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Natural killer (NK) cell is an essential cytotoxic lymphocyte in our innate immunity. Activation of NK cells is of paramount
importance in defending against pathogens, suppressing autoantibody production and regulating other immune cells. Common
gamma chain (γc) cytokines, including IL-2, IL-15, and IL-21, are defined as essential regulators for NK cell homeostasis and
development. However, it is inconclusive whether γc cytokine-driven NK cell activation plays a protective or pathogenic role in the
development of autoimmunity. In this study, we investigate and correlate the differential effects of γc cytokines in NK cell
expansion and activation. IL-2 and IL-15 are mainly responsible for NK cell activation, while IL-21 preferentially stimulates
NK cell proliferation. Blockade of Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) signaling
pathway by either JAK inhibitors or antibodies targeting γc receptor subunits reverses the γc cytokine-induced NK cell activation,
leading to suppression of its autoimmunity-like phenotype in vitro. These results underline the mechanisms of how γc cytokines
trigger autoimmune phenotype in NK cells as a potential target to autoimmune diseases.

1. Introduction

Natural killer (NK) cell refers to a type of immune cells that
play an important role in innate responses to viral infections
and cancer [1–3]. In the innate immune system, NK cell does
not require prior sensitization for the recognition and killing
of tumor cells of various histologic origins and virally infected
cells [4]. Two main subpopulations of NK cells are classified
by the surface expression of cluster of differentiation (CD)56
and CD16, termed the CD56brightCD16− and CD56dimCD16
+ NK cells, which differ in terms of phenotype, function, and
tissue localization [5, 6]. CD56brightCD16− NK cells are pri-
marily found in lymphoid tissues with lower cytotoxic activ-
ity, but are efficient producers of cytokines such as interferon-
γ (IFN-γ) and cytolytic proteins such as perforin upon stimu-
lation by proinflammatory cytokines like IL-2 and IL-12
[7–9]. In contrast, CD56dimCD16+ NK cells are predomi-
nantly present in peripheral blood with high cytolytic activity,
but are less responsive to cytokine stimulation than the
CD56brightCD16− population [5].

The development, homeostasis, and regulation of func-
tional activities of NK cells are predominantly modulated by
a cytokine family, namely the common gamma chain (γc or
CD132) cytokines [10, 11]. The γc chain is a 40-kDa type I
transmembrane glycoprotein that acts as a common receptor
subunit for the cytokine family that comprises of interleukin
(IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21 [12]. Upon hetero-
dimerization with a proprietary cytokine receptor (IL-2Rβ,
IL-4Rα, IL-7Rα, IL9Rα, or IL-21R), which possesses Janus
tyrosine kinase (JAK)-1 protein, the JAK3 protein associated
with γc receptor is activated to transduce downstream signals
through JAK/signal transducer and activator of transcription
(STAT) signaling pathway for triggering immune responses
against pathogens [13, 14].

Among six γc cytokines, IL-2, IL-15, and IL-21 play
indispensable roles in NK cell development and immune
functioning. IL-2 and IL-15 share similar functional proper-
ties that they both utilize the same receptor components
IL-2Rβ and γc to transduce signaling pathways [15]. Both
cytokines play important roles in the activation, prolifera-
tion, and cytotoxicity of NK cell. Also, these cytokines can
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convert NK cells from resting to highly cytolytic phenotype
with enhanced secretion of perforin and granzymes [16];
they also promote the generation of IFN-γ that further
enhances the activities of NK cell and macrophage [17–19].
Furthermore, both cytokines have been shown to induce
expression of NKG2D (activating) and CD158a/CD158b
(inhibitory) receptors on NK cell lymphocyte subsets origi-
nating from regional lymph nodes [20]. A more recently dis-
covered γc cytokine, IL-21, is a remarkable regulator of NK cell
function. IL-21 is involved in the upregulation of CD16 expres-
sion that potentiates the antibody-dependent cellular cytotoxic-
ity (ADCC) activity and costimulation of perforin,
granzymes, and IFN-γ secretion [10]. Furthermore, costimu-
lation of peripheral blood mononuclear cells (PBMCs) with
IL-2 and IL-21 also triggers proliferation of CD56bright NK cells
and significantly upregulates the cytotoxicity of CD56dim NK
cells, when compared to IL-2 or IL-21 stimulated groups [21].

Autoimmune disease is distinguished by the loss of self-
tolerance and presence of autoreactive immune cells in the
body. Indeed, several mechanisms have been proposed to
elucidate the detrimental role of NK cells in the progression
of diseases, including the ability of recognizing stress-induced
ligands on self-tissue cells during infection [22], secretion of
proinflammatory cytokines to promote tissue damage [23],
and the imbalance between NK activating and inhibitory
receptors that promote the generation of autoreactive T cells
[24]. For example, increased numbers of NK cell have been
observed in clinical samples from patients with Crohn’s dis-
ease or chronic obstructive pulmonary disease [25, 26]. How-
ever, evidences have been suggested for NK cells to play
protective roles to limit the severity of immunity through
the regulation of T and dendritic cells in tissue repair, inhibi-
tion of autoreactive T-cell activity, and induced differentia-
tion of regulatory T cells [27]. Although γc cytokines are
correlated with the severity of multiple autoimmune diseases
(vitiligo, multiple sclerosis, rheumatoid arthritis, celiac dis-
ease, psoriasis, alopecia areata, atopic dermatitis, psoriasis
vulgaris, systemic lupus erythematosus, Sjogren’s syndrome,
and type 1 diabetes) in humans [28–50], their effects on NK
cell homeostasis during autoimmune diseases remain unclear.

In the current study, IL-2, IL-15, and IL-21 were found to
differentially modulate NK cell expansion and activation phe-
notype in PBMC culture. Through the blockade of JAK/STAT
pathway by JAK inhibitors, NK cell expansion and activation
were completely abolished. Interestingly, direct blockade of
downstream JAK3 activity with anti-γc antibody could sup-
press γc cytokine-induced NK cell activation but maintains
immunity against tumor cells, suggesting that antibody might
offer a safer strategy to treat NK cell-mediated autoimmune
diseases. Using the isolated primary NK cell as a model, we
further demonstrate that long-term γc cytokine-stimulated
NK cells exhibit autoimmune phenotype and cytotoxicity
against healthy mesenchymal stem cells (MSCs), and the
application of anti-γc antibody is able to rescue MSCs. The
current study indicates that application of anti-γc antibody
might serve as a better strategy to target NK cell-associated
autoimmune diseases.

2. Materials and Methods

2.1. Cells and Reagents. PBMCs (#10HU-003-CR100M) were
purchased from iXCells Biotechnologies (San Diego, Califor-
nia, USA). Myelogenous leukemia cell line K562 (CCL-243™)
was obtained fromATCC, and bonemarrowMSCs (#A15652)
were obtained from Thermo Fisher Scientific (Waltham,
MA, USA).

PBMCs were cultured in complete ATCC-modified
RPMI 1640Medium (#A1049101), supplemented with 1x peni-
cillin/streptomycin (#15140122) and 10% fetal bovine serum
(FBS) (A3160801). Cells were cultured at 2× 106 cells/ml.
K562 cells were cultured in RPMI 1640 Medium (#11875135),
supplemented with antibiotics and 10% FBS, at 2× 105 cells/ml.
Bone marrowMSCs were cultured in MesenPRO RS™Medium
(#12746012, Thermo Fisher Scientific) at 5×103 cells/cm2. All
cell cultures were maintained at 37°C in a humidified incubator
with 5%CO2 atmosphere. All media and reagents for cell culture
were purchased from Thermo Fisher Scientific. The sources of
cytokines, inhibitors, and neutralizing antibodies are summarized
in Table 1.

2.2. WST-8 Proliferative Assay. One hundred thousand
PBMC cells were seeded into each 96-well plate before treat-
ment. After 3-day cytokine and drug incubation, 10 μl WST-
8 reagent (ab228554, Abcam, Cambridge, UK) was added to
each well and optical density of each well was measured at
450 nm between 4 and 8 hr using Varioskan LUXMultimode
Microplate Reader (Thermo Fisher Scientific). Each group
was tested in duplicate.

2.3. Primary NK Cells Isolation and Expansion. NK cells were
isolated from PBMC using Human NK Cell Isolation Kit II
(#130-092-657, Miltenyi Biotec, Bergisch Gladbach, North
Rhine-Westphalia, Germany) according to the manufac-
turer’s protocol. Purified NK cells were resuspended in fresh
complete NK MACS medium (#130-114-429, Miltenyi Bio-
tec) with 50 ng/ml premium grade IL-2. After 5-day priming
with IL-2, cells were expanded with 50 ng/ml premium grade
IL-2 and 25 ng/ml IL-21 up to 3 weeks. Percentage of NK cell
population was determined by flow cytometry to confirm
the NK cell enrichment and expansion following cytokine
treatment.

2.4. Flow Cytometry Analyses of PBMCs and Purified NKCells.
Sources of antibodies are summarized in Table 1. Cytokine-
stimulated PBMCs or purified NK cells were washed with
FACS wash buffer (2% FBS in phosphate-buffered saline
(PBS)) and then surface stained with CD3 antibody and
CD56 antibody to label the CD3-CD56+ NK cell population.
Cells were then incubated with antibodies targeting NK sur-
face markers for 30min at RT.

For intracellular staining, cells were fixed with 4% para-
formaldehyde (#158127, Sigma-Aldrich, St. Louis, Missouri,
USA) at 4°C for 10min after surface staining. After washing
and incubating in 0.1% Triton-X in PBS at 37°C for 10min,
cells were labeled with antibodies targeting intracellular mar-
kers at 37°C for 30min. Percentage of positively labeled cells
was identified by BD FACS Lyric™ Clinical Cell Analyzer
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(BD Biosciences, New Jersey, USA) as previously described
[51]. Unstained control without antibody incubation was
used for gating.

2.5. Western Blot (WB). Antibodies for WB were purchased
from CST (Danvers, Massachusetts, USA) or Sino Biological,
as summarized in Table 1. Total proteins were extracted
from the PBMC in RIPA lysis buffer (#20-188, Millipore,
Burlington, Massachusetts, USA) with inhibitor cocktail
(#78440, Thermo Fisher Scientific) after 15min cytokine
incubation. Protein concentration was measured by Pierce™
BCA Protein Assay Kit (#23225, Thermo Fisher Scientific)
and then diluted in NuPAGE™ LDS Sample Buffer
(#NP0007, Thermo Fisher Scientific) supplemented with
2-mercaptoethanol (#1610710, Bio-Rad, Hercules, Califor-
nia, USA). After boiled at 95°C for 10min, protein lysates
(20–40mg/lane) were separated through electrophoresis and
blotted on the nitrocellulose membrane (GE10600001,

Sigma-Aldrich). Membrane was blocked with 5% nonfat
milk (#1706404, Bio-Rad) and incubated with primary anti-
bodies at 4°C overnight. Next day, membrane was washed
with PBST and incubated with horseradish peroxidase
(HRP)-conjugated secondary antibodies for 60min at RT.
Protein bands were visualized using ECL substrate kit
(#34580, Thermo Fisher Scientific) in the ChemiDoc Imag-
ing System (Bio-Rad).

2.6. Cytotoxicity Assays to K562 and MSC. For cell-to-cell
cytotoxicity assay, PBMCs or overnight starved purified
NK cells were pretreated γc antibody for 1 hr, followed by
single cytokine (IL-2/IL-15/IL-21) or cytokine cocktail stim-
ulation for 3 days. K562 and MSCs (target cells) were
counted and 1× 106 cells were labeled with 100 µM of
CFSE (#423801, BioLegend) for 10min at 37°C. Labeled
target cells were washed and resuspended in complete
ATCC-modified RPMI medium. Prestimulated PBMCs or

TABLE 1: Reagent and antibody lists.

Category Item Company Catalog number

Cytokine

Human IL-2 Sino Biological 11848-HNAH1-E
Human IL-4 Sino Biological 11846-HNAE
Human IL-7 Sino Biological 11821-HNAE
Human IL-9 Sino Biological 11844-H08B
Human IL-15 Sino Biological 10360-HNCE
Human IL-21 Sino Biological 10584-HNAE

Human premium grade IL-2 Miltenyi Biotec 130-097-748

Inhibitor
Tofacitinib (JAK1/JAK3) Tocris (Abingdon, UK) 4556
Ruxolitinib (JAK1/JAK2) Tocris 7064

Ritlecitinib (JAK3) Tocris 6506

Neutralizing antibodies

Antihuman γc antibody R&D System, Minneapolis, USA MAB2842
Antihuman CD25 antibody R&D System MAB223
Antihuman CD122 antibody R&D System MAB224

Mouse IgG2b control Thermo Fisher Scientific 02-6300

Flow cytometry antibodies

Antihuman CD3 antibody BioLegend 317314
Antihuman CD56 antibody BioLegend 392414
Antihuman NKG2A antibody BioLegend 375104
Antihuman NKG2D antibody BioLegend 320808
Antihuman FasL antibody BioLegend 306407
Antihuman KIR antibody BioLegend 339504

Antihuman NKp44 antibody BioLegend 325110
Antihuman NKp46 antibody BioLegend 331922

Antihuman granzyme B antibody BioLegend 372206
Antihuman perforin antibody BioLegend 353312
Antihuman IFN-γ antibody BioLegend 502512

WB antibodies

Anti-STAT3 CST 9139
Anti-p-STAT3 CST 9145
Anti-STAT5 CST 94205
Anti-p-STAT5 CST 9359
Anti-STAT6 CST 5397
Anti-p-STAT6 CST 56554
Antitubulin Sino Biological 100109-MM05T

HRP goat antimouse IgG CST 7076
HRP goat antirabbit IgG CST 7074
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purified NK cells (effector cells) were introduced to target
cells in different E : T ratios. The cell mixture was harvested
after 4 hr incubation, washed, and centrifuged. Cells were then
resuspended in 50ng/ml propidium iodide (PI) (#P1304MP,
Thermo Fisher Scientific) and analyzed with FACS analysis.
CFSE- and PI-labeled target cell populationswere quantified to
determine cytotoxicity levels of effector cells.

For soluble factor secretion cytotoxicity assay, PBMCs or
overnight starved isolated NK cells were pretreated with γc
antibody and stimulated with single cytokine or cytokine
cocktail as same as the condition of cell-to-cell cytotoxicity
assay above. Supernatant was harvested from PBMC and NK
cell culture after stimulation for 3 days. K562 was counted
and 1× 106 K562 cells were incubated with the supernatant
in 1 : 1 ratio for 16 hr at 37°C. Treated K562 cells were
washed, centrifuged, and resuspended in 50 ng/ml PI. The
labeled cells were analyzed with FACS analysis. PI-labeled
K562 cell population was investigated to determine soluble
factor-mediated cytotoxicity.

2.7. ELISA. ELISA assay is the golden standard for determin-
ing cytokine level in the clinical and laboratory samples [52].
After cytokine stimulation, PBMC and NK cell culture superna-
tant was harvested and ELISA assays were performed according
to manufacturer protocols. DuoSet ELISA measuring human
granzyme A (#DY2905-05), granzyme B (#DY2906-05), IFN-γ
(#DY285B), IL-4 (#DY204-05), IL-5 (#DY205), IL-6 (#DY206),
IL-10 (#DY217B05), IL-13 (#DY213), and IL-22 (#DY782-05)
were obtained from R&D Systems (Minneapolis, MN, USA).
Human perforin-coated ELISA (#BMS2306) was obtained from
Thermo Fisher Scientific.

2.8. Statistical Analyses. The signal intensities of protein
bands inWB were determined by ImageJ (National Institutes
of Health, Bethesda, Maryland, USA). Data from flow cyto-
metry were quantified by FlowJo (version 10, BD, Ashland,
OR, USA). Statistical analyses were conducted by Prism (ver-
sion 8, GraphPad Software, Boston, MA, USA). p <0:05 is
considered to be statistically significant between groups.

3. Results

3.1. JAK/STAT Pathways Were Triggered by IL-2, IL-15, and
IL-21 in PBMCs. Biological effect of γc cytokines on JAK/STAT
pathway in PBMC was investigated through WB analysis.
Results showed that each γc cytokine except IL-9 activated
one major STAT protein in the culture (Figure 1(a)). STAT
phosphorylation was relatively weak in IL-9-treated PBMCs
and quantification confirmed the results (Figure 1(b)–1(d)).
Proliferation of PBMC was then measured by WST-8 assay
after 3-day cytokine treatment. IL-2, IL-7, and IL-15 all promoted
PBMC proliferation, and the strongest effect was observed in
IL-15 stimulation (Figure 1(e)). Moreover, IL-2 and IL-7 cotreat-
ment could further promote PBMC proliferation in the culture
(Figure 1(e)), suggesting the synergistic effect of γc cytokines in
PBMC proliferation and STAT5 phosphorylation as a potential
indicator for measuring proliferative activity in PBMC culture.

3.2. IL-2, IL-15, and IL-21 Differentially Modulated NK Cell
Expansion and Phenotype. Next, expansion of immune cell
type after 3-day cytokine treatment was investigated through
flow cytometry analyses. IL-2 and IL-7 treatment could
induce T-cell expansion (data not shown), while IL-21 could
increase NK cell population (CD3-CD56+) significantly
(Figure 1(f )). Moreover, combined treatment of IL-2/IL-15
showed a trend to synergistically increase NK cell population
in PBMC culture (Figure 1(g)). The effects of three γc cyto-
kines on shaping NK cell phenotype were then studied by
surface receptor expression analyses. CD94/NKG2A is
regarded as an inhibitory receptor for immune checkpoint
in NK cells. NKG2A recognizes HLA class I and E on normal
cells to inhibit NK cell activity, thus suppressing NK
cell-mediated autoimmunity. Although NKG2A+ NK cells
function to identify self and nonself-cells in the body,
uncontrolled expression of NKG2A is also an indication
of NK cell exhaustion [53, 54]. FasL is a type II transmem-
brane protein that specifically binds to FasL receptors
expressing on target cells to induce cytotoxicity [55, 56].
Data indicated that IL-15 could induce NKG2A expression
(Figures 1(h) and 1(i)), while IL-15 alone and IL-2/IL-15 com-
bined treatment contributed to FasL upregulation on NK cells
(Figures 1(j) and 1(k)), suggesting these two cytokines may play
alternative roles in modulating and activating NK cell in a
healthy PBMC culture.

3.3. IL-2 and IL-15 Contributed to NK Cell Activation in the
PBMC Culture. Secretion of perforin, IFN-γ, and granzymes
are classified as the markers for NK cell activation during
infection, tumor development, and autoimmunity progres-
sion [7, 57–60]. Thus, we studied whether γc cytokines can
modulate the production of these soluble factors to evaluate
the NK cell activation status. Similar to previous results, IL-2
and IL-15 significantly induced secretion of IL-6, IFN-γ, per-
forin, and granzymes A/B, in which IL-2/IL-15 cotreatment
showed synergistic effect on granzyme B and IFN-γ produc-
tion by PBMC as analyzed by ELISA (Figure 2(a)–2(e)).
Although IL-21 alone did not induce secretion of all studied
cytotoxic soluble factors, IL-2/IL-21 showed synergistic effect
on granzyme B secretion from PBMC culture (Figure 2(e)).
To confirm if NK cell is one of the main cell types for soluble
factor secretion, intracellular levels of those factors were
measured by FACS analysis. Consistent to ELISA results,
individual IL-2 and IL-15 treatment could trigger intracellular
IFN-γ and granzyme B expression in the CD3-CD56+NK cells
(Figures 2(f) and 2(g)), suggesting that NK cell was one of
the cell types responsible for granzyme B and IFN-γ secretion.
To further confirm whether two cytokines could induce
activation of multiple NK cell subpopulation, cytokines
involved in shaping natural killer type (NK)1/NK2/NK3/
NKr cell phenotypes [61, 62] were measured. ELISA results
demonstrated that in PBMCs culture, NK2 (IL-13), NK3
(transforming growth factor-β (TGF-β)), and NKr (IL-10)
cytokines were only increased in IL-15/IL-21-treated groups
only (Supplementary 1, data not shown). By calculating the
NK1 (IFNγ-producing)/NK2 ratio through dividing IFN-γ
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and IL-6 level by IL-5 level for each individual group, it was
identified that the presence of IL-15 or IL-2/IL-21 could
predominantly trigger NK1 phenotype in the PBMC culture
(Supplementary 1).

3.4. Prestimulated NK Cells Are Responsible for K562 Lysis.
The upregulation of activating receptors and intracellular
expression of cytotoxic factors in NK cells potentially led

to cytotoxicity on target cells. This phenomenon was stud-
ied by determining K562 lysis (PI+ cells) either coculture
with γc cytokine-activated PBMCs or supernatant harvested
from activated PBMC cultures (Figure 2(h)). For cell-
mediated cytotoxicity, the presence of IL-15 in all studied
PBMC groups triggered significant cytotoxicity against
K562 at all studied E : T ratios and the optimal ratio was
25 : 1 (Figures 2(i) and 2(j)). Consistent to cell-mediated
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FIGURE 2: IL-2 and IL-15 contributed to NK cell activation and K562 cytotoxicity. Supernatants were harvested for ELISA, while PBMC cells
were harvested for FACS analysis after 3-day cytokine (IL-2 : 20, IL-15 : 20, and IL-21 : 25 ng/ml) incubation. Differential or combinatorial
treatment of IL-2- and IL-15-induced production of (a) IFN-γ, (b) IL-6, (c) perforin, (d) granzyme A, and (e) granzyme B, respectively.
Representative images of intracellular (f ) IFN-γ and (g) granzyme B in gated NK cells after 3-day cytokine challenges. (h) Schematic diagram
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multiple comparisons test following two-way ANOVA for (i). ##p <0:01 was compared to indicated group by Student’s t-test. N= 3 for all
groups.
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cytotoxicity, supernatant harvested from PBMCs with IL-15
or IL-2/IL-15 treatment also led to significant K562 lysis
(Figure 2(k)). These results further confirmed that IL-2
and IL-15 play vital roles in promoting NK cell activation
and cytotoxicity, while IL-21 preferentially promotes NK
cell expansion in the PBMC culture.

3.5. JAK/STAT Inhibitor Totally Abolished NK Expansion
and Activation. IL-2 and IL-15 could stimulate several down-
stream signaling pathways for NK proliferation, activation,
and immune functions [63–67]. Among these pathways,
JAK/STAT pathway is important for NK cell expansion
and activation [68]. This phenomenon was explored using
three JAK inhibitors in the PBMC culture according to our
previous data [69]. All studied JAK inhibitors could signifi-
cantly suppress immune cell expansion in the presence of IL-
2 and IL-15 dose dependently (Figure 3(a)–3(f)). Low-dose
(1 µM) tofacitinib was selected for following experiments to
fit with the γc downstream pathway (JAK1/JAK3).

Flow cytometry analyses confirmed that blockade of
JAK/STAT pathway by tofacitinib attenuated IL-2- and IL-
15-induced expansion of NK cells in the PBMC culture
(Figures 3(g) and 3(i)), as well as complete suppression of
FasL expression on NK cells (Figures 3(h) and 3(j)). Func-
tionally, tofacitinib totally abolished cell-mediated cytotoxic-
ity against K562 tumor cells (Figures 3(k) and 3(l)) and
release of cytotoxic factors (Figure 3(m)–3(o)). Altogether,
these data suggested that JAK/STAT pathway is essential for
NK cell expansion and activation during IL-2 or IL-15 stim-
ulation and blockade of JAK/STAT pathway potentially sup-
presses acute NK cell activation.

3.6. Blocking γc Receptor Resulted in Attenuation of NK Cell
Activation Via Suppressing Cytotoxic Factors Secretion. As
tofacitinib preferentially suppressed JAK1 and JAK3 activa-
tion in the cells and numerous side effects were observed
after JAK1 inhibition in clinical trials [70], we hypothesize
if specific blockade of JAK1 and JAK3 activation by neutral-
izing antibodies against respective receptors could provide
comparable efficacy to suppress NK cell activation in our
system. Through treating preactivated PBMC cultures with
anti-CD25 or anti-CD122 neutralizing antibodies, the data
demonstrated that NK cell activation could be attenuated,
while NK cell population and cytotoxicity against tumor cells
could be retained (Supplementary 2 and 3), suggesting that anti-
body treatment might be a safer strategy for JAK inhibition.

Next, the effect of specific JAK3 inhibition by anti-γc
antibody was compared to anti-CD25 and anti-CD122 anti-
bodies in restoring normal NK cell phenotype in the pres-
ence of cytokine stimulation. In concordance with previous
data, anti-γc antibody could significantly reduce PBMC pro-
liferation (Figures 4(a) and 4(b)) and NK cell activation
(FasL expression) in the presence of IL-2 or IL-15 (Figures 4(d),
4(f), and 4(h)) butmaintained theNK population (Figures 4(c),
4(e), and 4(g)) in PBMC culture. In contrast, anti-γc antibody
could suppress both IL-2 triggered cytotoxicity against tumor
cells (Figures 5(a) and 5(b)) and soluble factor release
(Figure 5(d)–5(i)) when compared to anti-CD25 treated
groups. The inhibitory effects of IL-15-induced soluble factor

secretion were comparable between anti-γc and anti-CD122
antibodies (Figure 5(j)–5(o) and Supplementary 4), while the
antitumor effect was preserved (Figure 5(c)). These results
clearly indicate the potential uses of anti-γc antibody to treat
NK cell-mediated autoimmune diseases.

3.7. γc Cytokines Could Directly Activate Primary NK Cells
Independent of Other Immune Cell Types. To conclude
whether γc cytokine could directly induce NK cell activation
independent of other immune cell types, primary NK cells
were purified, primed with IL-2, and expanded with the
combined treatment of IL-2 and IL-21. After 14-day culture,
T cells were completely depleted and NK cells were enriched
to 90% in the culture (Figures 6(a) and 6(b)), with main-
tained cytotoxicity against K562 tumor following 1 day cyto-
kine treatment (Figure 6(c)). NK cells were starved overnight
and then incubated with a combination of γc cytokines for
3 days. Results indicated that IL-2 or IL-15 but not IL-21
could induce expression of activating receptors, including
FasL, TRAIL, and NKp46, on primary NK cell surface
(Figure 6(d)). Interestingly, either IL-2/IL-15 or IL-2/IL-21
cotreatment groups showed higher NKp46 expression when
compared to single cytokine-treated groups. The expression
of inhibitory NKG2A and KIR was gently induced in all
treatment groups except IL-2/IL-21 group. No expression
of NK exhaustion marker TIM-3 was detected in any
groups. To study the autoimmune phenotype of stimulated
NK cells, activating/inhibitory receptor ratio was calculated
by NKp46/KIR levels. The ratio clearly showed that primary
NK cells were shifted to autoimmune phenotype in the
presence of either IL-2/IL-15 or IL-2/IL-21 in the culture
(Figure 6(e)).

3.8. Suppression of γc Receptor Pathway-Attenuated NK
Autoimmunity. As blockade of γc cytokine pathway in T cells
is proposed to be one of the ways to reverse development of
autoimmunity [8, 71], the similar phenomenon was also
studied in purified NK cells. Cultured NK cells acquired
exaggerated cytotoxicity against K562 tumor cells, with
development of autoimmunity against healthy MSCs simul-
taneously in the presence of IL-2 and IL-21 (Figure 7(a)). To
further demonstrate this phenomenon, NK cells were starved
overnight and challenged with different combination of γc
cytokines for 3 days. Results indicated that IL-2/IL-15 and
IL-2/IL-21 pretreated groups showed significant autoimmu-
nity against MSCs, which are consistent to the expression of
activating receptors (Figure 7(b)) and intracellular levels of
cytotoxic soluble factors (Supplementary 4) in the NK cell
culture. More importantly, the presence of anti-γc antibody
could rescue MSCs during coculture with IL-2/IL-15 presti-
mulated NK cells (Figures 7(c) and 7(d)), suggesting that
suppression of γc activity on NK cells might be a potential
way to treat autoimmune diseases.

4. Discussion

The present data support the phenomenon that γc receptor
signaling can modulate NK cell functions and phenotypes.
Although IL-2 and IL-15 bind to individual receptor subunit,
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FIGURE 3: JAK/STAT inhibitors completely attenuated γc cytokines effects on NK cells expansion, activation, and cytotoxicity. PBMCs were
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respectively, they use the common γc and IL-2Rβ chains to
trigger tyrosine phosphorylation of STAT3 and STAT5 via
JAK1/JAK3 pathways [72]. Despite the similarities in the
signaling cascades after receptor trimerization, IL-2 and
IL-15 are responsible to trigger distinctive functions on sev-
eral immune cells due to the differences in IL-2Rα and
IL15Rα composition on self- and neighboring cell surfaces

[73]. IL-2 is responsible to expand CD4+ helper T cells and
regulatory T cells, while IL-15 could support the develop-
ment of NK cells and central memory T cells [74]. For
instance, IL-2 and lL15 can induce and both activate NK
cell but IL-15 is more potent to trigger its survival and cyto-
lytic activity [75]. Furthermore, IL-2 activated NK cells that
undergo apoptosis upon initial interaction with endothelial
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FIGURE 4: Anti-γc antibody attenuated NK activation only while maintained NK cell survival. PBMCs were pretreated by anti-γc (5 µg/ml) for
1 hr, followed by IL-2 (50 ng/ml) and IL-15 (50 ng/ml) stimulation for 3 days. (a and b) Anti-γc attenuated IL-2- and IL-15-induced
proliferation on PBMC culture. Representative images of FACS analysis showing that anti-γc suppressed IL-2- and IL-15-induced (c)
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all groups.
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and tumor cells, while IL-15 maintains NK cell survival under
the same condition [76]. Although short-term IL-15 treat-
ment could support NK cell function and survival in the
culture, continuous IL-15 treatment eventually leads to
decreased viability, functional impairment, and NK cell
exhaustion in PBMC culture and in vivo xenogeneic model
[77]. As amore recently discovered γc cytokine, IL-21 is found
to modulate NK progenitor cell development and prolifera-
tion [78]. Also, IL-21 could directly trigger NK cell-mediated
cytotoxicity against breast cancer cells [79]. Therefore, it is
important to dissect the overlapping and distinct relationship
of a combination of γc cytokines in NK cell homeostasis and
autoimmunity. Currently, our in vitro data are consistent to
previous findings that IL-2 and IL-15 specifically induce NK
activation and cytotoxicity against target cells, while IL-21
preferably stimulates NK proliferation [80–82].

Among all studied cytokines, IL-15 acts as a more potent
mediator to trigger NK cell activation and cytotoxicity as
previously shown [75, 83]. These results might be explained
by different expression of surface receptors on NK cells. IL-2
is responsible to upregulate the expression of activating
NKG2D and DNAM-1, which recognize the stress-induced
ligands on target cells [84]. IL-15 is more effective in upre-
gulating the expression of NKp46 and NKp30, which are
involved in the recognition and killing of tumor- and
virus-infected cells; IL-15 also increases the CD69 expres-
sion, which is an early activation marker on T and NK cells
[85, 86]. More importantly, synergistic effects in NK activa-
tion were shown in IL-2/IL-15 and IL-15/IL-21 cotreatments
as previously reported [80–82, 87–89], demonstrating the
high innate immune efficiency of NK cells responding to
multiple stimulus.

NK cells can be characterized into NK1 and NK2 sub-
population according to cell surface markers and cytokine
secretion profile as shown in T-helper 1 and 2 phenotypes in
T cells. NK1 cell is classified by CD56dim/CD95high/perfor-
inhigh phenotype [90, 91] and actively produces IFN-γ and
TNF-α; NK2 cell refers to CD56bright/CD122high/CD27high/
CD69high population [91] and secrets IL-5 and IL-13 [61, 92];
NK3 cell might express high level of CD127 and secretes
TGF-β [61, 91] and NKr1 cell is reported to secrete IL-10
to promote immune regulation [61]. In the current study,
IL-2 and IL-15 stimulation was identified to preferentially
shift NK cell from NK0 (inactivated status) to a dominant
NK1 phenotype (Figures 1 and 2 and Supplementary 1), which
could potentially lead to long-term inflammation and devel-
opment of autoimmunity in the culture [93]. On the other
hand, IL-15/IL-21 cotreatment led to a mixed NK1/NKr1
phenotype, which might potentially explain IL-21 to exhibit
immunosuppressive action on NK cell activation [94].

As aforementioned, γc cytokines share common JAK/STAT
pathways for signal transduction and immune responses in
most immune cells. It is hypothesized that suppression of
JAK/STAT pathway through blocking JAK protein or upstream
γc receptor subunits can potentially attenuate γc cytokine-driven
NK cell homeostasis as a strategy to tackle NK cell-mediated
autoimmune or inflammatory diseases. Administration of
JAK1/3 inhibitor tofacitinib, and antibodies targeting receptor
subunit or γc receptor, could suppress NK cell activities after
IL-2 and IL-15 challenges (Figures 4 and 5). However, the nor-
mal immune functions against tumor cells by NK cells and
cytotoxic T cells were impaired after tofacitinib treatment and
so increased risk of cancer is usually observed after JAK inhibi-
tor treatment [95, 96]. Alternatively, neutralization of CD25,
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CD122, or γc receptor by respective antibodies could still block
γc cytokine-induced NK cell activity, while maintained IL-15
induced antitumor activity (Supplementary 1 and 2 andFigures 4
and 5). A possible explanation for this observation is in

accordance with other groups that complete loss of JAK1 activ-
ity in mouse NK cells lead to innate immune deficiency and
reduced number of NK cells [97, 98]. Also, loss of JAK1 abro-
gates all downstream signaling pathways, while loss of JAK3
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only suppresses STAT5 phosphorylation only [99, 100]. Taken
together, we summarize that blockade of JAK3 activation
through anti-γc antibody treatment is enough to suppress γc
cytokine-driven NK cell activation while preserve the normal
innate functions such as antitumor activity.

Although the blockade of JAK3 activity can inhibit NK
cell activation, it is still unclear if γc cytokine-driven NK1
phenotype plays a protective or detrimental role during
the progression of autoimmunity. To answer this question,
NK cells were purified from PBMC culture, expanded, and

cocultured with MSCs to study NK cell-mediated autoimmu-
nity as previously described (73). The current data suggest
that IL-2/IL-15 and IL-2/IL-21 costimulation groups induced
NK cell autoimmune phenotype (Figure 6) and cytotoxicity
against healthy MSCs (Figure 7(b)), while pretreatment with
anti-γc antibody in NK cell cultures could rescue the MSCs
(Figure 7(c)). These data suggest that γc cytokine-driven
NK1 phenotype might play a detrimental role in autoim-
mune diseases and the corresponding autoimmunity could
potentially be reversed through blockade of JAK3 activity.
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However, the detailed relationship between NK cell activa-
tion and development of autoimmunity remains to be stud-
ied in vivo.

In humans, upregulation of γc cytokines is usually
observed together in various autoimmune diseases, including
multiple sclerosis, celiac disease, and vitiligo. The current
study suggests that IL-15 might be the major γc cytokine to
induce NK cell activation in those patients. For example,
IL-15 is overexpressed in the intestinal areas of patients
with inflammatory bowel disease (IBD) [101]. It is demon-
strated that intestinal secretion of IL-15 could trigger NK
cell-mediated small intestinal inflammation [102]. Prolonged
IL-15 treatment to isolated human intestinal intraepithelial
lymphocytes leads to massive production of IFN-γ and IL-10,
eventually resulted in enhanced cytotoxicity against tumor
cells [103]. Transgenic mice with intestinal IL-15 overexpres-
sion show distinct increase in the numbers of butyrate-
producing bacteria, resulting in high susceptibility to dextran
sulfate sodium (DSS)-induced colitis [104]. Consistently,
IL-15 knockout mice were resistance to DSS-induced colitis,
reduced NK cell population and IFN-γ level in lamina pro-
pria [105]. More importantly, IL-2 and IL-21 with their
receptor subunits are also upregulated in patients diagnosed
with IBD [46, 106–109], demonstrating that blockade of
multiple γc cytokines through specific inhibition of JAK3
signaling cascade via anti-γc antibody might serve as a potent
and safer strategy to treat autoimmune diseases with γc cyto-
kine upregulation. Future studies are required to test whether
inhibition of NK cell activity is beneficial in certain autoim-
mune diseases, such as IBD, in vivo.

5. Conclusion

The current study provides a comprehensive comparison
and characterization of γc cytokines in NK cell functions,
in which IL-2 and IL-15 stimulate the activated NK1 pheno-
type while IL-21 preferentially triggers NK cell proliferation.
The results are further confirmed with purified NK cells.
Specific inhibition of JAK3 signaling cascade by anti-γc anti-
body could eliminate hyperactivated NK cells and suppress
NK autoreactivity in the culture, which may serve as a potent
and safer strategy to treat autoimmune diseases.
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