying that high-risk individuals may benefit
from these therapies.

Moreover, ICIs therapy has exhibited impressive efficacy
in the management of several solid tumors. In the present
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study, subclass mapping analysis suggested that high-risk
individuals owned a higher likelihood of responding to
anti-CTLA-4 treatment but with a Bonferroni-corrected p-
value of 0.08. Increasing evidence indicates that ICIs therapy
may be beneficial for patients with high-TMB and MSI-H
[140, 141]. The association of risk scores with TMB and MSI
was therefore examined. The risk scores and TMB showed a
positive association, and MSI-L was more common in high-
risk individuals than in low-risk individuals. However,
almost all patients included in the study exhibited low-
TMB and no MSI-H. Mismatch repair deficiency (dMMR)/
MSI-H is presently the single reliable biomarker available for
predicting immunotherapy response in PC patients [142]. As
this population partially overlaps with high-TMB PC, and
high-TMB/MSI-H PC represents a very small population,
immunotherapy currently benefits only a tiny number of
PC patients. The mainstay of treatment for most PC patients
remains cytotoxic chemotherapy. Combining conventional
therapy with targeted therapy and immunotherapy may cre-
ate a promising PC therapeutic option.

However, this research has some restrictions to be noted.
First, the risk signature was the lack of prospective data vali-
dation. Second, the exact function of these three gene combi-
nations remains undetermined and requires additional
experiments to confirm. Third, the risk score’s relationship
with the tumor microenvironment requires to be determined
experimentally. Fourth, the mechanism of parainflammation-
induced pyroptosis needs to be validated in experiments.

5. Conclusions

A novel PC prognostic model with three PRGs was devel-
oped in this study. High-risk individuals possessed different
molecular pathways, higher KRAS and TP53 mutations,
increased expression of PD-L1, C1 immune subtype, and
immunosuppressive microenvironment characterized by
parainflammation compared to low-risk individuals. Besides,
parainflammatatory response was crucial in PC pyroptosis.
Consequently, the risk model may help discover novel bio-
markers and offer fresh insights into predicting prognosis,
exploring the TIME, and developing management strategies
for PC patients.
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