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Background. Systemic lupus erythematosus (SLE) is characterized by poor regulation of the immune response leading to chronic
inflammation and multiple organ dysfunction. Glucocorticoid (GC) is currently one of the main treatments. However, a high dose
or prolonged use of GC may result in glucocorticoid-induced osteoporosis (GIOP). Jiedu Quyu Ziyin decoction (JP) is effective in
treating SLE and previous clinical studies have proved that JP can prevent and treat SLE steroid osteoporosis (SLE-GIOP). We aim
to examine JPs main mechanism on SLE-GIOP through network pharmacology and molecular docking. Methods. TCMSP and
TCMID databases were used to screen potential active compounds and targets of JP. The SLE-GIOP targets are collected from
GeneCards, OMIM, PharmGkb, TTD, and DrugBank databases. R software was used to obtain the cross-targets of JP and SLE-
GIOP and to perform GO and KEGG enrichment analysis. Cytoscape software was used to make the Chinese Medicines-Active
Ingredient-Intersection Targets network diagram. STRING database construct protein–protein interaction network and obtain the
core targets. Auto Dock Tools and Pymol software were used for docking. Results. Fifty eight targets overlapped between JP and
SLE-GIOP were suggested as potential targets of JP in the treatment of SLE-GIOP. Network topology analysis identified five core
targets. GO enrichment analysis was obtained 1,968 items, and the top 10 biological process, closeness centrality, and molecular
function were displayed. A total of 154 signaling pathways were obtained by KEGG enrichment analysis, and the top 30 signaling
pathways were displayed. JP was well bound by MAPK1, TP53, and MYC according to the molecular docking results. Conclusion.
We investigated the potential targets and signaling pathways of JP against SLE-GIOP in this study. It shows that JP is most likely to
achieve the purpose of treating SLE-GIOP by promoting the proliferation and differentiation of osteoblasts. A solid theoretical
foundation will be provided for the future study of clinical and experimental topics.

1. Introduction

Systemic lupus erythematosus (SLE) is a recurrent immune
system disease. The cells and tissues of the patient’s body are
attacked by the body’s own immune system, which causes
facial butterfly erythema, joint pain, and damage to important
organs and tissues such as kidneys. Women are more vulnera-
ble thanmen, especially at childbearing age [1]. Glucocorticoid
(GC) is one of themost effective immunosuppressive and anti-
inflammatory drugs, which can be used to treat SLE. However,
GC-related side effects are numerous and serious. Even at low

doses, GC can induce osteoporosis in patients on long-term
GC therapy [2]. Glucocorticoid-induced osteoporosis (GIOP)
is themost common secondary osteoporosis. At the same time,
epidemiological studies in premenopausal women with SLE
have shown that bone mineral density in SLE patients is lower
than that in women of the same age, and part of the reason for
this phenomenon is the use of GC [3]. Therefore, the use of GC
may not only causeGIOP in SLE patients but also increases the
risk of postmenopausal osteoporosis in female SLE patients
to some extent. Jiedu Quyu Ziyin decoction (JP) was created
by Professor Yongsheng Fan on the basis of Shengma Biejia
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decoction that recorded in Jingui Yaolue. JP is composed of
10 traditional Chinese medicines, including Radix Rehmanniae
Glutinosae (Sheng Di Huang), Carapax Amydae Sinensis (Cu
Bie Jia), RhizomnCimicifugae (ShengMa), HerbaOldenlandiae
Diffusae (Bai Hua She She Cao), Herba Artemisiae Apiaceae
(Qing Hao), Centellae Herba (Ji Xue Cao), Radix Paeoniae
Rubra (Chi Shao), Semen Coicis Lachryma-jobi (Yi Yi Ren),
Fructus Citri Sarcodactylis (Fo Shou), and Radix Glycyrrhizae
Uralensis (Gan Cao). It is a clinical experience prescription
for the treatment of SLE based on long-term clinical experi-
ence combined with Shengma Biejia decoction. The clinical
study of 147 female SLE patients showed that JP combined
with western medicine could prevent and treat of GIOP
in SLE (SLE-GIOP). Compared with western medicine alone,
JP could significantly increase the bone mineral density of
patients and had synergistic and attenuated effects [4]. By
further establishing the SLE-GIOP mouse model, it is specu-
lated that the mechanism of JP in the prevention and treat-
ment of SLE-GIOP may be related to the protection of the
hypothalamus–pituitary–adrenal axis from the inhibition of
exogenous steroid hormones, the promotion of endogenous

F secretion, the inhibition of PTH secretion or activity, the
promotion of intestinal calcium absorption, and reduction
of urinary calcium excretion [5]. However, the underlying
molecular mechanisms and related pathways of treatment
of SLE-GIOP are still unclear, and the relationship between
therapeutic targets and pathways has not been systematically
and comprehensively understood. The gradual improvement
of bioinformatics and related databases has laid the founda-
tion for a fuller understanding of network theory and systems
biology. Based on this development, network pharmacology
and molecular docking can help us to further explore the com-
plex relationship between drugs and diseases. A network phar-
macology approach was used in this study to obtain the
effective active ingredients and core targets of JP and SLE-
GIOP by extracting multiple online database information
and assisting various data processing software. In order to
verify the mechanism of action of JP on SLE-GIOP, we used
a molecular docking method to fit the effective active ingredi-
ents and core target molecules. This provides us with a theoret-
ical basis of JP acting on the key mechanism of SLE-GIOP. A
diagram of the whole research process can be seen in Figure 1.

JP SLE-GIOP

Prediction of targets Genes of SLE-GIOP

Intersection genes Network construction

GO  analysis KEGG-pathway analysis PPI network

PI3K-Akt signaling pathway 

Topology analysis

Molecular docking

FIGURE 1: Technical route of the research based on network pharmacology.
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2. Materials and Methods

2.1. Collection of Potential Active Ingredients and Related
Targets of JP. First, the components of each JP herb were
extracted from Traditional Chinese Medicine Database and
Analysis Platform (TCMSP) (http://lsp.nwu.edu.cn/tcmsp.php)
[6] and Traditional Chinese Medicine Integrated Database
(TCMID) (http://www.megabionet.org/tcmid/) [7]. Then,
all compounds were initially screened using the TCMSP
database based on oral bioavailability (OB≥ 30%) and drug
likeness (DL≥ 0.18) [8]. The amount of licorice is small;
therefore, setting the screening conditions for OB≥ 60%,
DL≥ 0.36. According to the screening results, an analysis of
the TCMSP database predicted the related targets of potential
active components of JP. Targets’ name was standardized
using UniProt (https://www.uniprot.org/) [9, 10].

2.2. Acquisition of KnownTargets for SLE-GIOPandConstruction
of Venn Diagrams. The SLE- and GIOP-related targets were
identified in the databases GeneCards (https://www.geneca
rds.org/), OMIM (https://omim.org/), PharmGkb (https://
www.pharmgkb.org/), TTD (http://db.idrblab.net/ttd/), and
DrugBank (https://www.drugbank.ca/) using the “systemic
lupus erythematosus,” “SLE,” “glucocorticoid-induced osteo-
porsis,” and “GIOP” as the keyword. Using R 4.1.3 software
and installing Venn script to obtain the target of SLE-GIOP,
SLE-GIOP is a cross gene of two diseases. In order to deter-
mine the prediction target of JP related to SLE-GIOP, an R
4.1.3 software intersects the potential target of JP with the
related targets involved in SLE-GIOP to obtain a Venn
diagram.

2.3. Chinese Medicines-Active Ingredients-Intersection Targets.
Cytoscape 3.8.0 software is suitable for any molecular com-
ponent and interaction system and can be used to integrate
and visualize molecular interaction network data [11]. The
active components of each Chinese medicine and their targets
and targets of SLE-GIOP were introduced into Cytoscape
3.8.0 software to construct a network diagram of “Chinese
Medicines-Active Ingredients-Intersection Targets.”The large
circles of the network diagram represent the active ingredients
of JP, where the small circle nodes of the same color represent
that they are from the same Chinese medicine, the middle
square nodes represent the intersection targets, and the edges
in the figure represent their interactions.

2.4. Construction and Analysis of Protein–Protein Interaction
Network and Core Network. STRING (http://string-db.org/)
is a protein–protein interaction (PPI) database, and interac-
tions include direct and indirect associations. In addition to
known interactions, it can also be used to predict interactions
between proteins [12]. In order to obtain the PPI network
diagram of JP and SLE-GIOP. First, the intersection targets
of JP and SLE-GIOP are collated and then imported into
the STRING online database. Secondly, set the interaction
condition to “minimum interaction score ≥0.9” and export
the results. To obtain the core target of JP against SLE-GIOP.
The CytoNCA plug-in [13] in the Cytoscape 3.8.0 software

was used to analyze the network topology of the PPI network
results. The degree centrality (DC), betweenness centrality
(BC), closeness centrality (CC), eigenvector centrality (EC),
local average connectivity-based method (LAC), and network
centrality (NC) of each node are calculated [14]. They are
representative of the topological importance of each node
based on their definitions and computational formulas [13].
The DC and BC of the node at the protein location were
larger, indicating the protein had a greater significance in
the network constructed [15]. Finally, other protein interaction
parameters, such as CC and EC, were further used to screen core
target proteins.

2.5. GO and KEGG Pathway Enrichment Analysis. Related
R 4.1.3 software packages such as “BiocManager”were installed
in advance. R 4.1.3 software was used to obtain Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis results and output visual images.
p-Values were set at 0.05. GO analysis included molecular func-
tion (MF), biological process (BP), and cellular component
(CC), and the top 10 results were output. KEGG analysis output
the top 30 pathways with the highest significant enrichment.
Finally, consulting the literature, disease-related signaling path-
ways were mapped using the “Pathview” software package.

2.6. Molecular Docking Prediction. The macromolecular pro-
teins for molecular docking are the top three core targets in
network topology analysis, and their corresponding com-
pounds are small molecule ligands. Pub-Chem database
(https://pubchem.ncbi.nlm.nih.gov/) was used to download
the 2D structure of small molecule ligands. Then, use Chem-
Bio3D Ultra 14.0.0.117 software to convert the downloaded
2D structure into a 3D structure and optimize it. After
retrieving the receptor protein through the Protein Data
Bank database (https://www.rcsb.org/), PyMOL 2.4.0 soft-
ware was used to dehydrate and remove ligand small mole-
cules. The protein receptor molecule was hydrogenated using
Autodock Tools 1.5.7 software. Based on the position of the
active site of the protein molecule and the area where it may
interact with the ligand small molecule, the center coordinates
and size of the box were determined [16]. AutoDock Vina
1.1.2 software was used for molecular docking, followed by
analysis and visualization using PyMOL 2.4.0 software. The
binding ability is evaluated by the binding energy of the recep-
tor and the ligand. A binding energy below 0 indicates a
spontaneous binding between the receptor and ligand, and
the lower the value, the stronger the binding.

3. Results

3.1. Obtaining Potential Active Ingredients and Targets of JP.
A total of 112 potential active ingredients were found by
searching the TCMSP and TCMID databases. The potential
active ingredients of SDH, CBJ, SM, BHSSC, QH, JXC,
CS, YYR, FS, and GC are 3, 1, 17, 7, 22, 3, 30, 9, 5, and 15,
respectively. In Table S1, we show basic information on
potential active ingredients in JP. Targets of 8,015 potential
active ingredients were retrieved in the TCMSP database.
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The number of potential targets for SDH, CBJ, SM, BHSSC,
QH, JXC, CS, YYR, FS, and GC is 28, 4, 792, 556, 1,382, 615,
681, 246, 1,205, and 2,506, respectively. Finally, 1,387 effective
targets were determined by removing the repetitive values of
potential active ingredient targets.

3.2. The Acquisition of Targets at the Intersection of JP and
SLE-GIOP. By searching GeneCards, OMIM, PharmGkb,
TTD, and DrugBank disease databases, we obtained 1,530
SLE-related targets and 527 GIOP-related targets from these
databases, as shown in Figure 2. Two hundred eighty one

SLE-GIOP-related cross genes were obtained after the dupli-
cation value was removed by taking the intersection. There
are 58 cross-point targets between the SLE-GIOP joint tar-
gets and the potential targets of JP, as shown in Figure 2.

3.3. “Chinese Medicines-Active Ingredients-Intersection Targets”:
Construction and Analysis. Cytoscape 3.8.0 software was
used to construct and analyze the Chinese Medicines-Active
Ingredients-Intersection Targets network. The network dia-
gram is shown in Figure 3. Potentially active ingredients in
each herb are presented and precisely matched to SLE-GIOP
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FIGURE 2: Disease (SLE-GIOP) and drug (JP) Venn diagrams.
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disease targets. Nodes and edges reflect the specific relation-
ship between them. The network diagram contained 58 target
genes and 49 active components. The higher degree indicates
that the compound plays a more critical role in the network.
By further calculating the degree of the compound in the
figure, the top five active compounds include MOL000098-
quercetin, MOL000006-luteolin, MOL000422-kaempfero,
MOL002714-baicalein, and MOL001002-ellagic acid.

3.4. PPI and Core Targets Network: Construction andAnalysis.
The PPI network of drug-disease intersection targets was con-
structed through the STRING online database platform, the
result is shown in Figure 4. The core targets were screened by
Cyto NCA plug-in of Cytoscape 3.8.0, and 58 nodes and 156
edges were obtained, the result is shown in Figure 5(a). For
the first topological analysis, DC≥ 4, 17 nodes and 61 edges
are obtained, as shown in Figure 5(b). The second topology
analysis was performed with BC≥ 6.616 (average), CC≥ 0.64
(average), and EC≥ 0.231 (average) to identify the key target
genes. Finally, the core target subnetwork with 5 nodes and 9
edges is obtained, and the result is shown in Figure 5(c). The
top three target proteins of degree value were selected as the
core target proteins in the protein network (Figure 5(c)),

which were TP53 protein, MAPK1 protein, and MYC
protein, respectively.

3.5. GO and KEGG Enrichment Analysis: Construction and
Analysis. R 4.1.3 software was used for GO and KEGG
enrichment analysis. The results of GO enrichment analysis
included BP, CC, and MF, and a total of 1,968 GO terms
were identified. We selected the top 10 results of BP, CC,
and MF are shown in Figure 6(a). As shown in Figure 6(a),
the top three BPs are lipopolysaccharide, molecule of bacte-
rial origin, and tumor necrosis factor. The top three CCs are
membrane rafts, membrane microdomain, and external side
of plasma membrane. The top three MFs are DNA-binding
transcription factor binding, cytokine receptor binding, and
RNA polymerase II-specific DNA-binding transcription factor
binding. There are 154 signaling pathways enriched by KEGG
analysis, mainly enriched in lipid and atherosclerosis, AGE-
RAGE signaling pathway in diabetic complications, fluid shear
stress and atherosclerosis, human cytomegalovirus infection,
etc. After that, we selected the top 30 signaling pathways for
visualization and are shown in Figure 6(b). After consulting
the literature, two signal pathways highly related to the disease
were drawn and shown in Figures 7(a) and 7(b).
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3.6. Validation ofMolecularDocking: Construction andAnalysis.
The binding energy between molecules determines the effect
of molecular docking. Lower molecular docking binding
energy represents higher binding force. When the binding
energy is <5 kcal/mol, the receptor and ligand have rela-
tively good binding properties [17]. Molecular docking was
used to detect the binding ability of the first three core
targets in the core target network and their corresponding
compounds. The docking results (2D images and 3D struc-
tures) are shown in Figure 8(a)–8(e). Table 1 shows that the
predicted potential core targets have high affinity to the
effective compounds corresponding to JP, and the binding
energy is almost ≤−5 kcal/mol. In addition, quercetin and
MAPK1 were found to have the highest binding ability with
the binding energy=−8.4 kcal/mol. Based on the above results,
we can conclude that the predicted core targets and corre-
sponding active ingredients have certain or even strong
binding ability, thus verifying the credibility of the network
pharmacology results.

4. Discussion

As a chronic recurrent disease, SLE will greatly reduce the
quality of life of patients. Insufficient treatment can acceler-
ate the damage of multiple organs and tissues. GC is the basic
drug for the treatment of SLE, which is widely used to inhibit
inflammation or immune system. However, high-dose and
long-term use of GC will lead to a large number of patients
with severe and common iatrogenic complications, namely,
GIOP [18]. Based on the characteristics of multitarget and
multipath effects, traditional Chinese medicine shows better
curative effect on such complex diseases. JP is Professor
Yongsheng Fan’s empirical prescription for SLE in the long-
term clinical process. The clinical efficacy of treating SLE is
definite [19]. Not only does it improve the symptoms of SLE
patients, but it also reduces hormone doses and is proactive

in preventing and treating SLE-GIOP. However, the specific
pharmacological mechanism is still unclear. The use of net-
work pharmacology in drug research has become increasingly
popular, enabling us to better understand the mechanism of
action of drugs on a specific disease [20]. At the same time,
our understanding of drug and target relationships can be
further enhanced by verifying molecular docking. Therefore,
this study used network pharmacology methods combined
with molecular docking verification to explore the effective
active ingredients and potential targets in JP. The potential
mechanism of JP against SLE-GIOP was revealed by search-
ing for effective active ingredients, constructing a target net-
work, enrichment analysis of targets, and docking verification.

We used network pharmacology analysis to screen the
chemical components and corresponding target genes of a
single herb in the formula, and integrated the target gene
information of SLE-GIOP. The results showed that JP may
act on MAPK1, TP53, RELA, MYC, and HSP90AA1 through
various core active components such as quercetin, luteolin,
kaempferol, baicalein, and ellagic acid. Quercetin is a kind of
flavonoid, which is found widely in fruits and vegetables. It
can inhibit osteoclastogenesis while promoting osteogenesis,
reduce oxidative stress and inflammatory response, and
enhance antioxidant expression and adipocyte apoptosis. It
can regulate bone metabolism through the mitogen-activated
protein kinase (MAPK) signaling pathway and produce the
effect of stimulating and inhibiting bone [21]. At the same
time, quercetin can protect the kidney by reducing the level of
proteinuria and the expression of interleukin-6 (IL-6) and
tumor necrosis factor-α (TNF-α) in lupus nephritis (LN)
mice [22]. Moreover, it inhibits the anti-inflammatory effect
of macrophages and increases CD4 T cell activation, which
can improve the symptoms of LN mice [23]. Luteolin is a
plant flavonoid with antioxidant activity. Studies have shown
that luteolin can promote osteoblast differentiation by regu-
lating the ERK/Lrp-5/GSK-3β pathway in GIOP [24]. In a
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glucocorticoid-induced primary osteoporosis cell models,
luteolin can not only promote the proliferation of osteoblasts
but also inhibit their apoptosis [25]. Kaempferol is a dietary
biological flavonoid widely found in various plants. It can
exert bone protection by inhibiting adipogenesis, oxidative
stress, and osteoblast apoptosis. In vitro and in vivo experi-
mental models confirmed the osteoprotective properties of

kaempferol and kaempferol-containing plants. It can exert
antiosteoporosis effects by affecting multiple aspects, such
as regulating bone morphogenetic protein-2 (BMP-2), MAPK,
and mammalian target of rapamycin (mTOR) signaling
pathways [26]. Kaempferol has also been shown to prevent
and treat inflammatory diseases such as rheumatoid arthritis
and SLE by increasing FOXP3 expression in Treg cells or
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reducing PIM1-mediated FOXP3 phosphorylation at S422
[27]. Baicalein is a lipoxygenase inhibitor that can stimulate
MC3T3-E1 cells to differentiate into osteoblasts [28] and has
the potential to inhibit osteoclast differentiation and induce
apoptosis of mature osteoclasts [29]. In addition, the infiltra-
tion of myeloid-derived suppressor cells (MDSCs) in the
kidney will lead to the acceleration and deterioration of LN.
On one hand, baicalein can inhibit the expansion of MDSC,
on the other hand, it can regulate the balance of Nrf2/HO-1
signal and NLRP3 expression in MDSCs to alleviate pristane-
induced LN symptoms [30]. Ellagic acid, as a phenolic com-
pound, is common in fruits, nuts, and plant extracts. Studies
have shown that it can act on osteoclasts by acting on a
variety of signaling pathways, such as the p38 signaling
pathway downstream of RANKL, and can inhibit osteoclas-
togenesis and inhibit bone resorption in a dose-dependently
manner, strongly protecting bone loss in vivo caused by
ovariectomy-induced [31–33].

Through GO analysis of these intersectional genes, we
found that JP affected SLE-GIOP through response to lipo-
polysaccharide, response to molecule of bacterial origin, and
response to tumor necrosis factor. Combined with the liter-
ature review, KEGG enrichment analysis showed that PI3K-
Akt signaling pathway and TGF-β signaling pathway were
highly correlated with the studied diseases. Studies have
found that dexamethasone can induce osteoblast apoptosis
through PI3K-Akt signaling pathway [34]. In vivo and in
vitro studies have shown that drugs acting on the PI3K-
Akt signaling pathway can affect osteoblast differentiation,
inhibit osteoblast apoptosis, and play a positive regulatory
role in the osteogenic process [35, 36]. In the treatment of
SLE, the accumulation of SLE lymphocytes in S and G2/M
cell cycle stages is related to the increased activity of PI3K/
Akt/mTOR signaling pathway [37]. HSP90 can affect the
autoimmune system, which is elevated in SLE patients.
17-AAG is a HSP90 inhibitor, and the AKT/GSK3β
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signaling pathway can be downregulated by 17-AAG to
inhibit the function of T lymphocytes [38]. It has been
reported that the replacement of activated macrophages
helps to alleviate SLE. Azithromycin can be used as an
immunomodulator to alleviate SLE by promoting the alter-
natively activated macrophage phenotype, and the PI3K/
Akt signaling pathway was involved [39]. TGF-β signaling
pathway can affect the development of various bone types
in the human body by regulating osteoblasts and osteo-
clasts [40]. Studies have shown that miRNA can guide
mesenchymal stem cells to differentiate into osteoblasts
and bone formation through TGF-β signaling pathway
[41]. Transforming growth factor-β1 (TGF-β1) can also
indirectly promote bone resorption by directly regulating

the proliferation, differentiation, and survival of osteoclasts
[42–44] or by regulating the expression and secretion of
osteoclastogenic proteins in osteoblasts [45–47]. Mean-
while, there is evidence that SLE is associated with defec-
tive production of TGF-β1 by lymphocytes and its inability
to regulate immunological functions [48]. Despite the fact
that TGF-β and its ligands interact complexly, their com-
plex interaction may represent a critical factor in regulating
the tissue’s response to immune injury. In most cases, the
severity of proliferative glomerular lesions can be reflected
by the expression of TGF-β [49].

The results of molecular docking showed that the pre-
dicted potential core targets bind strongly to the effective
compounds corresponding to JP, with almost ≤−5 kcal/mol
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binding energy. In other words, it is predicted that the core
targets and the corresponding active ingredients are capable
of binding to them in a specific or even strong manner.

This study clarified the main potential mechanism of JP
in the treatment of SLE-GIOP by screening the potential
active ingredients of JP, obtaining SLE-GIOP targets, and
enrichment analysis of drug and disease cross targets. The
effective active ingredients of JP (such as quercetin and
luteolin) can affect multiple signaling pathways related to
the disease by acting on core targets (such as MAPK1 and
TP53) to treat SLE-GIOP. The lower binding energy values in
molecular docking indicated the possibility of interaction
between the main potential active ingredients and the core
targets. A few limitations, however, are present in this study.
First, we only analyzed the main compounds of various

traditional Chinese medicines in JP, but the interaction
between compounds and the specific dosage of traditional
Chinesemedicine were not taken into account, which restricted
the results. Second, the target and pathway information based
on online database retrieval is limited by the depth and breadth
of current literature research, that is, there are still unknown
ways of action. Finally, theoretical research has always been to
solve practical clinical problems. This research results still
need further clinical experimental verification, which is also
our next research focus.

5. Conclusion

In general, this study demonstrates preliminary evidence of
JP’s pharmacological effects against SLE-GIOP through net-
work pharmacology and molecular docking. The pharmaco-
logical characteristics of JP multicomponent, multitarget,
and multipathway in the treatment of SLE-GIOP were fur-
ther verified by enrichment analysis. We can find a variety of
effective active ingredients in JP, which can simultaneously
play a role in the treatment of SLE and GIOP. The use
of molecular docking preliminarily verified the interaction
mode between JP active components and SLE-GIOP disease
targets. This study provides a direction for further research
on the mechanism of JP in the treatment of SLE-GIOP.
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TABLE 1: The optimum model for molecular docking.

Small molecule
ligand

Receptor
protein

Binding energy
(kcal/mol)

Quercetin MAPK1 −8.4
Luteolin MAPK1 −8.9
Baicalein TP53 −7.4
Luteolin TP53 −7.3
Quercetin MYC −6.6
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